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Abstract

In this paper, we aim to prove the existence, uniqueness of the solution to the random delay differential equation of
fractional order involving the successive approximation method. Moreover, using the Gronwall inequality, we study
the continuous dependence of solution in the mean square sense of the problem. Finally, the fractional ϵ-approximate
solution in the mean square sense is also considered.
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1 Introduction and Preliminaries

Many dynamic systems can be characterized in detail through fractional differential and integral equations (FDIEs).
A several models can be found in Physics [11] , Chemistry [20], Biology [13], Engineering [23], and Economics [2].
Hence the study of these equations has a widespread interest.

Researchers in these last two decades have vigorously studied the theory of the FDIEs. We can refer to the
monographs [14] and the papers [1, 14, 15, 18, 19]. Unfortunately, the FDIEs may be limited because the uncertainties
inherent in dynamic systems may not be mentioned. As a result, fractional random differential and integral equations
(R-FDIEs) have been used more and more over the years (see [4, 6, 16, 17, 25, 12]). Therefore, it makes sense to
develop a fractional calculus that considers the “randomness” of this situation.

In 2001, Hafiz et al. [9] established the theory mean square fractional calculus, which transfers from the deter-
ministic fractional calculus to a mean square setting. The mean square fractional integration and differentiation for
mean square continuous second-order stochastic processes in the sense of Caputo are introduced by themselves in [9].
Next, Hafiz [8] studied the mean square fractional integration in the sense of Riemann—Liouville for mean square
integrable stochastic processes. The properties of the mean square fractional derivative in the sense of Caputo and
Riemann—Liouville are also discussed.
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El-Sayed et al. [5] considered the following the delay stochastic differential equation of fractional order:{
Υ′(t) = F

(
t,Υ(ϕ1(t)),D

βΥ(ϕ2(t))
)
,

Υ(0) = Υ0.

where ϕ1, ϕ2 : [0, T ] → [0, T ] are continuous functions satisfy ϕ1(t), ϕ2(t) ≤ t and F satisfies Lipschitz condition. The
authors proved the existence local of the mean square solution to this problem. Besides, the continuous dependence
on initial data also established. Afterward, Vu and Hoa [24] showed that the technique used in [5] could be applied to
yield existence results in the mean square sense for the problem as follows:

Υ′(t) = F
(
t,Υ(t),DβΥ(t)

)
, t ∈ [0, t1] ∪ (0, t2] ∪ . . . ∪ (0, T ],

∆Υ(tk) = Ik
(
Υ(tk)

)
, k = 1, 2, . . . ,

Υ(0) = Υ0.

Using mean square random calculus, Bouros et al. [3] constructed the fractional forward Euler-like method to solve
the following random fractional differential equation{

DαΥ(t) = F(t,Υ(t)), t ∈ [0, T ],

Υ(a) = Υ0,

where F is mean square continuous function and satisfies Lipschitz condition. Besides, the mean square convergence of
this method also proved. Base on the Maximum Entropy Principle, the authors discussed an approach to approximation
the first probability density function of the mean square solution of the above problem.

Yfrah et al. [7] proved the existence and uniqueness of solution of the high order random fractional equation with
nonlocal conditions in the Banach space as follows:

DβΥ(t) = B(t)F(Υ(t)) + C(t)G
(
Dβ−1Υ(t), . . . ,Dβ−n+1Υ(t)

)
Υ0 = Υ(0) +

∑n
k=1 akΥ(τk),

Υj = Υj(0), j = 1, 2, . . . , n− 1,

where β ∈ (n−1, n], n = [β]+1 and n = 0, 1, 2, . . ., ak are non-negative constant, B,C : [0, T ] → R and F : L2(Ω) → R,
G :

(
L2(Ω)

)n−1 → R satisfy some suitable conditions. In the proofs, the Banach’s fixed point theorem is used.
The continuous dependence on the initial condition of solution and high order fractional derivative dependence also
discussed. Before, Slimane el al. [21] also considered this problem in cases n = 0.

To the best of our knowledge, the existence and unique solution of the random delay differential equation of
fractional order in mean square sense is not still considered. From the above discussions, in this paper, we will
consider this problem. The outcomes of our work include the following new features:

� Using the successive approximation methods, we prove the existence and uniqueness of the mean square solution
of the random delay differential equation of fractional order.

