
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,756 |
تعداد دریافت فایل اصل مقاله | 7,656,168 |
A state-dependent Chandrasekhar integral equation | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 243، دوره 13، شماره 2، مهر 2022، صفحه 3049-3056 اصل مقاله (326.13 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.23027.2461 | ||
نویسندگان | ||
Ahmed M El-Sayed* ؛ H.H.G. Hashem | ||
Faculty of Science, Alexandria University, Alexandria, Egypt | ||
تاریخ دریافت: 12 فروردین 1400، تاریخ بازنگری: 19 اردیبهشت 1401، تاریخ پذیرش: 23 اردیبهشت 1401 | ||
چکیده | ||
Phenomena depending on their past history or their past state have received more importance. The mathematical models of these phenomena can be described by differential equations of a hereditary or a self-referred type. This paper is devoted to study the solvability of a state-dependent or self-referred integral equation via Chandrasekhar kernel. The investigation of this problem is motivated by the results from, Eder [10], Feˇckan [11] and Buica [3] who initiated the study of state dependent differential equations. Here, the existence and the uniqueness of the solution of this state-dependent integral equation via Chandrasekhar kernel have been discussed. The data dependency of the solution on some functions has been studied. | ||
کلیدواژهها | ||
Chandrasekhar kernel؛ Existence and Uniqueness of the solution؛ Continuous dependence | ||
مراجع | ||
[1] J. Banas, On the superposition operator and integrable solutions of some functional equations, Nonlinear Anal. 12 (1988), 777–784. [2] J. Banas and Z. Knap, Integrable solutions of a functional integral equation, Rev. Mate. Univer. Comp. Madrid 2 (1989), no. 1, 1–8. [3] A. Buica, Existence and continuous dependence of solutions of some functional-differential equations, Publication of the Seminar on Fixed Point Theory, Cluj-Napoca, 3 (1995), 1–14. [4] Gh. Coman, G. Pavel, I. Rus and I.A. Rus, Introducere in teoria ecuatilllor, Editura Decia, Cluj-Napoca, 1976. [5] J. Bana´s, M. Lecko and W.G. El-Sayed, Existence theorems for some quadratic integral equations, J. Math. Anal. Appl. 222 (1998), 276–285. [6] J. Caballero, A.B. Mingrarelli and K. Sadarangani, Existence of solution of an integral equation of Chandrasekhar type in the radiative transfer, Electron. J. Differ. Equ. 27 (2006), 1—11. [7] S. Chandrasekhar, Radiative Transfer, Oxford University Press, New York, 1960. [8] S. Chandrasekhar, On the radiative equilibrium of a stellar atmosphere XIV, Astrophys. J. 105 (1947), 164–203. [9] R.F. Curtain and A.J. Pritchard, Functional analysis in modern applied mathematics, Academic Press, 1977. [10] E. Eder, The functional-differential equation x’(t)=x(x(t)), J. Differential Equ., 54 (1984), no. 3, 390–400. [11] M. Feˇckan, On a certain type of functional-differential equations, Math. Slovaca, 43 (1993), no. 1, 39–43. [12] A.M.A. El-Sayed, E.A.A. Ziada and H.H.G. Hashem, Numerical solution of an integral equation of Chandrasekhar type in the theory of radiative transfer, Int. J. Adv. Sci. Engin. Technol. 5 (2017), no. 4, 1–5. [13] A.M.A. El-Sayed and R.G. Ahmed, Solvability of the functional integro-differential equation with self-reference and state-dependence, J. Nonl. Sci. Appl. 13 (2020), 1–8. [14] A.M.A. El-Sayed, H. El-Owaidy and R.G. Ahmed, Solvability of a boundary value problem of self-reference functional differential equation with infinite point and integral conditions, J. Math. Computer Sci. 21 (2020), 296-–308. [15] A.M.A. El-Sayed and H.R. Ebead, On the solvability of a self-reference functional and quadratic functional integral equations, Filomat 34 (2020), no. 1, 1-–14. [16] A.M.A. El-Sayed, E.M Hamdallah and H.R. Ebead, Positive nondecreasing solutions of a self-reference differential equation with two state-delay functions, Adv. Math. Sci. J. 9 (2020), no. 12, 10357—10365. [17] A.M.A. El-Sayed, E.M. Hamdallah and H.R. Ebead, On a nonlocal boundary value problem of a state-dependent differential equation, Math. 9 (2021), no. 21, 2800. [18] A.M.A. El-Sayed and H.R. Ebead, Existence of positive solutions for a state-dependent hybrid functional differential equation, IAENG Int. J. Appl. Math. 50 (2020), no. 4, 883–889. [19] A.M.A. El-Sayed and H.H.G. Hashem, A state-dependent integral equation of fractional order, Adv. Math. Sci. J. 10 (2021), no. 2, 811-–817. [20] A.M.A. El-Sayed and Y.M.Y. Omar, p-Chandrasekhar integral equation, Adv. Math. Sci. J. 9 (2020), no. 12, 10305—10311. [21] F. Haqa, K. Shahb, G. UR-Rahmanc and M. Shahzad, Existence results for a coupled systems of Chandrasekhar quadratic integral equations, Commun. Nonlinear Anal. 3 (2017), 15—22. [22] M.A. Hernandez-Veron, E. Mart´ınez and S. Singh, On the Chandrasekhar integral equation, Comput. Math. Meth. 3 (2021), no. 6, e1150. [23] H.H.G. Hashem, Continuous dependence of solutions of coupled systems of state-dependent functional equations, Adv. Differ. Equ. Control Process. 22 (2020), no. 2, 121–135. [24] F. Hartung, T.Krisztin, H. Walther and J. Wu, Functional differential equations with state-dependent delays: Theory and applications, Handbook of Differential Equations: Ordinary Differential Equations 3 (2006), 435–545. [25] RJ. Oberg, On the local existence of solution of certain functional-differential equations, Proc. Amer. Math. Soc. 20 (1960), 295–302. [26] N.T.T. Lan and P. Eduardo, A two-point boundary value problem for a differential equation with self-reference, Electron. J. Math. Anal. Appl. 6 (2018), no. 1, 25–30. [27] M. Miranda and E. Pascali, On a type of evolution of self-referred and hereditary phenomena, Aequationes Math. 71 (2006), 253-–268. [28] E. Pascali, Existence of solutions to a self-referred and hereditary system of differential equations, Electron. J. Diff. Eqns. 7 (2006), 1–7. [29] Y.-W. Lin and T.-T. Lu, Qualitative behavior of a state-dependent functional differential equation, J. Appl. Comput. Math. 2 (2013), no. 5, 2–5. [30] M.Y. Waziri, W.J. Leong, M. Abu Hassan and M. Monsi, A low memory solver for integral equations of Chandrasekhar type in the Radiative transfer problems, Math. Prob. Engin. 2011 (2011), Article ID 467017, 12 pages. doi:10.1155/2011/467017 | ||
آمار تعداد مشاهده مقاله: 44,394 تعداد دریافت فایل اصل مقاله: 352 |