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Abstract

In this paper, we introduce L-fuzzy α−ideals and L-fuzzy α−congruences on ADL A and we discuss the properties
of these. Also, we prove that the homomorphic image and pre-image of an L-fuzzy α−congruence is also an L-fuzzy
α−congruence on A under certain conditions. Finally, we establish a one-to-one correspondence between L-fuzzy
α−ideals and L-fuzzy α−congruences on A.

Keywords: Almost Distributive Lattice (ADL), L-fuzzy α−ideal, L-fuzzy α−congruence
2020 MSC: 06D72, 06F15, 08A72

1 Introduction

The notion of a fuzzy subset of a set X as a function from X into [0, 1] was introduced by L.A. Zadeh [19]. J.A.
Goguen [4] replaced the valuations set [0, 1], by means of a complete lattice in an attempt to make a generalized study
of fuzzy set theory by studying L-fuzzy sets. Later Flip [3] further tried to make a more generalized study by replacing
the valuation set by Partially ordered monoid. The partially ordered algebraic systems play an important role in
algebra. Some important concepts in partially ordered systems are l-groups, l-rings, f -rings and lattices. Several
algebraists took interest in the study of fuzzy subalgebras of several algebraic structures. Rosenfeld [12] and Kuroki
[6] applied this concept in group theory and semi group theory, and developed the theory of a fuzzy subgroups and
fuzzy subsemi groupoids respectively. In 1982, Liu [8] defined and studied fuzzy subrings as well as fuzzy ideals in
rings. Subsequently, several researchers worked on fuzzy subrings and ideals of rings (Malik and Mordeson [9]), fuzzy
ideals of lattices (Lehmke [7] and U.M. Swamy and D.V. Raju [14]), algebraic fuzzy systems and irreducibility (U.M.
Swamy and D.V. Raju [15] and [16]), fuzzy ideals of a ring (Mukharjee and Sen [10]), fuzzy groups and level subgroups
(Das [1]), fuzzy pseudo ideals in semi groups (Dutta [2]), fuzzy vector spaces and fuzzy topological vector spaces
(Katsaras and Liu [5]) and on the truth values of fuzzy statements (U.M. Swamy, Rama Rao and Prabhakara [18]).

To make an abstract study, we consider a general complete lattice satisfying the infinite meet distributivity to have
the truth values of fuzzy statements, is called a frame. In this context, several generalizations of Boolean algebras
(Boolean rings) have come up into focus. U.M. Swamy and G.C. Rao [17] have introduced the notion an Almost
Distributive Lattice (abbreviated as ADL) as a common abstraction of several lattice theoretic and ring theoretic
generalizations of Boolean algebras and Boolean rings. Later, U.M. Swamy, Ch.S.S. Raj and Natnael Teshale A. [13]
introduced the concept of L-fuzzy ideals of ADLs A and their lattice properties.

In this paper, we introduce L-fuzzy α−ideals of ADL A, where α ∈ L − {0}. It is well known that a lattice is
algebraic if and only if it is isomorphic to an algebraic closed set system. We have proved that the class of L-fuzzy
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α−ideals of ADL A is an algebraic fuzzy set system. Also, we introduce L-fuzzy α−congruences on A. We show that
the homomorphic image and pre-image of an L-fuzzy α−congruence on A is an L-fuzzy α−congruence under a certain
conditions. Finally, we introduce a one-to-one correspondence between L-fuzzy α−ideals and L-fuzzy α−congruences
on A.

2 Preliminaries

In this section, we recall some definitions and basic results mostly taken from [17] and [11].

Definition 2.1. An algebra A = (A,∧,∨, 0) of type (2, 2, 0) is called an Almost Distributive Lattice (abbreviated as
ADL) if it satisfies the following conditions for all a, b and c ∈ A.

1. 0 ∧ a = 0

2. a ∨ 0 = a

3. a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)

4. a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)

5. (a ∨ b) ∧ c = (a ∧ c) ∨ (b ∧ c)

6. (a ∨ b) ∧ b = b

Any bounded below distributive lattice is an ADL. Any nonempty set X can be made into an ADL which is not a
lattice by fixing an arbitrarily chosen element 0 in X and fix an arbitrary element x0 ∈ X. For any x, y ∈ X, define
∧ and ∨ on X by,

x ∧ y =

{
y if x ̸= x0

x0 if x = x0

and x ∨ y =

{
x if x ̸= x0

y if x = x0

Then (X,∧,∨, x0) is an ADL with x0 as its zero element. This ADL is called the discrete ADL.