� The dependence of solution of the random delay differential equation of fractional order in mean square sense is
considered.

� We establish the ϵ−solution of the random delay differential equation of fractional order in mean square sense.

Next, we present some important theorems, definitions, and notations related to the mean square calculus of the
stochastic process, which will be used throughout this paper.

The triplet (Ω, F,P) will denote a complete probability space. A random variable Υ(t) =
{
Υ(t, ω) | t ∈ [0, a], ω ∈ Ω

}
is called a second order random variable, if

E[Υ2(t)] :=

∫
Ω

Υ2dP < ∞,

where E[·] is the expectation operator. If Υ(t) is a second order random variable, then Υ(t) is termed a second order
stochastic process.
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The set L2(Ω) =
{
Υ : Ω → R : E(Υ2(t)) < ∞

}
of all the second order random variables endowed with the norm

∥Υ(t)∥2 =
√
E[Υ2(t)].

It is easy to see that L2(Ω) is a Banach space.

Let {Υm}m≥0 be a sequence in L2(Ω). We say that {Υm}m≥0 is converges in the mean square to Υ ∈ L2(Ω), if

lim
m→∞

∥∥Υm −Υ
∥∥
2
= 0.

Let C := C([0, a], L2(Ω)) denotes the space of all second order stochastic processes, which are mean square Riemann
integrable on [0, a], i.e. ∫

[0,a]

E[Υ2(t)]dt < ∞.

Denote C([0, a], L2(Ω)) as the Banach space of all mean square continuous functions from [0, a] × Ω into R with
the norm

∥Υ∥C = max
t∈[0,a]

∥Υ(t)∥2.

Definition 1.1. ([22]) Let Υ(t) be a second order stochastic process. We say that Υ(t) has a mean square derivative
at t, denoted by Υ′(t), if

lim
h→0

∥∥∥∥Υ(t+ h)−Υ(t)

h
−Υ′(t)

∥∥∥∥
2

= 0.

Theorem 1.2. ([8]) Let Υ(t) be a second order stochastic process. The stochastic mean square Riemann–Liouville

fractional integral of Υ(t), denoted by Iβ0+Υ(t), of order β ∈ (0, 1] is defined by

Iβ0+Υ(t) =
1

Γ(β)

∫ t

0

(t− s)β−1Υ(s)ds,

where Γ is the Gamma function.

Definition 1.3. ([8]) Let Υ(t) be a second order stochastic process. The stochastic mean square Caputo fractional

derivative of Υ(t), denoted by Dβ
0+Υ(t), of order β ∈ (0, 1] is defined by

Dβ
0+Υ(t) := I1−β

0+
d

dt
Υ(t) =

1

Γ(β)

∫ t

0

(t− s)β−1Υ′(s)ds,

where Υ′(t) denotes the mean square derivative of Υ(t).

Theorem 1.4. ([8]) Let β > 0 and t ∈ [0, a] . If stochastic process Υ(t) is mean square differentiable with mean
square integrable second order derivative, then

i) Iβ0+D
β
0+Υ(t) = Υ(t)−Υ(0);

ii) Dβ
0+I

β
0+Υ(t) = Υ(t).

Lemma 1.5. ([10], Lemma 7.1.1) Let a(t) be continuous function and b(t) is a positive, integrable function on [0, T ].
Assume that there is constant c > 0 such that

a(t) ≤ b(t) + c

∫ t

0

(t− s)β−1a(s)ds, β ∈ (0, 1].

Then, there exists a constant K = Kβ such that

a(t) ≤ b(t) +Kβc

∫ t

0

(t− s)β−1b(s)ds, ∀t ∈ [0, T ].
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2 Existence and Uniqueness of solution

Given σ > 0, we denote by Cσ := C([−σ, 0], L2(Ω)) is the Banach space of the mean square continuous functions
from [−τ, 0] into L2(Ω) with the distance metric as follows:∥∥θ∥∥

σ
= max

t∈[−τ,0]

∥∥θ(t)∥∥
2
.

Let θ ∈ C
(
[−τ, a], L2(Ω)

)
. For any t ∈ [0, a], then we denote by θt is an element of Cσ, given by θt(s) = θ(t+ s), for

any t ∈ [−σ, 0].

