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Abstract

Let t be an elements of order 3 in a finite simple group G. Let X = tG be a conjugacy class of t in G. The A4-graph,
represented as A4(G,X), is a simple graph has X as a vertex set and two vertices x, y ∈ X, joined by edge whenever
x ̸= y and xy−1 = yx−1. In this paper, we investigate the discs structure and determine the clique number, girth and
diameter of A4(G,X) when G is isomorphic to one of the untwisted groups G2(2)

′,G2(3) or G2(4).
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1 Introduction

Graph theory and group theory are two separate fields of mathematical study, and each has its own set of standards
for manipulating diverse features, concerns, and problems that appear to be detach from one another. Graph theory,
on the other hand, are the ideal way to deal with a variety of problems involving algebraic structures. Many of the
studies performed in this area see for example [2, 6, 7]. During investigating the algebraic characteristics of finite simple
groups, the involution elements are significant. In finite simple groups, however, the elements of order 3 are equally
significant. For instance, the Frobenius groups formed by two elements of order 3 are given with a comprehensive
analysis in [12]. Furthermore, Maksimenko and Mamontov [8] showed that a group constructed by a conjugacy class
of order 3 elements in which every pair yields an isomorphic subgroup to Z3, A4, A5,SL2(3), or SL2(4) have local
finiteness. Further studies in this context can be found in [11] and [5]. Let G be a finite simple group and X is a
G-conjugacy class for elements of order 3. The A4-graph, denoted by A4(G,X), is a simple undirected graph, such
that X being the vertex set and two vertices x, y ∈ X are joined by an edge if and only x ̸= y, where xy−1 = yx−1.
Aubad [1] was the first to present the A4-graph and its features, as well as the structure of A4(G,X) when G3D4(2)
was investigated. One thing worth noting regarding A4(G,X) is that the alternating group A4 generated by two linked
vertices. The paper aim to study the discs structure of the A4graph when G is one of untwisted groups: G2(2)

′,G2(3)
and G2(4).

The study also involves calculate the diameter, the clique number and the girth of the A4-graph. From now on,
we suppose that G be one of aforementioned group, and let t ∈ G has order 3 and X = tG is a G-conjugacy class. One
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can see that the action by conjugation of G on X, generated A4-graph automorphisms and this action is transitive on
graphs vertices.

Let we establish random element x in X and i ∈ Z+. Then the tth disc of x, denoted by ∆i(x) describe as the set
of vertices in A4-graph, each has distance from x of size 1 (This distance function is denoted by d(, ) when using the
ordinary distance function for graphs). Also for the centralizer of x in G we put Gx (= CG(x)). We should note that
he graph discs breakup into a union of particular Gx-orbits (as G acts by conjugation on X). As a consequence, we
will identify the Gx-orbits of X in order to examine the characteristics of the A4-graph. Finally, for the identities of
the G-conjugacy classes, we shall rely mainly on Atlas [4].

2 General Properties

This section discusses general features of the A4-graph of a finite simple group. Aubad [1] provides the following
important work on the A4-graph for finite groups. The following findings show a common features for the A4-graph.

Lemma 2.1. [1] The A4-graph is simple, undirected, regular graph. Furthermore, two connected vertices generated
the group A4.

The next result associated to the disc structures of the A4-graph and its relation with the CG(t)-orbits.

Lemma 2.2. Consider the A4 (G,X ) such that X = tG ( t be an element of order 3 in finite simple group G). Then
the graph discs ∆i(t) breakup into a union of particular CG(t)-orbits. Moreover, for each vertex y ∈ ∆1(t), we have
the order of the element ty is 3 in G. Start by taking an advantage of the following list:

XC = {y ∈ X | ty ∈ X}.

The set C is a random G-conjugacy class. We aim to look at the nonempty set XC . This because such a set
separated into union of particular CG(t)-orbits of the class X. Knowing the way of the set XC breaking into CG(t) -
orbits is quite valuable for identifying whether ∆i(t) have vertices in the set XC . The set XC length determination
can also assist with class structure constants. Class structure constants depend on the size of the following set.

{(s1, s2) ∈ C1 × C2 | s1s2 = s} .

The sets C1, C2, C are G-conjugacy classes and s ∈. The complex character table of G published in the Atlas will
now be used to locate these constants, that have become available electronically in standard computer algebra package
libraries of the Gap system [10].