Definition 2.2. Let A = (A,∧,∨, 0) be an ADL. For any a and b ∈ A, define a ≤ b if a = a ∧ b (⇔ a ∨ b = b). Then
≤ is a partial order on A with respect to which 0 is the smallest element in A.

Theorem 2.3. The following hold for any a, b and c in an ADL A.

(1) a ∧ 0 = 0 = 0 ∧ a and a ∨ 0 = a = 0 ∨ a

(2) a ∧ a = a = a ∨ a

(3) a ∧ b ≤ b ≤ b ∨ a

(4) a ∧ b = a ⇔ a ∨ b = b

(5) a ∧ b = b ⇔ a ∨ b = a

(6) (a ∧ b) ∧ c = a ∧ (b ∧ c) (i.e., ∧ is associative)

(7) a ∨ (b ∨ a) = a ∨ b

(8) a ≤ b ⇒ a ∧ b = a = b ∧ a
(
⇔ a ∨ b = b = b ∨ a

)
(9) (a ∧ b) ∧ c = (b ∧ a) ∧ c

(10) (a ∨ b) ∧ c = (b ∨ a) ∧ c

(11) a ∧ b = b ∧ a ⇔ a ∨ b = b ∨ a

(12) a ∧ b = inf{a, b} ⇔ a ∧ b = b ∧ a ⇔ a ∨ b = sup{a, b}.

Definition 2.4. Let I be a non empty subset of an ADL A with 0. Then I is called an α−ideal of A if (a]∗∗ ⊆ I for
all a ∈ I.
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As a consequence, let A be an ADL with 0 and S a multiplicatively closed subset of A. Then I = {a ∈ A : a∧ b =
0, for some b ∈ S} is an α−ideal of A. An element m ∈ A is said to be maximal if, for any x ∈ A, m ≤ x implies
m = x. It can be easily observed that m is maximal if and only if m ∧ x = x for all x ∈ A.

Definition 2.5. Let θ be an equivalence relation on an ADL A. Then θ is called a congruence relation on A if, (a, b)
and (c, d) ∈ θ ⇒ (a ∧ c, b ∧ d) and (a ∨ c, b ∨ d) ∈ θ, for all a, b, c, d ∈ A.

Corollary 2.6. For any x ∈ A, θx = {(a, b) ∈ A×A : x ∨ a = x ∨ b} is a congruence relation on A.

Definition 2.7. An L-fuzzy subset µ of X is a mapping from X into L, where L is a complete lattice satisfying the
infinite meet distributive law. If L is the unit interval [0, 1] of real numbers, then these are the usual fuzzy subsets of
X.

3 Fuzzy α−ideal

In this section, we introduce the notion of L-fuzzy α−ideals of ADL A and their characterizations. In particular,
we prove that the class of all L-fuzzy α−ideals of A is an algebraic fuzzy set system.

Definition 3.1. Let A be an ADL and L a frame. An L-fuzzy subset µ of A is said to be an L-fuzzy α-ideal of A if
for all a, b ∈ A and α ∈ L− {0},

(1) µ(0) = α

(2) µ(a ∨ b) ≥ µ(a) ∧ µ(b) and

(3) µ(a ∧ b) ≥ µ(a) ∨ µ(b).

Example 3.2. Let D = {0, x, y} be a discrete ADL with 0 as its zero element defined above and L = {0, a, b, c, 1} be
the lattice represented by the Hasse diagram given below:
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@
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�
�
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d d

d

d
c

a b

1

0

Consider D × L = {(t, s) | t ∈ D and s ∈ L}. Then (D × L,∧,∨, 0) is an ADL under the pointwise operations ∧
and ∨ on D × L and 0 = (0, 0), the zero element in D × L. Now define µ : D × L → [0, 1] by

µ(t, s) =


1 if (t, s) = (0, 0)

0.5 if t = 0 and s ̸= 0

0 otherwise.

for all (t, s) ∈ D × L. Then µ is an L-fuzzy α−ideal of the ADL D × L (note that D × L is not a lattice).

Corollary 3.3. Let µ be an L-fuzzy subset of A such that µ(0) = α, for all α ∈ L − {0}. Then µ is an L-fuzzy
α−ideal of A if and only if µ(a ∨ b) = µ(a) ∧ µ(b), for all a and b ∈ A.