We consider the following random delay differential equation of fractional order:{
Dβ

0+Φ(t) = F
(
t,Φt

)
, t ∈ [0, a],

Φ(t) = Φ̂(t), t ∈ [−σ, 0],
(2.1)

whereDβ
0+Φ(t) is stochastic mean square Caputo fractional derivative of Φ(t) of order β ∈ (0, 1]; F : [0, a]×Cσ → L2(Ω)

is mean square continuous on [0, a] and Φ̂ : [−σ, 0] → L2(Ω) is a random variable satisfying E(Φ̂2) < ∞.

Remark 2.1. We say that the second-order stochastic process Φ : [−σ, a] → L2(Ω) is a mean square solution of (2.1)

if Φ satisties Φ(t) = Φ̂(t) for t ∈ [−σ, 0] and Dβ
0+Φ(t) = F

(
t,Φt

)
for t ∈ [0, a].

Lemma 2.2. Let Φ : [−σ, a] → L2(Ω) be a second-order stochastic process and F : [0, a] × Cσ → L2(Ω) is mean
square continuous function, then the problem (2.1) is equivalent to the random fractional integral equation as follows:

Φ(t) =

Φ̂(t), t ∈ [−σ, 0],

Φ̂(0) +
1

Γ(β)

∫ t

0
(t− s)β−1F

(
s,Φs

)
ds, t ∈ [0, a].

(2.2)

To prove the below theorems, we introduce some assumptions for the function F : [0, a]× Cσ → L2(Ω) as follows:

(A1) There exists a positive constant M such that∥∥F(
t,Φ1

)
−F

(
t,Φ2

)∥∥
2
≤ M

∥∥Φ1 − Φ2

∥∥
σ
,

for any t ∈ [0, a] and Φ1,Φ2 ∈ Cσ;

(A2) There exists a positive constant K such that ∥∥F(
t,Φ

)∥∥
2
≤ K,

for any t ∈ [0, a] and Φ ∈ Cσ.

Now, we will show the existence and uniqueness of the mean square solution of the problem (2.1) by using the method
of Picard’s successive approximation.

Theorem 2.3. Assume that F : [0, a]×Cσ → L2(Ω) is mean square continuous function and it satisfies the assump-
tions (A1)–(A2). Then the problem (2.1) has unique mean square solution Φ : [−σ, a] → L2(Ω).

Proof . Now we construct a sequence mean square continuous function Φm : [−σ, a] → L2(Ω), m = 0, 1, . . . , as
follows: for m = 0

Φ0(t) =

{
Φ̂(t), t ∈ [−σ, 0],

Φ̂(0), t ∈ [0, a]
(2.3)

and for m ≥ 1,

Φm+1(t) =

Φ̂(t), t ∈ [−σ, 0],

Φ̂(0) +
1

Γ(β)

∫ t

0
(t− s)β−1F

(
s,Φm

s

)
ds, t ∈ [0, a].

(2.4)
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For m = 0, then by the assumption (A2) and (2.3), we obtain∥∥Φ1(t)− Φ0(t)
∥∥
2
= 0, ∀t ∈ [−σ, 0]

and ∥∥Φ1(t)− Φ0(t)
∥∥
2
≤

∥∥∥∥ 1

Γ(β)

∫ t

0

(t− s)β−1F
(
s,Φ0

s

)
ds

∥∥∥∥
2

≤ 1

Γ(β)

∫ t

0

(t− s)β−1
∥∥F(

s,Φ0
s

)∥∥
2
ds ≤ Ktβ

Γ(1 + β)
, ∀t ∈ [0, a]. (2.5)

For m ≥ 1. Let us suppose that ∥∥Φm(t)− Φ0(t)
∥∥
2
≤ Ktβ

Γ(1 + β)
, ∀t ∈ [0, a].

This yields that F
(
s,Φm

s

)
is defined on [0, a], and since F

(
s,Φm

s

)
is mean square continuous function on [0, a], we

have ∥∥Φm+1(t)− Φ0(t)
∥∥
2
≤

∥∥∥∥ 1

Γ(β)

∫ t

0

(t− s)β−1F
(
s,Φm

s

)
ds

∥∥∥∥
2

≤ 1

Γ(β)

∫ t

0

(t− s)β−1
∥∥F(

s,Φm
s

)∥∥
2
ds ≤ Ktβ

Γ(1 + β)
, ∀t ∈ [0, a]. (2.6)

This mean that (2.3) and (2.4) are well-defined.