Now if we let C1 to be C and C2, C2 are equal to X, also let and s = t. Thus we have

|XC | =
|G|

|CG(t)| |CG(w)|

s∑
i=1

i(w)i(t)i(t)

i(1)

such that w is a representative of the class C and χi, where i = 1, . . . , s are the complex irreducible characters of the
finite simple group G.

3 Graph Structures

Let G be one of the following groups G2(2)
′,G2(3) or G2(4). Assume that t ∈ G be an element of order 3. Set

X = tG is a G-conjugacy class of t. The analyzing of A4(G,X) structure can be investigated by computing the
CG(t)-orbits as CG(t) acting by conjugation on X. These orbits break up the discs of the graph. Thus, the goal is
to determine such orbits for each class of elements of order 3 in G. The strategy we are adopting mainly focuses
on the computational approach represented by the GAP. In addition, Online Atlas [9] has a very important role in
distributing classes on CG(t) - orbits and provide a representation for each group. In the tables that come, exponential
notation is being used to illustrate the multiple of a size. As previously stated, we use class names from the Atlas.
We condense the letter component of the class name even more after we’re going to merge these classes, and their
characters are in alphabetical order to get things easier. For instance, 13AB is shortcut to 13A ∪ 13B in Table 3.3.
Moreover, The entry

{
92, 95, 94

}
in Table 3.1 in the class name 7AB ensures X7AB is a combine of 11CG(t)-orbits

with equal size 9, where 2 orbits in ∆2(t), 5 in ∆3(t) and 4 in ∆4(t).
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3.1 A4 (G2(2)
′,X)

The group G2(2)
′ has two classes of order 3 , and A4 (G2(2)

′,X) for each class describe as follows:
i. A4 (G2(2)

′, 3 A)
We note that for t a fixed element in 3 A, the CG(t) ((C3 × C3) : C3) : C4 with size of the class is 56 . The number of
the CG(t) - orbits are 4 and split into 4 different classes which are X1 A,X3 A,X4C,X6 A and the size of the first two
orbits 2 and the next two orbits 27 respectively. The clique number of the graph equal to 1 . Therefore, the A4-graph
in this case is totally disconnected.
ii. A4 (G2(2)

′, 3 B)
Let t be a random element in the class 3 B. Then CG(t) C3 ×C3 and |3B| = 672. There are 84CG(t) - orbits separate
into the following XC classes. In the next table information about the set XC the discs belong to are given:

Table 1: Discs Structure for the graph A4 (G2(2)′, 3 B)

Class Name ∆1(t) ∆2(t) ∆3(t) ∆4(t) ∆5(t)
1A 1
2A 1
3A 12

3B 9 32, 94 92 12, 34, 92

4AB 9
4C 92 92 92

6A 94 94

7AB 92 95 94

8AB 98

12AB 92 92

We can see immediately form the above table that A4 (G2(2)
′, 3 B) is connected with diameter 5.

3.2 A4 (G2(3),X)

In this simple group there are five classes of elements of order 3 . The A4-graph for such classes are given with
details in the following:
i. A4 (G2(3), 3 A)
The class 3A has size 728 and CG(t) ((C3 × C3 × ((C3 × C3) : C3)) : Q8) : C3. The number of CG(t)-orbits equal to 6
and the size of the class XC are given in the next table:

Table 3.2. The A4 (G2(3), 3 A) is totally disconnected this because the clique number of the graph is equal to 1.

Table 2: Description of the sets XC in A4 (G2(3), 3 A)

Class Name Number of Orbits Size of the Orbits
1A 1 1
3A 2 25 including t
3D 1 216
4B 1 243
6A 1 243

ii. A4 (G2(3), 3B)
The graph A4 (G2(3), 3 B) ∼= A4 (G2(3), 3 A) then the information about both graphs are identical.
iii. A4 (G2(3), 3C)
In the graph we consider the case when tΘC andX = tG. the size ofX is 5824 and CG(t) ? ((C3 × ((C3 × C3) : C3)) : C3) :
C3. In the next table full details on how the set XC break into the 48CG(t)-orbits are provided:

We should note that the clique number of A4 (G2(3), 3C) equal 1 and hence the A4-graph is totally disconnected.
iv. A4 (G2(3), 3D)
In this case we consider the A4 (G2(3), 3D) when tΘD. The size of the class 3D is 26208 and CG(t) isomorphic to
C3 × C3 × ((C3 × C3) : C2). The number of CG(t)-orbits of the A4graph are 220. In the following table allocation of
the sets XC as they break the CG(t)− orbits and which A4 − graph disc belong to are given below: From the above
table the diameter of the A4 (G2(3), 3D) equal to 4 and thus, the graph is connected.
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Table 3: Description of the sets XC in A4 (G2(3), 3C)

Class Name Number of Orbits Orbits discerption Size of the Orbits
1A 1 1
3AB 4 1, 32, 27 34
3C 5 1, 34 13
3D 8 94, 274 144
3E 6 94, 272 90
4AB 2 2432, 486
6D 4 2434 972
7A 1 729 729
9A 5 814, 729 1053
9BC 2 812, 162
13AB 1 729 729

Table 4: Discs Structure for the graph A4 (G2(3), 3D)

Class Name ∆1(t) ∆2(t) ∆3(t) ∆4(t)
1A 1
2A 81
3AB 6 2
3C 22, 64

3D 81 22, 64, 1624 22, 62

3E 66

4AB 542, 1623 27
6AB 162 542, 1623

6C 272, 1622

6D 544, 1628

7A 1628 16228

8AB 1626 16212 1622

9A 184, 1628 182

9BC 184, 1624 182

12AB 1626 542

13AB 1622 1627

v. A4 (G2(3), 3E)
The graphs A4 (G2(3), 3D) and A4 (G2(3), 3E) are isomorphic. Therefore they have the same structure.

3.3 A4 (G2(4),X)

In the group G2(4) there are two classes for elements of order 3 . The structure of the A4 (G2(4),X) explains as
follows:
i. A4 (G2(4),3A)
The class 3 A has size 4160 and for t ∈ A, we have CG(t) ∼= NG(2, 4). Furthermore, there 10 CG(t)-orbits in the graph
A4 (G2(4), 3 A). The manner of the XC breaking into CG(t)-orbits are listed in the next table and determine which
discs be the possession of XC . The above table shows the dimeter of A4 (G2(4), 3 A) equal to 3 and this means the

Table 5: Discs Structure for the graph A4 (G2(4), 3 A)

Class Name ∆1(t) ∆2(t) ∆3(t)
1A 1
2B 622
3A 622
4A 945
5CD 1008
6A 945
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graph is connected.
ii. A4 (G2(4),3B)
Let tΘB then CG(t) ∼= SL(3, 4) and |3B| = 1397760. The A4-graph is very interesting in this case because the number
of CG(t)-orbits is quite big, indeed is equal to 8552 . Full information about the discs structure of A4 (G2(4), 3 B)
illustrate in the following table: From the above table we can see that A4 (G2(4), 3 B) is connected with diameter 3.

Table 6: Discs Structure for the graph A4 (G2(4), 3B)

D1 D2 D3
1A 1
2A 32, 156 155

2B 1804 602

3A 20, 602

3B 32, 1511, 602, 1804 1524, 6012, 18014 20, 60117, 1808

4A 158, 60 6015, 1802

4B 1516, 602, 1802 6030

4C 1804 18014

5AB 3, 1515, 603, 1804 6055, 1806

5CD 1803 60, 18023

6A 6014, 18018 6010, 18040

6B 602, 180228 180454

7A 6018, 180118 6069, 180210

8A 180114 180142

8B 18060 180164

10AB 180108 180276

10CD 180140 180244

12A 6022, 18086 6026, 18082

12BC 6018, 18038 6030, 180114

13AB 180158 180399

15AB 6037, 180160 60110, 180328

15CD 601, 180154 180340

21AB 6018, 180110 6069, 180218

4 Main Results

We offer some results relating to the A4-graph of the aforementioned group in this part, which may be deduced
from the preceding sections.

In the next theorem, the structure and diameters of the A4(G,X) discs are stated with full details:

Theorem 4.1. Let G be a particular untwisted groups describe in below. Then the A4graph of G has the following
features:

1- The graph A4 (G2(2)
′, 3 A) is totally disconnected. Furthermore, for t ∈ 3 A the CG(t) separating into 4 orbits

and disperse among the set XC such that C ∈ {1A, 3A, 4C, 6A}.