Example 3.4. Let A = {0, a, b, c} and L = [0, 1] and let ∨ and ∧ be binary operations on A defined as follows:

∨ 0 a b c
0 0 a b c
a a a a a
b b b b b
c c a b c

∧ 0 a b c
0 0 0 0 0
a 0 a b c
b 0 a b c
c 0 c c c
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Then, (A,∧,∨, 0) is an ADL which is not a lattice (since b∧ a = a ̸= b = a∧ b). Now define an L-fuzzy subsets µ and
ν of A by µ(0) = α, µ(a) = µ(b) = 0.3 and µ(c) = 0.6; ν(0) = α, ν(a) = 0.3, ν(b) = 0.5 and ν(c) = 0.75. Then for any
x, y ∈ A, µ(x∨ y) = µ(x)∧ µ(y). Therefore, µ is an L-fuzzy α-ideal of A, while ν is not an L-fuzzy α-ideal of A, since
ν(b ∨ a) = ν(b) = 0.5 ̸= ν(b) ∧ ν(a).

Corollary 3.5. Let µ be an L-fuzzy α−ideal of A and S a non-empty subset of A. Then for any a and b ∈ A, we
have the following:

(1) a ≤ b ⇒ µ(b) ≤ µ(a) (µ is an antitone mapping)

(2) If a ∼ b, then µ(a) = µ(b)

(3) µ(a ∧ b) = µ(b ∧ a) and µ(a ∨ b) = µ(b ∨ a)

(4) If a ∈ ⟨S], then µ(a) ≥
n∧

i=1

µ(xi) for some x1, x2, ..., xn ∈ S

(5) If a ∈ ⟨b], then µ(b) ≤ µ(a)

(6) If m is a maximal element in A, then µ(m) ≤ µ(a)

(7) µ(m) = µ(n), for any maximal elements m and n of A.

In the above result, every L-fuzzy α−ideal of A is an antitone, but L-fuzzy subset of A may be an antitone without
being an L-fuzzy α−ideal; for consider the following.

Example 3.6. Let A = {0, a, b, c, 1} be the lattice represented by the Hasse diagram given below:
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Now define µ : A → [0, 1] by µ(0) = µ(a) = 1, µ(b) = 0.4 and µ(c) = µ(1) = 0. Then the mapping µ is an antitone
but not an L-fuzzy α−ideal of A, since µ(a ∨ b) = µ(c) = 0 ̸= µ(a) ∧ µ(b).

In the following, we give a characterization for L-fuzzy α−ideals of an ADL A.

Definition 3.7. Let A be an ADL with a maximal element m and for any L-fuzzy subsets λ and µ of A, we define
the following L-fuzzy subsets on A, (

µ+ λ
)
(x) = ∨

{
µ(y) ∧ λ(z) : y ∨ z = x

}(
µ.λ

)
(x) = ∨

{
µ(y) ∧ λ(z) : y ∧ z = x

}
and

(
cµ

)
(x) = ∨

{
µ(y) : c ∧ y ∧m = x ∧m

}
, for any c ∈ A.

Remark: If there are no y, z ∈ A such that y ∧ z = x, then clearly (µ.λ)(x) = 0 being the supremum of the empty
set and the same is true in the case of cµ, for any c ∈ A. Now, we prove the following.

Theorem 3.8. If λ and µ are L-fuzzy α−ideals of A, then µ.λ = µ ∧ λ.

Proof . For any x ∈ A, it is clear that

µ(x) ∧ λ(x) ≤ (µ.λ)(x) (since x ∧ x = x).
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To prove the other inequality, let x, y and z ∈ A such that y ∧ z = x. Then x = y ∧ z ≤ z, so that λ(z) ≤ λ(x), since
λ is an antitone. Now,

consider µ(y) ∧ µ(x) = µ(y ∨ x)
= µ(y ∨ (y ∧ z))
= µ(y).

Therefore µ(y) ≤ µ(x) and it follows that,

µ(y) ∧ λ(z) ≤ µ(x) ∧ λ(x), for y ∧ z = x.

Hence, it follows that (µ.λ)(x) ≤ µ(x) ∧ λ(x). Thus µ.λ = µ ∧ λ. □

Theorem 3.9. If µ is an L-fuzzy subset of A with a maximal element m, then cµ ≤ µ for all c ∈ A if and only if
λ.µ ≤ µ, for any L-fuzzy subset λ of A.

Proof . Suppose that cµ ≤ µ for all c ∈ A. Let λ be any L-fuzzy subset of A. Then, for any x ∈ A,
(λ.µ)(x) = ∨

{
λ(y) ∧ µ(z) : y ∧ z = x

}
≤ ∨

{
µ(z) : y ∧ z = x

}
≤ ∨

{
µ(z) : y ∧ z ∧m = x ∧m

}
= (yµ)(x) ≤ µ(x).