Combining (2.4) and the assumption (A1), for m ≥ 1 we have∥∥Φm+1(t)− Φm(t)
∥∥
2
≤

∥∥∥∥ 1

Γ(β)

∫ t

0

(t− s)β−1F
(
s,Φm

s

)
ds− 1

Γ(β)

∫ t

0

(t− s)β−1F
(
s,Φm−1

s

)
ds

∥∥∥∥
2

≤ 1

Γ(β)

∫ t

0

(t− s)β−1
∥∥F(

s,Φm
s

)
−F

(
s,Φm−1

s

)∥∥
2
ds

≤ M

Γ(β)

∫ t

0

(t− s)β−1
∥∥Φm

s (·)− Φm−1
s (·)

∥∥
σ
ds

≤ M

Γ(β)

∫ t

0

(t− s)β−1 max
r∈[−σ,0]

∥∥Φm(s+ r)− Φm−1(s+ r)
∥∥
2
ds

≤ M

Γ(β)

∫ t

0

(t− s)β−1 max
η∈[s−σ,s]

∥∥Φm(η)− Φm−1(η)
∥∥
2
ds, ∀t ∈ [0, a].

From the estimation (2.5) and assumption (A1), one obtain∥∥Φ2(t)− Φ1(t)
∥∥
2
≤ M

Γ(β)

∫ t

0

(t− s)β−1 max
η∈[s−σ,s]

∥∥Φ2(η)− Φ1(η)
∥∥
2
ds

≤ M

Γ(β)

∫ t

0

(t− s)β−1 max
η∈[s−σ,s]

(
Kηβ

Γ(1 + β)

)
ds

≤ MK

Γ(β)Γ(1 + β)

∫ t

0

(t− s)β−1sβds =
K

M
×

(
Mtβ

)2
Γ(1 + 2β)

, ∀t ∈ [0, a].

Furthermore, if we assume that∥∥Φm(t)− Φm−1(t)
∥∥
2
≤ K

M
×

(
Mtβ

)m
Γ(1 +mβ)

, ∀t ∈ [0, a],

then ∥∥Φm+1(t)− Φm(t)
∥∥
2
≤ M

Γ(β)

∫ t

0

(t− s)β−1 max
η∈[s−σ,s]

(
K

M
×

(
Mηβ

)m
Γ(1 +mβ)

)
ds

≤ KMm

Γ(β)Γ(1 +mβ)

∫ t

0

(t− s)β−1smβds

=
K

M
×

(
Mtβ

)m+1

Γ(1 + (m+ 1)β)
, ∀t ∈ [0, a]. (2.7)
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By the mathematical induction, the inequality (2.7) is true for anym ≥ 0. Therefore, the series

∞∑
m=0

∥∥Φm+1(t)−Φm(t)
∥∥
2

is uniformly convergent in mean square for any t ∈ [0, a]. That means, the sequence {Φm}∞m=0 is uniformly convergent
in mean square for any t ∈ [0, a]. It follows that there exists a mean square continuous function Φ : [0, a] → L2(Ω)
such that ∥∥Φm − Φ

∥∥
C
→ 0 as m → ∞.

From the assumption (A1) and for any t ∈ [0, a], we imply∥∥F(
s,Φm

s

)
−F

(
s,Φs

)∥∥
2
≤ M

∥∥Φm
s − Φs

∥∥
σ
≤ M max

t∈[0,a]

∥∥Φm
s (t)− Φs(t)

∥∥
2
.

So, we conclude that
∥∥F(

s,Φm
s

)
−F

(
s,Φs

)∥∥
2
uniformly converges in mean square sense to zero, as m → ∞.

On the other hand, we have the following estimation∥∥∥∥ 1

Γ(β)

∫ t

0

(t− s)β−1F
(
s,Φm

s

)
ds− 1

Γ(β)

∫ t

0

(t− s)β−1F
(
s,Φs

)
ds

∥∥∥∥
2

≤ 1

Γ(β)

∫ t

0

(t− s)β−1
∥∥F(

s,Φm
s

)
−F

(
s,Φs

)∥∥
2
ds, ∀t ∈ [0, a].