2- The graph A4 (G2(2)
′, 3 B) is connected with diameter 5 , such that for t ∈ 3 B we have |∆1(t)| = 9, |∆2(t)| =

54, |∆3(t)| = 231, |∆4(t)| = 343 and |∆5(t)| = 34.Furtherore, CG(t) separating into 4 orbits and disperse among
the set XC such that C ∈ {1A, 2A, 3AB, 4ABC, 6A, 7AB, 8AB, 12AB}.

3- The graphs A4 (G2(3), 3 A) and A4 (G2(3), 3 B) are isomorphic totally disconnected graphs. Furthermore, for
t ∈ 3A the CG(t) separating into 6 orbits and disperse among the set XC such that C ∈ {1A, 3A, 3D, 4B, 6A}.

4- The graph A4 (G2(3), 3C) is totally disconnected. Furthermore, for t ∈ 3C the CG(t) separating into 48 orbits
and disperse among the set XC such that C ∈ {1A, 3ABCDE, 4AB, 6D, 7A, 9ABC, 13AB}.
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5- The graphs A4 (G2(3), 3D) and A4 (G2(3), 3E) are isomorphic connected graphs with diameter 4. such that for
t ∈ 3D we have |∆1(t)| = 81, |∆2(t)| = 4914, |∆3(t)| = 20101, |∆4(t)| = 1111. Furthermore, for t ∈ 3D the CG(t)
separating into 220 orbits and disperse among the set XC such that

C ∈ {1A, 2A, 3ABCDE, 4AB, 6ABCD, 7A, 8AB, 9ABC, 12AB, 13AB}.

6- The graph A4 (G2(4), 3 A) is connected with diameter 3 , such that for t ∈ 3 A we have |∆1(t)| = 126, |∆2(t)| =
3087, |∆3(t)| = 946.Furtherore, CG(t) separating into 10 orbits and disperse among the set XC such that C ∈
{1A, 2B, 3A, 4A, 5CD, 6A}.

7- The graph A4 (G2(4), 3 B) is connected with diameter 3 , such that for t ∈ 3 A we have |∆1(t)| = 1011, |∆2(t)| =
446412, |∆3(t)| = 950336. Furthermore, CG(t) separating into 8552 orbits and disperse among the set Xc such
that C ∈ 1A, 2AB, 3AB, 4ABC, 5ABCD, 6AB, 7A, 8AB10ABCD, 12ABC, 13AB, 15ABCD, 21AB}.

Proof . The proof of the above theorem follow form graphs structure details which provided in previous section. It
should be noted that the general results given in Section 2 are used to secure this information.

For the connected A4-graphs in the Theorem 4.1, the next result determine the girth and the clique number of the
graph. The girth and the clique number can be calculated by using the gap YAGS [3]. □

Theorem 4.2. Suppose that G is untwisted groups isomorphic to G2(2)
′, G2(3) or G2(4).

Then for connected A4-graph we have the following:

1- For the graph A4 (G2(2)
′, 3 B) the girth is 3 and the clique number is 4.

2- For the isomorphic graphs A4 (G2(3), 3D) and A4 (G2(3), 3E) the girth is 3 and the clique number is 4 .

3- For the graph A4 (G2(4), 3 A) the girth is 3 and the clique number is 4 .

4- For the graph A4 (G2(4), 3 B) the girth is 3 and the clique number is 64.

Proof . The proof follow from Thereon 4.1 and the computational calculations can be done by using YAGS.

In the next results the relation between the alternating group A4 and the A4-graph are given for our interesting
groups: □

Corollary 4.3. Assume that G is untwisted groups isomorphic to one of the following groups G2(2)
′, G2(3) or G2(4).

Then

1- There no subgroup isomorphic to A4 can be generated by any two random elements in the following classes 3 A
in G2(2)

′, 3ABC in G2(3).

2- Let t ∈ G be an elements of order 3 and X = tG. Then the number of subgroups in G isomorphic to A4 that
can generated by t and random element in X are 9 if X = 3B in G2(2)

′, 81 if X = 3D or 3E in G2(3), 126 if
X = 3A or 1011 if X = 3B in G2(4)

Proof . The proof follow immediately from Theorem 4.1 and Lemma 2.1. □

5 Conclusions

The structure of A4-graph for the groups G2(2)
′,G2(3) or G2(4) have been investigated with full details. We utilize

the A4-graph to determine the number of subgroups isomorphism to the alternating group A4 inside the above groups.
Such subgroups generated by elements of order 3 and random elements in the class of this element.
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