Conversely, we suppose that λ.µ ≤ µ for any L-fuzzy subset λ of A. Let c ∈ A and define an L-fuzzy subset λ of A by

λ(x) =

{
1 if x ≤ c

0 otherwise.

Then, (cµ)(x) = ∨
{
µ(y) : c ∧ y ∧m = x ∧m

}
≤ ∨

{
λ(z) ∧ µ(y) : z ∧ y = x, z ≤ c

}
= ∨

{
µ(y) : z ∧ y = x, z ≤ c

}
≤ ∨

{
λ(z) ∧ µ(y) : z ∧ y = x

}
= (λ.µ)(x) ≤ µ(x).

Hence cµ ≤ µ, for any c ∈ A. □

Theorem 3.10. Let µ be an L-fuzzy subset of A with a maximal element m such that µ(0) = α, for any α ∈ L−{0}.
Then µ is an L-fuzzy α−ideal of A if and only if µ+ µ = µ and cµ ≤ µ, for any c ∈ A.

Proof . Suppose that µ is an L-fuzzy α−ideal of A. Then for any x ∈ A,
(µ+ µ)(x) = ∨

{
µ(y) ∧ µ(z) : y ∨ z = x

}
= ∨

{
µ(y ∨ z) : y ∨ z = x

}
= µ(x)

and (cµ)(x) = ∨
{
µ(y) : c ∧ y ∧m = x ∧m

}
≤ µ(x)

for; if c ∧ y ∧ m = x ∧ m, then µ(c ∧ y ∧ m) = µ(x ∧ m) (since m is maximal) and hence µ(c ∧ y) = µ(x). Now,
µ(x) = µ(c ∧ y) ≥ µ(c) ∨ µ(y) (by theorem 2.8(2)) ≥ µ(y).
Thus cµ ≤ µ for any c ∈ A. Conversely, we suppose that µ+ µ = µ and cµ ≤ µ, for any c ∈ A. Now we prove that µ
is an L-fuzzy α−ideal of A.
Consider, µ(x ∨ y) = (µ+ µ)(x ∨ y)

= ∨
{
µ(s) ∧ µ(t) : s ∨ t = x ∨ y

}
≥ µ(x) ∧ µ(y).

Also, µ(x ∧ y) ≥ (xµ)(x ∧ y) = ∨
{
µ(s) : x ∧ s ∧m = x ∧ y ∧m

}
≥ µ(y)

and µ(x ∧ y) ≥ (yµ)(x ∧ y) = ∨
{
µ(s) : y ∧ s ∧m = x ∧ y ∧m

}
= ∨

{
µ(s) : s ∧ y ∧m = x ∧ y ∧m

}
≥ µ(x).

Thus, µ(x ∧ y) ≥ µ(x) ∨ µ(y). Therefore, µ is an L-fuzzy α−ideal of A. □

Let us recall that a complete lattice L is called an algebraic lattice if every element of L is the supremum of a set
of compact elements of L. An element c in a lattice L is called compact if, for any X ⊆ L, c ≤ Sup X ⇒ c ≤ Sup F ,
for some F ⊂⊂ X.

Theorem 3.11. Let A be an ADL. Then the lattice I(A) of ideals of A is an algebraic lattice in which the finitely
generated ideals are precisely compact elements.
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Proof . Let I ∈ I(A). Then we observe that I =
⋃
a∈I

⟨a] = Sup {⟨a] : a ∈ I}. If I is compact in I(A), then

there exists a finite subset of A say, F = {a1, a2, ..., an} such that I = Sup {⟨a1], ⟨a2], ..., ⟨an]} = ⟨F ]. So, the
compact elements in I(A) precisely are of the form ⟨F ], where F is finite subset of A. On the other hand, suppose
that I = ⟨F ], where F = {a1, a2, ..., an}. Let {Iα}α∈∆ ⊆ I(A) such that I ⊆ Sup {Iα}α∈∆ = ⟨

⋃
α∈∆

Iα]. For each

1 ≤ i ≤ n, ai ∈ I and hence ai =
( mi∨

j=1

aij

)
∧ xi, for some aij ∈ Iαij

, αij ∈ ∆ and xi ∈ A. Then we observe that

I ⊆ Sup {Iαij : 1 ≤ i ≤ n, 1 ≤ j ≤ mi}. Thus I is compact in I(A). In particular, every principal ideal is compact in
I(A). Since for any I ∈ I(A), I =

⋃
a∈I

⟨a] = Sup {⟨a] : a ∈ I}. It follows that,I(A) is an algebraic lattice. □

Recalling that a subclass {µi}i∈∆ of L-fuzzy subsets C of a non-empty set X is called directed above if, for any i
and j ∈ ∆ there is k ∈ ∆ such that µi ≤ µk and µj ≤ µk and a class C of X is said to be an algebraic fuzzy set system
if C is closed under point-wise infimums and closed under the point-wise supremums of directed above subclasses of
C. We recall FLαI(A) is the set of all L-fuzzy α−ideals of A.

