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Abstract

In this paper, we study a stochastic optimal control problem for a Markov regime switching jump-diffusion model.
Sufficient and necessary maximum principles for optimal control under partial information in infinite horizon are
derived. We illustrate our results by a problem of optimal consumption problem from a cash flow with regime.
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1 Introduction

The maximum principle is one of the most important methods used to solve optimal control problem, and due to
its applications in several fields such as economics, biology and finance, it attracted a large number of researchers.
Kushner wa the first who studied the stochastique case [7] , Bensoussan [I] used the convexe perturbation method to
derive the stochastic maximum principle in local form. In the continuous case Peng [12] proved the general maximum
principle for the stochastic control system by using a second order variational equation and second order adjoint
equation to overcome the difficulty appearing along with the nonconvex control domain and control entering the
diffusion term, this works was extended in the jumps case by Tang [15]. There are many results for other stochastic
control systems; we refer the reader to Young and Zhou [I6], Hafayed et al [4], Hafayed and Syed [5], Hafayed et al [6]
, Meherrem and Hafayed [9]. The optimal control problem for a Markov regime-switching model has recently received
much attention, e.g., see Donnelly [2], Elliot et al [3] , Menoukeu [§], Sun et al[I4], Zhang et al [I7]. In infinite horizon
the stochastic maximum principle has been studied by many authors. For example see Hadam et al [I3], Agram et
al[I0L 11]. Our contribution in this paper is to extend the result of Hadam et al [13] to the diffusion-jumps with regime
switching, that is we establish a necessary and sufficient stochastic maximum principle for optimal control within a
regime-switching diffusion-jumps model on infinite horizon.

The paper is organized as follows. In section2, we present the optimal control problem for our Markov regime
switching jump-diffusion model and the main assumptions. In section 3, we prove the existence—uniqueness theorem
for BSDE with jumps and regimes. In Sections 4 and 5 sufficient and necessary maximum principles are developed
under partial information. An optimal portfolio and consumption in a switching diffusion market is studied in Section
6.
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2 Preliminaries

Let (0, F,F ={F},~,,P) be complete filtered probability space. The filtration {F},. is right-continuous, P-
completed and all of the processes defined below including the Markov chain, the Brownian motions and the Poisson
random measures are adapted to it. We consider a continuous-time, finie-state Markov chain {« (¢) /t > 0} with a
finite state space S ={ej,...,ep}, where D € N, ¢; € RP, and jthe component of e; is the Kronecker delta 0y, for
each 4,7 = 1,2, ..., D. the state space S is called a canonical state space and its use faciliates the mathematics. We
suppose that the chain is homogeneous and irreducible. To specify statistical or probabilistic properties of the chain
a. we define the generator A = {\;; 1 <i < j < D} of the chain under P. this is also called the rate matrix, or the

Q-matrix. Here, for each 4,7 =1,2,.., D, \;; is the constant transition intensity of the chain from state e; to state e;
D

at time ¢. Note that A\;; > 0 for ¢ # j and Z)‘ij =0, so Ay; < 0. In what follows for each i, = 1,2, .., D which i # j,
j=1
we suppose that A;; > 0, so Ay < 0.

Elliott et al. [3] obtained the following semimartingale dynamics for the chain « :
t
a(t) = a(0) +/ AT e () du+ M (¢)
0

where {M (¢)\ t > 0} is an RP-valued, ({]:}t>0,P)—martingale and yT denotes the transpose of a matrix (or, in
particular, a victor).

To model the controlled state process, we first need to introduce a set of Markov jump martingales associated with
the chain «. Here we follow the results of Elliott et al. [3].

For each i,j = 1,2,..,D, wich i # j, and ¢ € [0,00[ let J¥ (t) be the number of jumps from state e; to state e; up
to time ¢. Then

TI(t) = Y (a(s=).e)fals),e)

0<s<t

= 3 fa(sm),eals) —als—)e)

0<s<t

= [ty et e) e

= / (a(s—),e)(ATa(s),ej)ds + / (a(s—),ei)(dM(s),ej)ds
0 0

= Aij /0 (o (s—), e)ds +my; (1),

t

where m;; = {m;; (t)\t € 7} with m;; (t) = / (a(s—),e)(dM(s),e;) is an ({}'}t>0 , P)—martingale, the m;;’s are
0 >

called the basie martingales associated with the chain «.

Now, for each fined j =1,2,.., D, let ®,; (¢) be the number of jumps into state e; up to time ¢.

Then

®; (1)

D ..
POREAA0)

i=1, i#j

inj/ (a(s),en)ds + &, (£),

i=1, i#; 7Y

D
where ij (t) = Zmij (t) and, for each j =1,2,.., D, &)j (t) = {éj )\t e T} is a an ({}-t}tzo ) P)—martingale.
i=1, i#j
Write for each j =1,2,..., D

N =3 N /0 (a(s) ,e:)ds. (2.1)

i=1, i#j
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Then for each j =1,2,.., D,
D) (t) = @; (1) — A; (1), (2.2)

is an ({]:}tzo ) P) -martingale.