From here we infer

1

Γ(β)

∫ t

0

(t− s)β−1F
(
s,Φm

s

)
ds → 1

Γ(β)

∫ t

0

(t− s)β−1F
(
s,Φs

)
ds, (2.8)

in mean square sense, for any m ≥ 0 and t ∈ [0, a].

Combining (2.4) and (2.8), we obtain

Φ(t) =

Φ̂(t), t ∈ [−σ, 0],

Φ̂(0) +
1

Γ(β)

∫ t

0
(t− s)β−1F

(
s,Φs

)
ds, t ∈ [0, a],

and hence Φ is a mean square solution of the problem (2.1).

Finally, we prove the unique solution in the mean square of the problem (2.1). Assume that Ψ is another mean
square solution of the problem (2.1).

For any t ∈ [0, a] and by the assumption (A1), we obtain

∥∥Φ(t)−Ψ(t)
∥∥
2
≤ 1

Γ(β)

∫ t

0

(t− s)β−1
∥∥F(

s,Φs

)
−F

(
s,Ψs

)∥∥
2
ds

≤ M

Γ(β)

∫ t

0

(t− s)β−1 max
η∈[s−σ,s]

∥∥Φ(η)−Ψ(η)
∥∥
2
ds.

If we put A(s) = maxη∈[s−σ,s]

∥∥Φ(η)−Ψ(η)
∥∥
2
for any s ∈ [σ, t], then by the Gronwall inequality (1.5), one get A(t) ≤ 0

for any t ∈ [0, a]. The proof is completed. □

3 Continuous Dependence of solution

In this section, in the mean square sense, we will study the dependence of solution of the problem (2.1) on the
history condition and the right-hand side.

Let us consider the following two problems:{
Dβ

0+Φ(t) = F
(
t,Φt

)
, t ∈ [0, a],

Φ(t) = Φ̂(t), t ∈ [−σ, 0],
(3.1)
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and {
Dβ

0+Φ
m(t) = Fm

(
t,Φm

t

)
, t ∈ [0, a],

Φm(t) = Φ̂m(t), t ∈ [−σ, 0], m = 0, 1, 2, . . . ,
(3.2)

where F ,Fm : [0, a] × Cσ → L2(Ω) are mean square continuous on [0, a] and Φ̂, Φ̂m : [−σ, 0] → L2(Ω) are a random
variables satisfy E(Φ̂2) < ∞ and E((Φ̂m)2) < ∞, respectively.

Theorem 3.1. Let m = 0, 1, 2, . . .. Assume that the functions F ,Fm satisfy the assumptions (A1) and

(i)
∥∥Φ̂m(t)− Φ̂(t)

∥∥
2
converges to zero in mean square sense, for any t ∈ [−σ, 0];

(ii)
∥∥Φm(0)− Φ̂(0)

∥∥
2
converges to zero in mean square sense;

(iii)
∥∥Fm

(
t,Φm

t

)
−F

(
t,Φt

)∥∥
2
converges to zero in mean square sense, for any t ∈ [0, a].

Then,
∥∥Φm(t)− Φ(t)

∥∥
2
converges to zero in mean square sense, for any t ∈ [−σ, a].

Proof . Let Φm(t),Φ(t) be mean square solution of the problem (3.1) and (3.2), respectively. For any t ∈ [−σ, 0], the
assumptions (ii) and (A1), we have∥∥Φm(t)− Φ(t)

∥∥
2
=

∥∥Φ̂m(t)− Φ̂(t)
∥∥
2
→ 0, m = 0, 1, 2, . . . , (3.3)

and for any t ∈ [0, a] and the assumption (iii), one get∥∥Fm
(
t,Φm

t

)
−F

(
t,Φt

)∥∥
2
≤

∥∥Fm
(
t,Φm

t

)
−Fm

(
t, 0

)∥∥
2
+
∥∥Fm

(
t, 0

)
−F

(
t, 0

)∥∥
2

+
∥∥F(

t, 0
)
−F

(
t,Φt

)∥∥
2

≤ M
∥∥Φt

∥∥
2
+

∥∥Fm
(
t, 0

)
−F

(
t, 0

)∥∥
2
, m = 0, 1, 2, . . . . (3.4)