Theorem 3.12. Let (A,∧,∨, 0) be an ADL and L = [0, α]. Then the class FLα
I(A) of all L-fuzzy α−ideals of A is

an algebraic fuzzy set system.

Proof . Let {µi}i∈∆ be a directed above class of L-fuzzy α−ideals of A and µ be the point-wise supremum of {µi}i∈∆.
That is, µ(x) =

∨
i∈∆

µi(x), for any x ∈ A. It follows that for any x, y ∈ A, µ(x ∨ y) =
∨
i∈∆

µi(x ∨ y) =
∨
i∈∆

µi(y ∨ x) =

µ(y ∨ x), since each µi is an L-fuzzy α−ideal of A. Now we prove that µ is an L-fuzzy α−ideal of A. Clearly, µi ≤ µ,
for all i ∈ ∆. In particular α = µi(0) ≤ µ(0) and hence µ(0) = α. Also for any x and y ∈ A,

x ≤ y ⇒ µi(y) ≤ µi(x), for all i ∈ ∆ (since each µi is an antitone)
⇒

∨
i∈∆

µi(y) ≤
∨
i∈∆

µi(x)

⇒ µ(y) ≤ µ(x). Therefore, µ is an antitone.
In particular, µ(x∨ y) ≤ µ(x) (since x ≤ x∨ y) and µ(x∨ y) = µ(y ∨ x) ≤ µ(y) and therefore, µ(x∨ y) ≤ µ(x)∧ µ(y).
On the other hand for any i, j ∈ ∆, there exists k ∈ ∆ such that µi ≤ µk and µj ≤ µk and hence,

µ(x) ∧ µ(y) =
( ∨

i∈∆

µi(x)
)
∧
( ∨

j∈∆

µj(y)
)

=
∨

i,j∈∆

(
µi(x) ∧ µj(y)

)
(by infinite meet distributivity in L)

≤
∨

k∈∆

(
µk(x) ∧ µk(y)

)
=

∨
k∈∆

µk(x ∨ y)

= µ(x ∨ y).
Therefore µ(x) ∧ µ(y) ≤ µ(x ∨ y). Hence µ(x ∨ y) = µ(x) ∧ µ(y). Thus µ is an L-fuzzy α−ideal of A and therefore
the class FLαI(A) is closed under the point-wise supremum of {µi}i∈∆ and it is closed under point-wise infimum of
{µi}i∈∆. Thus FLα

I(A) is an algebraic fuzzy set system. □

4 Fuzzy α-congruences

By an L-fuzzy subset θ of A × B, where A and B are non-empty sets, we mean any mapping θ : A × B → L is
called L-fuzzy relation on A and B. If A = B, any mapping θ : A×A → L is called L-fuzzy relation on A.

Definition 4.1. Let A be an ADL and L a frame. Any L-fuzzy subset of A×A is called an L-fuzzy relation on A.

Definition 4.2. An L-fuzzy subset θ of A × A is said to be an L-fuzzy α-congruence on A if and only if, for any
x, y, z ∈ A, the following hold:

(1) θ(x, x) = α and θ(x, y) ≤ α, for all α ∈ L− {0} (α−reflexive)

(2) θ(x, y) = θ(y, x) (Symmetric)

(3) θ(x, y) ∧ θ(y, z) ≤ θ(x, z) (Transitive)
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(4) θ(x, y) ≤ θ(x ∨ z, y ∨ z) ∧ θ(x ∧ z, y ∧ z).

Note: The above (4) equivalently that θ(a, b) ∧ θ(c, d) ≤ θ(a ∧ c, b ∧ d) ∧ θ(a ∨ c, b ∨ d), for all a, b, c, d ∈ A.

In the following, we prove that homomorphic image and pre-image of L-fuzzy α-congruence is an L-fuzzy α-
congruence under certain conditions.

Theorem 4.3. Let f : A×A → A
′ ×A

′
be a lattice homomorphism defined by

f(x, y) = (g(x), g(y)), where g is a homomorphism from A to A
′
, for all x, y ∈ A. If θ is an L-fuzzy α-congruence on

A
′
, then f−1(θ) is an L-fuzzy α-congruence on A.