We now introduce a Markov regime-switching Poisson random measures. Let RT = [0, +00[ be the time index set
and (R, B(R")) be a measurable space. Where B (R™) is the Borel o-field generated by the open subsets of R*.

Let Ryg = R\ {0} and By the Borel o-field generated by open subset O of Ry whose closure O does not contain
the point 0. In what follows, suppose that N (dz,dt) f = 1,...,M, are independent Poisson random measure
on (Rt x Ry, B(R") x By) where M € N. Assume that the P01sson random measures AN (dz, dt) has the following
compensator :

nt, (dt,dz) = V(i(tf) (dz)dt = {a (t—), V" (d2))dt, (2.3)

where ‘ ‘ -
vi(dz) = (v, (d2), v, (d2),..,vi, (dz)) € RP

For each i = 1,2,..., M, j = 1,2,..,D, v} is assumed to be o—finite measure on Ry satisfying v! (0) < 0o, YO € By
J J
and / min (1, 22) l/é], (dz) < oo. Here we use the subscript « in 7!, to indicate the dependence of the probability law
Ro

of the Poisson random measures on the Markov chain. Indeed, uéj (dz) is the conditional Lévy density of jump sizes
of the random measure N (dz,dt) when « (t—) = e;. Moreover, denote the compensated Poisson random measuren
N, (dz, dt) by

Na (dz,dt) == (N (dz, dt) — v} (dz) dt, .. NM (dz, dt) — v (dz) dt) . (2.4)

We now introduce the state process X = {X (t)\t € [0,00[}. Suppose that we are given a set U C RX and a
control process u (t) = u (t,w) : [0,00] x Q@ — U. We also require that {u (t,w)\t € [0, 00[} is Fi-predictable and has
right limits. Let X (t) = X (¢) be a controlled Markov regime-switching jumps-diffusion in R* described by the
stochastic differential equation

AX ()= b(t, X (), u(t),a)dt+ot X (), ut), o) dB ()

Fy (X (), u(t),al)db(t) 0<t< oo,
X(O) = Zo-

Here b : [0,00[ x RE x U x 8§ - RY, 6 : [0,00[ x RE x U x § = R¥*N 5 [0,00] x RE x U x S x Ry— RE*M and
v :]0,00[ x RE X U x 8§ — REXP | are given continuous functions , B (t) := (By (t), ..., By (t))" is an N—dimensional
standard Brownian motion, /\71 (dz,dt) is M-dimentional Markov regime-switching random measures definied by
& (1) = (cil,..,ciD) whith ®; (1), j = 1,2, .., D, defined by (23) .

Let e, C F; be a given subfiltration, representing the information avialable to the controller at time ¢, ¢ > 0. The
control process u (t) assumed to be {e;},5, predictable and with value in a convexe set U C R¥. Let A. be our family
of g4-predictable controls.

Consider a performance criterion defined for each € RY, e; € S as

J(z,ei,u) = By {/ F&X @) ,u(),alt) dt] .
0
Here E, . is the conditional expectation given X (0) = 0 and « (0) = ¢; under P, and

-

E

/Om{f(t,x<t>,u<t>,a<t>>|+\§j:<<t,X<t>,u<t>,a<t>>>
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for all u € A, , we study the problem to find u* € A, such that

J(z*,e,u™) = sup J (z,e;,u). (2.6)
u€ A,

Denote by R the set of functions 7 : [0, 00 x Ry — REXM guch that
[Nnm (t, 2,1, €5, 2) T (L, 2)| V" (dz) < oo, forl all n,m, z,t,
Ro

and M? the set of functions s (-) : [0, 00] — RE*P such that

Ynm (2, U, €;) Spm (8) N, (t) < 00, forl all n,m, z, ¢,

IIMh

and define the Hamiltonian H : [0, 00[ x RY x U x S x RF x RPN x Rx RF*P 4 R by

H(t,z,u,e;,p,q,7,8) = f(t,z,u,e)+b" (t,x,u,e;)p+tr (UT(t,x,u,ei)q)

/R ZZnnm t, U, €4, 2) Tm (1, 2) V2! (dz)

On lml

(2.7)
+ Z Z’Ynm (t, 2, u,€;) Snm (t) Xim.-

m=1n=1

The adjoint equation in the unknown F;-predictable processes (p(t),q(t),r (t,2),s(t)) where p(t) € R, q(t) €
REXN 1 (t,2) € REXM 5 (t) € RY*P is the following backward stochastic differential equation (BSDE)

_0H

dp(t) = —-— (X (8),u(t),a(),p(t),q(),r(.),s(t))dt

q(t)dB (t +/IR r(t,2) Ny (dz,dt) + s (£)dD (t), t>0. 28)