Performing the calculations as in Theorem (2.3), and applying Lebesgue dominated convergence theorem and the
estimation (3.4), for any t ∈ [0, a] we obtain

1

Γ(β)

∫ t

0

(t− s)β−1
∥∥Fm

(
s,Φs

)
−F

(
s,Φs

)∥∥
2
ds → 0, m = 0, 1, 2, . . . . (3.5)

Observe that ∥∥Φm(t)− Φ(t)
∥∥
2
≤

∥∥Φm(0)− Φ̂(0)
∥∥
2
+

1

Γ(β)

∫ t

0

(t− s)β−1
∥∥Fm

(
s,Φm

s

)
−F

(
s,Φs

)∥∥
2
ds

≤
∥∥Φm(0)− Φ̂(0)

∥∥
2
+

1

Γ(β)

∫ t

0

(t− s)β−1
{∥∥Fm

(
s,Φm

s

)
−Fm

(
s,Φs

)∥∥
2

+
∥∥Fm

(
s,Φs

)
−F

(
s,Φs

)∥∥
2

}
ds

≤
∥∥Φm(0)− Φ̂(0)

∥∥
2
+

M

Γ(β)

∫ t

0

(t− s)β−1
{

max
η∈[s−σ,s]

∥∥Φm(η)− Φ(η)
∥∥
2

+
∥∥Fm

(
s,Φs

)
−F

(
s,Φs

)∥∥
2

}
ds (3.6)

From the assumption (ii) and (3.6) and the Gronwall inequality (1.5), we infer that
∥∥Φm(t) − Φ(t)

∥∥
2
→ 0 in mean

square sense, for any m = 0, 1, 2, . . . and t ∈ [0, a]. Together with the estimation (3.3), we can conclude that∥∥Φm(t)− Φ(t)
∥∥
2
→ 0 in mean square sense, for any m = 0, 1, 2, . . . and t ∈ [−σ, a]. The proof is completed. □

Consider the following problem:

Dβ
0+Φ(t) = F

(
t,Φt

)
, ∀t ∈ [0, a], (3.7)

with respect to the history conditions.

Let us denote by Φ(·; Φ̂) the mean square solution of (3.7) with history condition Φ(t) = Φ̂(t) and Φ(·; Ψ̂) the mean
square solution of (3.7) with history condition Φ(t) = Ψ̂(t).
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Theorem 3.2. Assume that F satisfies the all assumption of Theorem (2.3). If

0 <
Maβ

Γ(1 + β)
< 1,

then there exists a non-negative constant M̃ such that∥∥Φ(t; Φ̂)− Φ(t; Ψ̂)
∥∥
2
≤ M̃

∥∥Φ̂− Ψ̂
∥∥
C
, ∀t ∈ [−σ, a].

Proof . Let Φ(·; Φ̂) and Φ(·; Ψ̂) be mean square solution of the problem (3.7) with history conditions, respectively.

From Lemma 2.2, we obtain

Φ(·; Φ̂) =

Φ̂(t), t ∈ [−σ, 0],

Φ̂(0) +
1

Γ(β)

∫ t

0
(t− s)β−1F

(
s,ΦΦ̂

s

)
ds, t ∈ [0, a].

and

Φ(t; Ψ̂) =

Ψ̂(t), t ∈ [−σ, 0],

Ψ̂(0) +
1

Γ(β)

∫ t

0
(t− s)β−1F

(
s,ΦΨ̂

s

)
ds, t ∈ [0, a].

Observer that ∥∥Φ(t; Φ̂)− Φ(t; Ψ̂)
∥∥
2
=

∥∥Φ̂(t)− Ψ̂(t)
∥∥
2
≤

∥∥Φ̂− Ψ̂
∥∥
C
, ∀t ∈ [−σ, 0] (3.8)

and ∥∥Φ(t; Φ̂)− Φ(t; Ψ̂)
∥∥
2

≤
∥∥Φ̂(0)− Ψ̂(0)

∥∥
2
+

1

Γ(β)

∫ t

0

(t− s)β−1
∥∥F(

s,ΦΦ̂
s

)
−F

(
s,ΦΨ̂

s

)∥∥
2
ds

≤
∥∥Φ̂(0)− Ψ̂(0)

∥∥
2
+

M

Γ(β)

∫ t

0

(t− s)β−1
∥∥ΦΦ̂

s − ΦΨ̂
s

∥∥
2
ds

≤
∥∥Φ̂(0)− Ψ̂(0)

∥∥
2
+

M

Γ(β)

∫ t

0

(t− s)β−1 max
η∈[s−σ,s]

∥∥Φ(η; Φ̂)− Φ(η; Ψ̂)
∥∥
2
ds, ∀t ∈ [0, a].