Proof . Define f−1(θ) : A×A → L by
(
f−1(θ)

)
(x, y) = θ

(
f(x, y)

)
, for all x, y ∈ A. Let θ be an L-fuzzy α-congruence

on A
′
. Then for any x ∈ A,(

f−1(θ)
)
(x, x) = θ

(
f(x, x)

)
= θ

(
g(x), g(x)

)
= α (since θ is α− reflexive). For any x, y ∈ A,

(
f−1(θ)

)
(x, y) =

θ
(
f(x, y)

)
= θ

(
g(x), g(y)

)
≤ α (since θ is α− reflexive). Therefore, f−1(θ) is α− reflexive. Let x, y ∈ A. Then,(

f−1(θ)
)
(x, y) = θ(f(x, y))

= θ
(
g(x), g(y)

)
= θ

(
g(y), g(x)

)
(since θ is symmetric)

= θ(f(y, x))

=
(
f−1(θ)

)
(y, x).

Thus f−1(θ) is symmetric. Also, let x, y, z ∈ A. Then,(
f−1(θ)

)
(x, z) = θ(f(x, z))

= θ(g(x), g(z))
≥ θ(g(x), g(y)) ∧ θ(g(y), g(z)) (since θ is symmetric)
= θ(f(x, y)) ∧ θ(f(y, z))

=
(
f−1(θ)

)
(x, y) ∧

(
f−1(θ)

)
(y, z).

Thus, f−1(θ) is transitive. Finally, for any x, y, z ∈ A. Then
(f−1(θ))(x, y) = θ(f(x, y))

= θ(g(x), g(y)

≤ θ
(
g(x) ∨ g(z), g(y) ∨ g(z)

)
∧ θ

(
g(x) ∧ g(z), g(y) ∧ g(z)

)
= θ

(
g(x ∨ z), g(y ∨ z)

)
∧ θ

(
g(x ∧ z), g(y ∧ z)

)
(since g is homomorphism)

= θ
(
f(x ∨ z, y ∨ z)

)
∧ θ

(
f(x ∧ z, y ∧ z)

)
(since f is homomorphism)

=
(
f−1(θ)

)
(x ∨ z, y ∨ z) ∧

(
f−1(θ)

)
(x ∧ z, y ∧ z).

Therefore, f−1(θ) is an L-fuzzy α− congruence on A. □

Theorem 4.4. Let f : A × A → A
′ × A

′
be an epimorphism defined by f(x, y) = (g(x), g(y)), where g is an

epimorphism from A to A
′
, for all x, y ∈ A. If θ is an L-fuzzy α-congruence on A, then f(θ) is an L-fuzzy α-congruence

on A
′
.

Proof . Define f(θ) : A×A → L by(
f(θ)

)
(x, y) =

∨
(a,b)∈f−1(x,y)

θ(a, b), for all (a, b), (x, y) ∈ A×A.

Let θ be an L-fuzzy α-congruence on A. For any x, y, z ∈ A and α ∈ L− {0}. Then
(1). (f(θ))(x, x) =

∨
(a,a)∈f−1(x,x)

θ(a, a) = α and (f(θ))(x, y) =
∨

(a,b)∈f−1(x,y)

θ(a, b) ≤ α (since θ is α− reflexive). Thus,

f(θ) is α− reflexive.
(2). (f(θ))(x, y) =

∨
(a,b)∈f−1(x,y)

θ(a, b) =
∨

(b,a)∈f−1(y,x)

θ(b, a) (since θ is symmetric)

= (f(θ))(y, x).
Thus f(θ) is symmetric.
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(3). Consider
(
f(θ)

)
(x, y) ∧

(
f(θ)

)
(y, z) =

( ∨
(a,b)∈f−1(x,y)

θ(a, b)
)
∧
( ∨

(b,c)∈f−1(y,z)

θ(b, c)
)

=
∨

(a,b)∈f−1(x,y),(b,c)∈f−1(y,z)

(
θ(a, b) ∧ θ(b, c)

)
≤

∨
(a,c)∈f−1(x,z)

θ(a, c) (since θ is transitive)

=
(
f(θ)

)
(x, z).

Hence, f(θ) is transitive.

(4). Similarly, it can be verified that,
(
f(θ)

)
(x, y) ≤

(
f(θ)

)
(x ∨ z, y ∨ z) ∧

(
f(θ)

)
(x ∧ z, y ∧ z).

Therefore, f(θ) is an L-fuzzy α-congruence on A
′
. □

In the following theorems gives a one-to-one correspondence between L-fuzzy α−ideals and L-fuzzy α−congruence
on A. We recall FLα

C(A) is the set of all L-fuzzy α−congruences on A.