3 Existence and uniqueness

In this section, we prove the existence and uniqueness of the solution (Y (t), Z (¢), K (t,<),V (¢)) of infinite horizon
BSDEs of the form:

ay () = —g(t,a(t),Y (t),Z(t), K(t,.),V (t))dt+ Z(t)dB (1)
+/ —K (t,5) Ny (ds,dt) + V (£)d® (t), 0<t<T, (3.1)
Ro

lmY (t) =  &(7) Ljo,00 (7)),

t—T1
where 7 < 0o is a given JF;-stopping time, possibly infinite. We assume the following.
(H1) The function g : @ xR; xS x RE x REXN x R x REXP 5 RY is such that there exist real numbers A, K1, Ko
and K3 such that K;, Ko and K3 > 0, and A > 2u + K? + K3 + K3.
We assume that the function g satisfies the following requirement:

(a) g(.e;,y,z2,k,v) is progressively measurable for all y, z, k, v and
|g (tv €Y, %, k,’U) -9 (t7 €Y, Z/’ k/’UI>| <K HZ - Z/H + K> Hk - k/HR + K3 HU - UIHMQ y

where
[|2]2 = trace (zz )

kOl =it S S i () 0 (d2),
lolie =X Z g () 2 (1)
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(0)

<y - y/’g(t7€i7yvza k,U) ) (ta6i7yl7za k7v)> S M ‘y - yl| B for all y,y/,z,k,v P —a.s.
(c) ]
E/ eM g (t,e:,0,0,0,0)|* dt < oo,
0

(d) y— g(t ey, 2, k,v) is continuous for all ¢, e;, 2, k, v. P — a.s.
(H2) A final condition £ which is a an F,—mesurable and m-dimensional random variablen such that

B [ [¢?] < oo,
E/ eAt |g (t7ei7§ta77tﬂ/)t7§0t)|2 dt < o0,
0

where 7 is an JF;-stopping time , & = E (§/F) ,n € L%-,p, (NS Fg and ¢ € Mg such that:

s:E<s>+/0°°n<s>st+/0°° [ w<s,<>/\7a<d<7ds>+/oooso<s>dcf><s>,
where

Lz, = {f : REXN _valued F; — predictable process, s,t. E [/ \f () dt] < oo} .
0

F? — {f : REXM yalued F; — predictable process, s,t. E [/ Ilf (t, )H?z dt} < oo} .
0

M2 = {f : REXP_valued F; — predictable process, s,t. E [/ IIf (t)||i42 dt} < oo} .
0

A solution of the BSDE (3.1)),is a quadreplet (Y, Z, K,V) of progressively measurable processes with values in
RE x REXN « REXM o REXDg¢ 7, K, V, =0, when t > 7, and

B (sweo W OF + [ N Iz@F s [C XK@ [ NV O i) <.
0 0 0

TAT TAT

g(w(s)7Y<s>,2<s>,K<t,.>,v<s>>ds—/ 7 (s)dB (s)

AT

Y(t):Y(T)+/

AT

TAT TAT

- K (s,) Ny (ds,ds) — / V (s)d® (s); for all deterministic T' < 0.
tAT R, tAT

Y}zgonthese?c {t>71}.

Theorem 3.1.(Existence and Uniqueness) Under the above conditions there exists a unique solution (Y;, Z;, Ky, V;) of
the BSDE ({3.1)), which satisfies moreover, for any A\ > 2u + K? + K2 + K2,

2 T 2 T 2 T 2
B (supgerer MY (O + J7 12 O de+ f; X K @)l dt + f7 |V (1) 3 dt)

T (3.2)
<cE | e |l +/e’\t g (t,€;,0,0,0,0)|” dt
0

Proof of uniqueness. Let (Y, Z, K,V)and (Y, Z’, K', V') be two solutions, which satisfy (3.1]) and let ()7, Z, K, V) =
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Y -Y',Z-7Z' K- K, V-V It follows from It6’s formula, and the above assumption that
NTAT) |37 (T)]Q _ eAtAT) \Y (t)]2

(T'AT)

:_/( e (g (s,a(s),Y (s),Z (), K (s,.),V ()

tAT)

—g(s,a(s),Y' (5),Z'(s),K'(s,.),V'(5)),Y (s) =Y’ (s)) ds

(TA )
[ @ NZ @I A Y o) as
(tAT)

(T'AT) N N 9 (T'AT) )\ )
N HRd8+/ AV ()20 ds
(tAT) (tAT

(T/\T) (T'AT) _
w2 ()2 [ (& (5.0 =27 (9, K (,0))) Ko (ds.ds)
( Ro

tAT) (tAT)
TAD o (o YA, ¥
+ e (V2 (s) —2(Y (s),V (s))) dd (s).
(tAT)

TAT)

A(EA (ram) As (
() | (1) |+/( > (MY ()" + |2 (s ||>ds+/

tAT) (tAT)