From this, for any t ∈ [0, a], we get

∥∥Φ(t; Φ̂)− Φ(t; Ψ̂)
∥∥
2
≤

∥∥Φ̂− Ψ̂
∥∥
C
+

Mtβ

Γ(1 + β)

∥∥Φ(t; Φ̂)− Φ(t; Ψ̂)
∥∥
2
.

Since by the assumption 0 <
Maβ

Γ(1 + β)
< 1, then we infer

∥∥Φ(t; Φ̂)− Φ(t; Ψ̂)
∥∥
2
≤

(
1− Maβ

Γ(1 + β)

)−1∥∥Φ̂− Ψ̂
∥∥
C
, ∀t ∈ [0, a]. (3.9)

Combining (3.8) and (3.9), we can conclude that∥∥Φ(t; Φ̂)− Φ(t; Ψ̂)
∥∥
2
≤ M̃

∥∥Φ̂− Ψ̂
∥∥
C
, ∀t ∈ [−σ, a],

where M̃ = max

{
1;

(
1− Maβ

Γ(1 + β)

)−1}
. The proof is completed. □
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4 ϵ− Approximate solution

In this section, we discuss the ϵ− solution of the problem (2.1) in the mean square sense.

Definition 4.1. A mean square solution of the random delay differential inequality of fractional order of the form∥∥Dβ
0+Φ(t)−F

(
t,Φt

)∥∥
2
≤ ϵ, ∀t ∈ [0, a],

with the history conditions Φ(t) = Φ̂(t), ∀t ∈ [−σ, 0], is called a ϵ−approximate solution in mean square of the problem
(2.1) on [0, a] with with the history conditions Φ(t) = Φ̂(t), ∀t ∈ [−σ, 0].

Theorem 4.2. Assume that F satisfies the all assumption of Theorem (2.3). Let Φϵi(t), (i = 1, 2), be ϵi−approximate
solution in mean square of the problem (2.1) on t ∈ [0, a], corresponding to the history conditions Φϵi(t) = Φ̂ϵi(t),
∀t ∈ [−σ, 0]. Then ∥∥Φϵ2(t)− Φϵ1(t)

∥∥
2
≤

(
ϵ1 + ϵ2

)
×
(

Mt2β

Γ(1 + 2β)
+

tβ

Γ(1 + β)

)
+

(
1 +

Mtβ

Γ(1 + β)

)
×
∥∥Φ̂ϵ2(0)− Φ̂ϵ1(0)

∥∥
2
, ∀t ∈ [0, a].

Proof . Since Φϵi(t), (i = 1, 2), be ϵi−approximate solution in mean square of the problem (2.1) on t ∈ [0, a], then
we have ∥∥Dβ

0+Φ
ϵi(t)−F

(
t,Φϵi

t

)∥∥
2
≤ ϵi, ∀t ∈ [0, a].

Applying the fractional integral Iβ0+(·) on both sides of the above inequality, one obtain

Iβ0+
∥∥Dβ

0+Φ
ϵi(t)−F

(
t,Φϵ

t

)∥∥
2
≤ Iβ0+ϵi, ∀t ∈ [0, a].

Based on Lemma 2.2 and Theorem 2.3, we infer∥∥∥∥Φϵi(t)− Φ̂ϵi(0)− 1

Γ(β)

∫ t

0

(t− s)β−1F
(
s,Φϵi

s

)
ds

∥∥∥∥
2

≤ ϵit
β

Γ(1 + β)
, ∀t ∈ [0, a].

On the other hand, we have∥∥∥∥Φϵ2(t)− Φ̂ϵ2(0)− 1

Γ(β)

∫ t

0

(t− s)β−1F
(
s,Φϵ2

s

)
ds

∥∥∥∥
2

+

∥∥∥∥Φϵ1(t)− Φ̂ϵ1(0)− 1

Γ(β)

∫ t

0

(t− s)β−1F
(
s,Φϵ1

s

)
ds

∥∥∥∥
2

≤ (ϵ1 + ϵ2)t
β

Γ(1 + β)
, ∀t ∈ [0, a].