5 One to one correspondence between FLαI(A) and FLαC(A)

In this section, we will construct an L-fuzzy α− ideals corresponding to L-fuzzy α−congruences on ADL A.

Definition 5.1. Let µ be an L-fuzzy α−ideal of A. An L-fuzzy subset θµ can be defined by

θµ(x, y) =


∨

z∨x=z∨y
µ(z) if x ̸= y

α if x = y,

for all x, y, z ∈ A.

Recalling from [17] that, An ADL A is said to be associative ADL, if the binary operation ∨ in A is associative;
that is (a ∨ b) ∨ c = a ∨ (b ∨ c), for all a, b, c ∈ A.

Theorem 5.2. Let µ be an L-fuzzy α−ideal of an associative ADL A. Then θµ can be defined above, is an L-fuzzy
α−congruence on A.

Proof . Let µ be an L-fuzzy α−ideal of A. For any x ∈ A, θµ(x, x) = α and clearly, θµ(x, y) ≤ α for any x, y ∈ A.
Hence, θµ is α−reflexive. Clearly, θµ(x, y) = θµ(y, x) if x = y. Suppose x ̸= y. Then θµ(x, y) =

∨
z∨x=z∨y

µ(z)

=
∨

z∨y=z∨x
µ(z)

= θµ(y, x).
Thus, θµ is symmetric. If x = z, then we have, θµ(x, y) ∧ θµ(y, z) = α ∧ α = α = θµ(x, z). Suppose that x ̸= z. Then

θµ(x, y) ∧ θµ(y, z) =
( ∨

t∨x=t∨y
µ(t)

)
∧
( ∨

s∨x=s∨y
µ(s)

)
=

∨
t∨x=t∨y,s∨x=s∨y

(
µ(t) ∧ µ(s)

)
≤

∨
(t∨s)∨x=(t∨s)∨y

µ(t ∨ s)

≤
∨

c∨x=c∨z
µ(c)

= θµ(x, z).
Thus, θµ is transitive. Finally, let x, y, z, t ∈ A such that a ∨ x = a ∨ y and b ∨ z = b ∨ t, for any a, b ∈ A. Since A is
an associative ADL, then we get (a ∨ b) ∨ (x ∨ z) = (a ∨ b) ∨ (y ∨ z) and (a ∨ b) ∨ (y ∨ z) = (a ∨ b) ∨ (y ∨ t), which
implies that (a ∨ b) ∨ (x ∨ z) = (a ∨ b) ∨ (y ∨ t).

Now, θµ(x, y) ∧ θµ(z, t) =
( ∨

a∨x=a∨y
µ(a)

)
∧
( ∨

b∨z=b∨t

µ(b)
)

=
∨

a∨x=a∨y,b∨z=b∨t

(
µ(a) ∧ µ(b)

)
≤

∨
(a∨b)∨(x∨z)=(a∨b)∨(y∨t)

µ(a ∨ b)

= θµ(x ∨ z, y ∨ t). (1)
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Also, let b∨x = b∨y and c∨z = c∨t. Then (b∨x)∧(c∨z) = (b∨y)∧(c∨t) and thus
(
(b∧c)∨(x∧c)∨(b∧z)

)
∨(x∧z) =(

(b ∧ c) ∨ (y ∧ c) ∨ (b ∧ t)
)
∨ (y ∧ t). Since (b ∨ x) ∧ c = (b ∨ y) ∧ c and (c ∨ z) ∧ b = (c ∨ t) ∧ b, we have

(b ∧ c) ∨ (x ∧ c) ∨ (z ∧ b) = (b ∧ c) ∨ (y ∧ c) ∨ (t ∧ b). Since µ is an L-fuzzy α−ideal of A, then

µ
(
(b ∧ c) ∨ (x ∧ c) ∨ (z ∧ b)

)
= µ(b ∧ c) ∧ µ(x ∧ c) ∧ µ(z ∧ b) ≥ µ(b) ∧ µ(c). Now,

θµ(x, y) ∧ θµ(z, t) =
( ∨

b∨x=b∨y

µ(a)
)
∧
( ∨

c∨z=c∨t
µ(b)

)
=

∨
b∨x=b∨y,c∨z=c∨t

(
µ(b) ∧ µ(c)

)
≤

∨(
(b∧c)∨(x∧c)∨(z∧b)

)
∨(x∧z)=

(
(b∧c)∨(y∧c)∨(t∧b)

)
∨(y∧t)