(1K (5, Ol + [V ()32 ) ds

< MTAT) \Y (T)|2

(T'AT) B B _ _ _
+2/( ers (u ‘Y(s)‘2 + K, |Y(s)| HZ(S)H + K> ‘Y(S)‘ ||K(S

tAT)

Ollp + K3 |V ()] ||V (S)HMZ) ds

(TAT) As /O (TAT) 2 - B N
_2/@%) V). 2 /m /]R (K —2(Y (s), K (5,€))) Na (ds, ds)

(T'AT) B B B _
- /( et (V2 (s) —2(Y (s),V (s5))) d® (s).

tAT)

By the fact that

26, |V ()| |Z ()] < 2 (s)]]* + K2V (s)]7,
2 [V ()| | K (5.0l < 1K (5.0)|5 + K3 [Y ()]
2655 [V ()| |V ()] oo < [V (5)|[hpe + KZ [V (9)]7,

and since A > 2u + K? + K3 + K3 ,we deduce that for t < T,
E (e’\(MT) |Y(t)]2) <E (eA(T/\T) v (T)}Q) .
The same result holds with A remplaced by X, with
2u+ K7+ K3+ K; <X <A\
Hence ) ~ ) , ~ )
E (X0 |7 (1)) < OB (AT 7 (1) Tiresy ).
With our conditions the second factor of the right hand side remains bounded as T" — oo, while the first factor tend
to 0 as T'— co. Uniquenessis is proved.
Proof of existence. For each n, we construct a solution {(Y™ (¢),Z™ (t), K™ (t),V™(t)) ;t > 0} of the BSDE

Y™ (t) :g+/

tAT

nAT nAT

g(s,a(s),Y" (s), 2" (s), K" (t,.), V" (s)) ds — / Z" (s)dB ()

tAT

nAT nNAT
- / K" (3,) N (ds, ds) — / V™ (s)d (s), £ >0,
t

AT Ro tAT
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as follows. {(Y"™ (t),Z" (¢t),K™(t),V"™(t));0 <t <n} is defined as the solution of the following BSDE on the fixed

intervall [0,n] :

n

yn (t) :E(f/Fn)+/ I[O,‘r]g (s,a(s),Y" (S)vzn (8)7Kn (tv')vvn (S))ds

t

—/tnzn (s)dB(s)—/tn : K™ (5,6) Ny (ds, ds)

—/ VP (s)d®(s), 0<t<n,
t

{(Y™(t),Zz™(t), K™ (t),V™(t)) ;t > n} is defined by

Y™ () =&,2"(t) =n(s), K" (t) = (5,9), V" (t) = ¢(s).
Foranye>0,0<p<1,0<a<1,0<pB<1,wehaveforallt>0yec Rl e € D,zecRN ke RIM 4 e
RFPife= 1
2<y7g(taei7yazakav)> = 2<y g(t7eiay7z7k7v> —g(t,ei,07z,k7v)>

+2(y,9(t,€;,0,2,k,v) —g(t e;0,0k v))
+2(y,g(t, e;,0,0,k,v) —g(t,e;0,0,0,v))
+2(y,g(t,e;,0,0,0,v) — g (¢,e;,0,0,0,0))
+2(y,g (t,€;,0,0,0,0))

< (Qu +1K?+ K3+ SK3 + 5) ly|?
2 2
+ollzll +allk (Ol + Bllvile
+C|g (t,ei30;0a070)‘2'

From these and Itd's formula, we deduce that
.

KO+ [ (A )R +plzn (9)]) ds

(tAT)

+ /( e [|K™ (5, OlI% ds + / B V™ (3))2 o ds

tAT) (tAT)

<P 4o / g (s, €1,0,0,0,0)[? ds
(

tAT)

—2/T (Y™ (), 27 () dB (s))

tAT)

/t/\-r)/]R (s,Q) +2(Y" (s), K" (57<)>) N, (ds,ds)

- /H ((m () +2 (" (), V" (5)) ) d (s),

Withj\:/\—Qu—%KI —7K2—7K3—€ >0,p=1-p>0,a=1—-aand 3 =1-f. It then follows from
Burkholder’s inequality

T

E & (1Y @) + 12 )l ) dr

SUDP;> AT [y (e A7) 4 /

(tAT)

e (e O+ V7 ) e

tAT)

<CE [w |§|2+/ e g(r,ei,o,o,o,O)er]-
(tAT)
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Let now m > n, and define

AY () = Y™ —Y"(t), AZ(t)=2Z™(t) - 2" (1),
AK () = K™@t)—K"(t), AV () =V™({t) - V" ().

We first have that for n <t < m,

AY (1) =/tm g (s.als), Y™ (s), 2™ (s) K™ (1) V™ (5)) ds

AT

- /t " AZ™ (s)dB (s) — / " AK™ (s,¢) Ny (ds, ds)

AT tAT Ro

- /t " AV™ (s)d® (s).

