- T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan. (1950), 64–66.
- T. Bag and S.K. Samanta, Finite dimensional fuzzy normed linear spaces, J. Fuzzy Math. (2003), 687–705.
- T. Bag and S.K. Samanta, Fuzzy bounded linear operators, Fuzzy Sets Syst. 151 (2005), 513– 547.
- V. Balopoulos, A.G. Hatzimichailidis and Basil K. Papadopoulos, Distance and similarity measures for fuzzy operators, Inform. Sci. 177 (2007), 2336–2348.
- R. Biswas, Fuzzy inner product spaces and fuzzy norm functions, Inform. Sci. 53 (1991), 185– 190.
- S.C. Cheng and J.N. Mordeson, Fuzzy linear operator and fuzzy normed linear spaces, Bull. Calcutta Math. Soc. 86 (1994), 429–436.
- M. Eshaghi Gordji, A. Ebadian and S. Zolfaghari, Stability of a functional equation deriving from cubic and quartic functions, Abstract and Applied Analysis 2008 (2008), Article ID 801904, 17 pages.
- C. Felbin, Finite dimensional fuzzy normed linear space, Fuzzy Sets Syst. 48 (1992), 239–248.
- Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), 431–434.
- D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA 27 (1941), 222–224.
- K. Jun and H. Kim, The generalized Hyers–Ulam–Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2002), 867–878.
- A.K. Katsaras, Fuzzy topological vector spaces II, Fuzzy Sets Syst. 12 (1984), 143–154.
- I. Kramosil and J. Michalek, Fuzzy metric and statistical metric spaces, Kybernetica 11 (1975), 326–334.
- S.V. Krishna and K.K.M. Sarma, Separation of fuzzy normed linear spaces, Fuzzy Sets Syst. 63 (1994), 207–217.
- D. Mihet¸, The probabilistic stability for a functional equation in a single variable, Acta Math. Hungar. (in press).
- D. Mihet¸, The fixed point method for fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems (in press).
- D. Mihet¸ and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl. 343 (2008), 567–572.
- M. Mirmostafaee, M. Mirzavaziri and M.S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems 159 (2008), 730–738.
- A.K. Mirmostafee and M.S. Moslehian, Fuzzy versions of Hyers–Ulam–Rassias theorem, Fuzzy Sets and Systems 159 (2008), 720–729.
- A.K. Mirmostafaee and M.S. Moslehian, Fuzzy approximately cubic mappings, Inform. Sci. 178 (2008), 3791–3798.
- W. Park and J. Bae, On a bi-quadratic functional equation and its stability, Nonlinear Anal.– TMA 62 (2005), 643–654.
- J.M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal. 46 (1982), 126–130.
- J.M. Rassias, On approximation of approximately linear mappings by linear mappings, Bull. Sci. Math. 108 (1984), 445–446.
- J.M. Rassias, On a new approximation of approximately linear mappings by linear mappings, Discuss. Math. 7 (1985), 193–196.
- J.M. Rassias, Solution of a problem of Ulam, J. Approx. Theory 57 (1989), 268–273.
- J.M. Rassias, Solution of the Ulam stability problem for quartic mappings, Glas. Mat. Ser. III 34(54) (1999), 243–252.
- J.M. Rassias, Solution of the Ulam stability problem for quartic mappings, J. Indian Math. Soc. (N.S.) 67 (2000), 169–178.
- Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.
- S. Shakeri, Intuitionistic fuzzy stability of Jensen type mapping. (English) J. Nonlinear Sci. Appl. 2, No. 2, (2009) 105–112.
- A. N. Sherstnev, The notion of random normed space, Sov. Math., Dokl. 4(1963), 388–391.
- B. Shieh, Infinite fuzzy relation equations with continuous t-norms, Inform. Sci. 178 (2008), 1961–1967. 3
- B. Schweizer, A. Sklar, Probabilistic metric spaces(new edition), Dover Books on Mathematics, Dover, New York, 2005.
- S.M. Ulam, A Collection of the Mathematical Problems, Interscience Publ, New York, 1960.
- J.Z. Xiao and X.-H. Zhu, Fuzzy normed spaces of operators and its completeness, Fuzzy Sets Syst. 133 (2003), 389–399.
- C. Wu and J. Fang, Fuzzy generalization of Klomogoroff ’s theorem, J. Harbin Inst. Technol. 1 (1984), 1–7.
|