µ
(
(b ∧ c) ∨ (x ∧ c) ∨ (z ∧ b)

)
≤

∨
a∨(x∧z)=a∨(y∧t)

µ(a)

= θµ(x ∧ z, y ∧ t). (2)
Thus from (1) and (2) we have, θµ(x, y) ∧ θµ(z, t) ≤ θµ(x ∨ z, y ∨ t) ∧ θµ(x ∧ z, y ∧ t). Therefore, θµ is an L-fuzzy
α−congruence on A. □

Theorem 5.3. Let θ be an L-fuzzy α− congruence on A and L = [0, α]. Define the L-fuzzy subset µθ of A by
µθ(a) = θ(a, 0) for all a ∈ A. Then µθ is an L-fuzzy α−ideal of A.

Proof . For any x, y ∈ A. Then µθ(0, 0) = θ(0, 0) = α (since θ is L-fuzzy α−congruence ), for any α ∈ L − {0}.
Also, µθ(x ∨ y) = θ(x ∨ y, 0) ≥ θ(x, 0) ∧ θ(y, 0) = µθ(x) ∧ µθ(y). Finally, µθ(x ∧ y) = θ(x ∧ y, 0) = θ(x ∧ y, 0 ∧ y) ≥
θ(x, 0) ∧ θ(y, y) = µθ(x) ∧ α = µθ(x). Thus µθ(x ∧ y) ≥ µθ(x). Similarly, I can verified that µθ(x ∧ y) ≥ µθ(y). Form
these, we have µθ(x ∧ y) ≥ µθ(x) ∨ µθ(y). Hence the theorem. □

Theorem 5.4. Let λ, µ ∈ FLα
I and θ ∈ FLα

C. Then µ(θλ) = λ.

Proof . For each a ∈ A, µ(θλ)(a) = θλ(a, 0) =
∨

b∨a=b

λ(b) = λ(a) (since λ is an L-fuzzy α−ideal, b ∨ a = b ⇔ a ≤ b,

implies λ(b) ≤ λ(a)). Thus, µ(θλ) = λ. □

Theorem 5.5. Let λ ∈ FLαI and θ ∈ FLαC. Then θ(λθ) = θ.

Proof . Let θ be an L-fuzzy α−congruence on A. For any a, b ∈ A,
θ(λθ)(a, b) =

∨
c∨a=c∨b

λθ(c), for all c ∈ A

=
∨

c∨a=c∨b

θ(c, 0)

= θ(x, y).
Therefore, θ(λθ) = θ. □

Finally, we conclude this paper with the following result.

Theorem 5.6. The mapping λ → ϕλ : FLα
I → FLα

C and θ → µθ : FLα
C → FLα

I are mutual inverses. More over,
the maps are lattice isomorphism.

Proof . By the above theorems, the maps are mutual inverses and hence, there is a one-to-one correspondence between
FLα

I and FLα
C. Also, let λ, ν ∈ FLα

I such that λ ≤ ν. For any a, b ∈ A such that a ̸= b, ϕλ(a, b) =
∨

c∨a=c∨b

λ(c) ≤∨
c∨a=c∨b

ν(c) = ϕν(a, b) (since λ ≤ ν). Thus, ϕλ ≤ ϕν . Therefore, λ → ϕλ is isotone. Finally, let θ, ϕ ∈ FLαC such that

ϕ ≤ θ. For any a ∈ A, µϕ(a) = ϕ(a, 0) ≤ θ(a, 0) = µθ(a). Thus, µϕ ≤ µθ. Therefore, θ → µθ is isotone. Hence, the
maps are lattice isomorphism. □

6 Conclusion

The notion of an Almost Distributive Lattice (ADL) is a common abstraction of several lattice theoretic and
ring theoretic generalizations of Boolean algebra and Boolean rings. Later, G.C. Rao and M.S. Rao [11] introduced
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the concept of α-ideals in Almost Distributive Lattices. Here, we extend this result to the case of L-fuzzy α-ideals
of Almost Distributive Lattices. In this paper, we make a thorough discussion on various lattice theoretic properties
of the set of all L-fuzzy α-ideals and L-fuzzy α-congruences of an ADL with truth values in a complete lattice L
satisfying the infinite meet distributive law. In particular, we proved that the class of L-fuzzy α-ideals of an ADL is
an algebraic fuzzy set system. Also, it is noted that the homomorphic image and pre-image of L-fuzzy α-congruences
of ADL is again an L-fuzzy α-congruence. Finally, we discussed a one-to-one correspondence between the class of
L-fuzzy α-ideals and L-fuzzy α-congruences of an ADL.
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