AT
Consequently, again for n <t < m,

(mAT)

e)\(t/\T) |AY (t)|2 +/

(tAT)

> (AAY (5) + A2 (5)]7) ds

(mAT) N 9 2
+/( e’ <||AK (s, Ollr + 1AV (5)”/\/12) ds

tAT)

(mAT)
= 2/( (6/\8 (g(s,a(s), Y™ (s),Z2™(s), K™ (s,.), V™ (s)),AY (s))) ds

tAT)

= " o (9), 02 / mM)/ 20 +2(AY (5), K (.0)) N (ds.
( t Ro

tAT)

- /( " o ((AV)* () + 247 (), AV (s))) dB (s) .

tAT)

(mAT)

<2 {ulAY 9P + K |AY OIAZ 6] + K2 [AY () IAK (5.0l
AT

+ K3 \AY)( S IAV ()| p2} ds

(mAT)

/( e |AY (9)]1g (5, €3, &, M, s, 05)|* ds — 2/ M (AY (s),AZ (s)dB (s))

tAT) (tAT)

[T (0007 60+ 207 (90, 6K (560) A 9

(tAT)

/< " ((AV)? (5) +2(Y (5), BV (5))) dB (s)

tAT)

We then deduce, by an argument that already used , that

mANAT

B [sucian XY (A0 [ (167 P 102 )

AT
2 2
+ 1AK (5.l + 18V (5)Fe) ds]
< C/ 6/\8 |g (57eiagsynsal/}w@s)ﬁds,
(nAT)
and this last term tends to zero, as n — oco. Next , for t < n,
(nAT)

AY () =AY (n)+ / {g(s,a(s), Y™ (s),Z™(s), K™ (s,.), V"™ (s))

(tAT)

—g(s,a(s),Y"(s),Z"(s),K" (s,.),V"(s))} ds*

/ AZ(s)dB (s) - /MT ROAK(s,g)/\?a(dg,ds)—/t:TAV(s)dEIS(S).
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It follows from the same argument as in the proof of uniqueness that

E (ewm) IAY (t)|2> <E (eMMﬂ IAY (n)|2)

T R 2
<C e \g(S,ei,fs»ﬂs,%»sﬁs” ds.

(nAT)

It now follows that the sequence (Y™, Z™ K™ V™) is Cauchy with the norm

lovm, 2, K" v = B [ sup MY OF + [ (I OF +12 @F + 15 Ol + 1V O dt} ,

0<t<r

and that the limit (Y, Z; K, V) is a solution of the BSDE ({3.1)) The proof is complete.

4 Optimal control with partial information and infinite horizon

In the following we assume that L =M = N = 1.
Now, let us get back to the problem of maximizing the performance functional

J(z,ei,u) = Ey e, L/Oocf(t,X(t),u(t),a(t))dt ,

where X (t) is of the from (2.5). Our goal is to find a u* € A, such that

J (¥, e, u*) = sup J (z,e5,u),
u€A,

where u (t) is a control which adapted to subfiltration e; C F;, with value in a set U C R.

1485

Let H be the Hamiltonian defined by (2.7) and (p, g, r, s) the solution to the adjoint equation ([2.8)) . Then we have

the following maximum principle.

Theorem 4.1. (Sufficient Infinite Horizon Maximum Principle) Let u* € A, and let

(p* (t),q* (t),r* (t,z),s* (t)) be an associated solution to Eq (2.8). Assume that for all u € A, the following

terminal condition holds :
0<E|[Tm [p* (1) (X (t) — X* (t))]] < .

t—o00
Moreover, assume that H (t,z,u, e;, p* (t),q" (t),r* (t,-),s* (t)) is concave in z and u and

q (), r*(t,.),s" (1)) /et

E[H (t, X" (t),u” (1), a(t),p" (1), ;
T(),q" (1)t )87 (1) [ed] -

= gleaé(E [H(t, X" (t),u,a(t),p

In addition we assume that for all T' < oo,

T 2 2 D
E/O (X* (1) — X" (1)) (q)(t)+/RO( V2 (1, 2) v (d) +]§ dt| < oo,
and
T D
*)2 2 z I/a z ; 0o
B /0 P2 ) (o (1) —|—/Ro(n(t (d2) +J§::1 @) b at| <
6 2
B || SLH (X7 ()0 (1,0 (1), 9" ()" (), (1,.) 5" (1) ]<oo,
and that

(4.1)

(4.2)

(4.4)

(4.5)



1486 Ben Abdallah, Chaouchkhouane, Tamer

for all u. Then we have that u* (¢) is optimal.

Proof. Let -
I :=EUO {f&X @), u®),a)—fEX"(t),u" (), at)}d

=J(z,e;u) — J (%, e;,u*).