By the inequalities |A−B| ≤ |A|+ |B| and |A| − |B| ≤ |A−B|, we get∥∥Φϵ2(t)− Φϵ1(t)
∥∥
2
≤ (ϵ1 + ϵ2)t

β

Γ(1 + β)
+
∥∥Φ̂ϵ2(0)− Φ̂ϵ1(0)

∥∥
2

+
1

Γ(β)

∫ t

0

(t− s)β−1
∥∥F(

s,Φϵ2
s

)
−F

(
s,Φϵ1

s

)∥∥
2
ds, ∀t ∈ [0, a].

Form the above estimation and the assumption (A1), we obtain∥∥Φϵ2(t)− Φϵ1(t)
∥∥
2
≤ (ϵ1 + ϵ2)t

β

Γ(1 + β)
+
∥∥Φ̂ϵ2(0)− Φ̂ϵ1(0)

∥∥
2

+
M

Γ(β)

∫ t

0

(t− s)β−1 max
η∈[s−σ,s]

∥∥Φϵ2(η)− Φϵ1(η)
∥∥
2
ds, ∀t ∈ [0, a].

If we put v(s) = maxη∈[s−σ,s]

∥∥Φϵ2(η) − Φϵ1(η)
∥∥
2
for any s ∈ [σ, t] and w(t) =

(ϵ1 + ϵ2)t
β

Γ(1 + β)
+

∥∥Φ̂ϵ2(0) − Φ̂ϵ1(0)
∥∥
2
for

any t ∈ [0, a], then we obtain

v(t) ≤ w(t) +
M

Γ(β)

∫ t

0

(t− s)β−1v(s)ds, ∀t ∈ [0, a].
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By using Gronwall inequality (1.5) to the above estimation, one obtain

v(t) ≤ w(t) +Kβ × M

Γ(β)

∫ t

0

(t− s)β−1w(s)ds, ∀t ∈ [0, a].

So we have ∥∥Φϵ2(t)− Φϵ1(t)
∥∥
2
≤

(
ϵ1 + ϵ2

)
×
(

Mt2β

Γ(1 + 2β)
+

tβ

Γ(1 + β)

)
+

(
1 +

Mtβ

Γ(1 + β)

)
×
∥∥Φ̂ϵ2(0)− Φ̂ϵ1(0)

∥∥
2
, ∀t ∈ [0, a].

□

5 Example

Let us consider the following random delay differential equation of fractional order:D
1/2
0+ Φ(t) =

Φ(t− 1)

9 + Φ(t− 1)
, t ∈ [0, 1],

Φ(t) = 1, t ∈ [−1, 0].
(5.1)

We see

F(t,Φ(t)) =
Φ(t− 1)

1 + Φ(t− 1)
, ∀t ∈ [0, 1],

Φ(t) = 1, ∀t ∈ [−1, 0].

It is easy to see that F satisfies Lipschitz condition with L =
1

81
. Indeed, for any Φ1,Φ2 ∈ C([−1, 1], L2(Ω)) we have

∥∥F(t,Φ2(t))−F(t,Φ1(t))
∥∥
2
=

∥∥∥∥ Φ2(t− 1)

9 + Φ2(t− 1)
− Φ1(t− 1)

9 + Φ1(t− 1)

∥∥∥∥
2

≤
∥∥∥∥ Φ2

9 + Φ2
− Φ1

9 + Φ1

∥∥∥∥
C

=

∥∥Φ2 − Φ1

∥∥
C∥∥(9 + Φ1)(9 + Φ2)

∥∥
C

≤ 1

81

∥∥Φ2 − Φ1

∥∥
C
.

Moreover, for any Φ ∈ C([−1, 1], L2(Ω)) we obtain∥∥F(t,Φ(t))
∥∥
2
=

∥∥∥∥ Φ(t− 1)

9 + Φ(t− 1)

∥∥∥∥
2

≤
∥∥∥∥ Φ

9 + Φ

∥∥∥∥
C

≤ 1

9
.

All the assumptions of Theorem 2.3 are satisfied. It follows that the problem (5.1) has a unique mean square solution
on [−1, 1].
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