Then I = I — I$° — I$° — I5° — I2°, where

[¢=E [/OO (H (5, X (s),u(s),a(s), 5" (5),0" ()7 (5,.) , 5" (5))

— H (s, X" (s),u"(s),a(s),p" (5),4" (s),r" (s,.), 8" (5))) ds],

Ir—F [/qu* () (0 (5, X () u(5) () — 0" (5, X" (5) ,u (s) ,a<s>>>ds] ,
2= F [/ /}R (15, X (), u(s) (), 2) — 1 (5, X" (5) 0" (5) 1 (), 2)) 7 (5, 2) vigey (d2) ds] ,

s D
I5:=E /0 Z(’W (5, X (5),u(s),a(s)) =7 (5, X" (s),u" (s),(s))) 57 (s) A (S)dS}

For the simplification we put
Ht,x,u,a,p*,q*,r*,s* =H (t’ T, u, (t) ’p* (t) ’q* (t) ’ r* (tv ) ’ s (t>) ’
and the same for the other expressions. We have from concavity that
Ht,X,u,a,p*,q*,r*,s* - Ht,X*,u*,a,p*,q*,r*,s*

< %H(t7X* (@), u (), (t),p™ (t),q" (), 7" (¢,.), ™ () (X () — X~ ()

T H X7 (), 0 (), a(t),p" (t),¢" (t),r" (t,.), 5" (1)) (u(t) —u" (1))

Then we have from (4.2)),(4.5) and that « (¢) is adapted to &,
0
0>2E [H
~ Ou

Xt a5 () =t (1)
5 u=u*(t)

= %E |:Ht1X*u“*va,p*,q*,r*,s* (U (t) —u* (t)) /gt:| .

Combining , , and , we get

i SB[ [T et (0 - X e8| B[ [T ()09 X7 0)

= —J1.

(4.8)
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From (4.3), (4.4), and Ito’s formula , we have that

OSEE§WWMX@—XWW]

=E[thm/0 P (s) (b(s, X (s),u(s),a(s)) —b(s, X*(s),u* (s),a(s)))ds

From and , we have that
Bl [75 06X 6l a ) b X () (a)ds + [ (X=X ()
(g (5,7 (6 (61, (907 (90,07 (). (5057 (5) ) s
/m%><@xm u(s).a(s) = 0" (5. X" (5). u* (s) o (s))) ds
7 D X (0 005, 2) = (0K ). (5). 0 0] 2)) g )

-+A }jg@)wuaxwxuwma@»—wﬂwwvw@ﬂﬁ@»a@mxﬂgd%

= % 4 JP 4+ I° + I + I
Finally, combining the above we get

J(aj7eiau)_‘]($*’ei7U*) SIfo_Ié)o_I??O_IZO_ISOO
< I IR T I
<0.

This holds for all u € A., so the proof is complete.

1487
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5 Necessary Maximum Principle

In this section, we establish optimality necessary conditions for our control problem. We will to prove : if u* is
optimal does it satisfy

EH(t, X*(t), v (), at), p*(t), ¢" (), v (t,.), s* (1)) /]

= quleaéiE [H <t7 X (t)’ u, a(t), p* (t) s q" (t)’ " (t> ) ; 8" (t)> /Et] :

(5.1)

We assume the following:

(A1) For all ¢, h such that 0 < ¢ < ¢+ h < oo and for all bounded &;-measurable random variables 6 = 6 (w), the
control process 3 (s) defined by
B(s) =01 11m (s),
belongs to A.. Here
. ({1 iftelt, t+h],
[t,t+h] 10 otherwise.
(A2) For all u € A, and all 5 € A, bounded, there exists ¢ > 0 such that

u+ef € A, for all e € [-6,0].

(A3) The derivative process

()= X0 (1)

e=0

exists and belongs to L? (m x P), where m denotes the Lebesgue measure on R.

0= { 5 82 050 i+ {2 00 + 52 050 B )

/ {an 0+ o (t,zwt)}ﬁa (dt, d2)

oo+ gg (050} i),

where, for simplicity of notation, we define

o . b

5y D=5 (6 X (1), alt), u(t),

Note that
£(0)=o.

(A4) Assume that f satisfies a Lipschitz condition of the form

|f (1,01, e5) — f (22,u2,€5)] < C(t) (|21 — 22| + |us — uz|),

for any t,x;,u;, 1 =1,2,e; € S.



Stochastic maximum principle for a Markov regime switching jump-diffusion in infinite horizon

We have the following theorem.

1489

Theorem 5.1. (Partial Information Necessary Maximum Principle) Suppose u* € A. is a local maximum
for J (u) meaning that for all bounded 5 € A, there exists a 6 > 0 such that u* 4+ ¢5 € A, for all € € (—0,d) and
h(e):=J(u*+eB), e € (—40)is maximal at e = 0. Let (p* (¢), ¢* (t), r* (¢, 2), s*(¢t)) be the solution to the adjoint

equation

dp* (t) = 7%(757 XE(t), w (), aft), p*(t), ¢ (&), r*(t,.), s"(t))dt

+¢* (t)dB (t) +/R 1 (2,t) Ny (dz, dt) + s* (£) d® (t) .

Moreover assume that if £* (t) = €77 (t), with corresponding coefficients 7}, 7, Stz PF, Where

b, « ..

we have

lim E[p* (T)¢* (T)] = 0,

T—o0

E UO Cwa+e (t)|)dt} < 00

E{/ (5*<t>>2{<q*>2<t>+ / <r*<t,z>>2va<dz>+2(w‘)2<t>xj<t>}dt] < oo

j=1

where A (t) = (A1 (£), .., Ap (t))" ,and
T
V 7" (£))? [<r*>2<t, XU (), a(t), ut (1) + / (2t X* (1), a(t), v (1), 2)ve (d2)
0 Ro

D
(@)t X (1), at), ut (D)) A (t)] dt] < o0,

for all T < co. Then u* is a stationary point for E[H / ;] in the sense that for all t > 0,

s [efH (b X7 (1), oy ™, 7 (1), 4 (D), 77 (1), 57 (1)) /et] ~o.

Proof. First note that by (A3), (44) and (5.3) we have that

0
= &J(u* +¢ep)

e=0
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We Know by the definition of H that

G0 =50 0= 00 - waw - [ Feart o) - 0s0n0 69

d
and the same for % (t).

Applying the It6 formula to

we obtain by (52)., (A2), (54) and (5.5)

0= lim E[p(T)(T)]

/OTP* (t) {gz ()& () + % (t)ﬁ(t)}dt+/0Tg* (1) (85;’;@)) &

/T (t){gg (t)g*( )+g—a( )6(t)}dt

D
/ﬂ { (t)Jr%q*(t)nL/ gZ(tz) (t, 2) v (d2) Zal *(t)}dt

T
— limy o E { (Tf }dt+/0 ﬂ(t){aau 875} ]
_ f of aH*
= —limp, B /0 {8()5() u()ﬁ(t)}d +limy o F /ﬁ ]
Hence T
d oOH*
dﬁJ(u*—i—eﬁ)eolei_{r;OE[ 5 (t)B(t)dt]
0
If
B(s) = 011t t+n) (s)s
then

t+h 5
/a—H* (s, XZ, e, ul, pi, qi, v°(s,.), S:)Hds] =0.
U

Differentiating with respect to h at h = 0, we have
a * * *
E[@uH (t, X7, e, uf, pi, qi, r (t,.),st)G}zo.
This holds for all £;-measurable 6 and hence we obtain that

a * * * * * * *
E[é)uH (t, X7, e, uy, pi, qf, r*(t,.), s}) /Et:| =0.

Which proves the theorem. [ ]
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6 Applications

Example 01(Optimal portfolio and consumption with regime switching)

We consider a continuous-time, finite-state, hidden Markov chain @ = {«a(t),t € [0,00[} taking values in a
finite-state space S = {1,2,...,n}.

The financial market consists of two assets with Sy the prices of the risk-free asset and S; of the stock are given
dSo (t) = pSp (t) dt for all t € [0, 00[, Sp (0) > 0, (6.1)

and

dSk (t) = Sk (1) {b(t, e (t))dt + o (t,a (t))dB (t)}, (6.2)

respectively, where the interest rate p is a constant, the appreciation rate b (t,7) and the volatility o (¢,4) # 0 are
assumed to be deterministic and bounded.

The wealth of an agent z (t) defined as

{ de(t) =z @) (7 ()0 a(t) —p)+p—c(t))dt+r(t)o(t o) dB(t),

x(0) =uzp>0, (63)

where 7 (.) is the fraction of the agent’s wealth that is invested in the risky asset and ¢ (.) is the consumption of
the agent and the control process u (t) = (7 (t),c(t)), we have that

x (t) = zgexp [/0 {p +7(s)(b(s,a(s)) —p)—c(s)— %7‘(‘2 (5) o2 (s, (s))} ds + /0 w(s)o(s,a(s))dB(s)|, (6.4)
and the associated cost functional is

J(u)=F {/000 e % In (c(t)z (1)) dt} , (6.5)

where 6 > 0.The objective is to find an optimal control 4(.) = (¢(.),# (.)) that maximizes (6.5]).

Now the Hamiltonian is

H(t,z,c,m i,p,q) =e ' In(cx) + (7 (b(t,i) — p) + p — ) xp + 7o (,1) xq, (6.6)

then
VCDH (t,:E,C,ﬂ',Lp, q) = eiétl + (7T (b (t,’é) - p) + p— C)p+ To (t,Z) q,

x

on the other hand we have

(6.7)
(t)dB(t)s (t) +5(t)d (1),
VoH (t,z,c,m i,p,q) = (b(t,i) —p)px+o(ti)gr , (6.8)
VC‘H (t,x,cmr,i,p, Q) =e 0t —pQ? (69)
so that ,
t,i)—

q(t) =-CLd=lp(t), (6.10)

and
et) =e s (6.11)

then

dp(t) == [(e ks +rbta®) —p) +p—e ke ) p(t) — T (bt a(t) - p)p ()] dt
— Ot (0 dB (1) + 5

P
b(t,o
= —pp(t)dt — %p t)dB

b(t,a(t))—
— () (pdt + Glralh) g (t)) +s(t)dd (1),

=
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Let us try to choose s (t) = 0. Then we have that

_ t o }(b(s,a(s))*ﬂ)z . t (b (S, @ (5)) N p) .
p(t) = p(0)exp l/o { P 5o e a (s Goa () }d /0 o Gal) dB (s)| . (6.12)

So to ensure that the requirement

E [T [p(t) (2 (t) = (0)])] > 0,

t—o00
is satisfied it suffices that

E [T [5(t) (2 (1)] <0. (6.13)

t—o0
Let us try to choose ¢ (t,w) = ¢ and 7 (t,w) = 7.

Then from (6.11) we get

— ,—0t_1
p (t) =e cx(t)

6.14
:%exp Ug—{p—i—fr(b(s,a(s))—p)—é—%7%202(s,a(s))—|—6}ds—f0tﬁ'a(s,oz(s))dB(s) (6.14)
comparing (6.12) with (6.14) we get
- . 1 (bt —p)2
p+7(b(ti)—p)—é— 2720 (ti)+0=p+3 =10
fo (t,i) = 7(1’{:(22)@
then
b L7202 T s 6.15
e =7 (b(t,i)—p)— = | 7202 (¢t _— .
e=w (b)) = 5 |0 (00 + iy | + (6.15)
. (0(ti)—p)
_ 1
T T () (6.16)
Substituting into (6.15) this gives
o b)) —p)? 1[0 —p)?® OO
= - = 6=96 6.17
‘ST 2\ 2wy T ewy )T (6.17)
By (6.4) and (6.14) we have
. (o, L> 02 t (b(t,i
P =pO)exp [y {=p(s.a(s) - s i} ds— fy G %B()}
i)—p)2 ~ 7 7
-Tg exXp [fo p(s,a(s)) + % —¢— 1%}d —|—f0 (it t)z 2 dB (s )}
= p(0) zg exp [—¢t]
Therefore (6.13)) holds.
We have proved the following theorem.
Theorem 6.1 The optimal control of (6.3]) — . are given by (6.16]) and ( -
Example 02
We consider the following optimization problem which is to maximize the performance functional:
J(u)=E [2/ e Pt/ u (t)dt] : (6.18)
0
where z(t) is subject to
de(t) = (At a(t)z @) —ut)dt—C o)z (t)dB(t), (6.19)
6.19
x(t) = o,

where 8,29 >0, A(t,i),C(t,i) >0, forallieS={1,2,....,n}.
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In this case the Hamiltonian function takes the form
H (t,z,u,i,p,q) = 2vue P + (A (t,i)z —u)p — C (t,1) 2q,

then
H, (t,z,u,i,p,q) = e‘ﬂtﬁ —-p
Hy (t,2,u,1,p,q) = (A(t,4)p—C(ti)q.
Therefore, if H, = 0 we get
e Pt — —p=0 (6.20)

The adjoint equation is given by

dp(t) =—[A(t,a(t)pt)—C(tat))q(t)]dt
g () dB (t) + s (1) dd (t).

Let us try to choose ¢ () = s(t) = 0. So

dp (t) = =A(t,a (1)) p(t)dt,

this leads to .
p(t) =p(0) e Jo Alsalnds, (6.21)

for some constant p (0) and by (6.20]) ,
—28t
a(t) = € (6.22)

(p(0) e~ Ji Aot

Inserting @ (¢) into (6.19), we get
di () =2 t)A(t,a(t)) —p(0) % e2oAsalN=Rdsqr g (1) C (t,a (t)) dB (1),
z(t) = o,

Let us consider the process I'(.) defined by

P () = exp (/Ot—ms,a(s))dB(s)+A<s,a<s>>ds—;/Otc2<s,a<s>>ds),

Using integration by part we get

t o2 Jo (A(r,a(r))—B)dr

B (t) =2 (0)T (1) —p(O)_2/0 T

Hence ,
E |:1AJ (t) e f(;‘ A(s,a(s))ds:| =4 (0) —p (O)—2 / B (efos(A(r,a(r))—2B)dr) ds,
0

Therefore to ensure the positivity condition , we get the optimal p (0) as

Nl

£ (0)
o B (A amr i) g

p(0) = , (6.23)

and we can verify that
lim E[z(T)p(T)] = 0.

T—o0

Therefore the transversality condition is verified, then with p (0) = p (0) given by (6.23) , the control @ given by ([6.22))
is optimal.
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7 Conclusions

In this paper we have been studied an optimal control problem with regime switching and infinite horizon. More
precisely under partial information we gave a necessary and sufficient conditions of optimality. As an illustration we
have given two examples of applications where in the both case, the state equation is linear and the objective function
is of utility form.
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