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Abstract

Let P (z) be a polynomial of degree n and for any complex number α, let

DαP (z) = nP (z) + (α− z)P ′(z)

denote the polar derivative of P (z) with respect to a complex number α. In this paper, we prove some Lr inequalities
for the polar derivative of a polynomial have all zeros in |z| ≤ 1. Our theorem generalizes a result of Dewan and
Mir [K. K. Dewan, A. Mir, Inequalities for the polar derivative of a polynomial, J. Interd. Math. 10 (2007), no. 4,
525–531] and includes as special cases several interesting many known results.
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1 Introduction

Let Pn be the class of complex polynomials P (z) =
∑n

j=0 ajz
j of degree at most n and P ′(z) be its derivative. For

P (z) ∈ Pn, then
max
|z|=1

|P ′(z)| ≤ nmax
|z|=1

|P (z)|. (1.1)

The inequality (1.1) was proved by Bernstein in 1912 [6], and it is best possible with equality holding for polynomials
P (z) = czn, where c is an arbitrary complex.

If we restrict ourselves to the class of polynomials having no zeros in |z| < 1, then inequality (1.1) can be sharpened.
In fact, Erdös conjectured and Lax [8] proved that, if P (z) ̸= 0 in |z| < 1, then (1.1) can be replaced by

max
|z|=1

|P ′(z)| ≤ n

2
max
|z|=1

|P (z)|, (1.2)

whereas if P (z) has no zeros in |z| > 1, then

max
|z|=1

|P ′(z)| ≥ n

2
max
|z|=1

|P (z)|. (1.3)

Inequality (1.3) is due to Turán[14].
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As an extension of (1.2) and (1.3), Malik [9] proved that, if P (z) ̸= 0 in |z| < k, k ≥ 1, then

max
|z|=1

|P ′(z)| ≤ n

1 + k
max
|z|=1

|P (z)|, (1.4)

whereas if P (z) has all its zeros in |z| ≤ k, k ≤ 1, then

max
|z|=1

|P ′(z)| ≥ n

1 + k
max
|z|=1

|P (z)|. (1.5)

For a complex number α and for P (z) ∈ Pn, let

DαP (z) := nP (z) + (α− z)P ′(z).

Note that DαP (z) is a polynomial of degree at most n− 1. This is the so-called polar derivative of P (z) with respect
to point α. It generalizes the ordinary derivative in the following sense:

lim
α→∞

{
DαP (z)

α

}
= P ′(z).

Now corresponding to a given nth degree polynomial P (z), we construct a sequence of polar derivatives

Dα1
P (z) = nP (z) + (α1 − z)P ′(z)

...

Dα1
Dα2

. . . Dαt
P (z) = (n− t+ 1)Dα1

Dα2
. . . Dαt−1

P (z)

+ (αt − z)
(
Dα1

Dα2
. . . Dαt−1

P (z)
)′
, t = 2, 3, . . . , n.

The points α1, α2, ..., αt, t = 1, 2, ..., n may or may not be distinct. Like the tth ordinary derivative P (t)(z) of P (z),
the tth polar derivative Dα1 ...Dα2DαtP (z) of P (z) is a polynomial of degree n− t.
Where here and throughout we write

Pt(z) = Dα1
Dα2

...Dαt
P (z), (1.6)

so that
Pt(z) = (n− t+ 1)Pt−1(z) + (αt − z)P ′

t−1(z), t = 1, 2, ..., n,

P0(z) = P (z).

Aziz [1] was among the first to extend some of the above inequalities by replacing the derivative with the polar
derivatives of polynomials. In fact, he extended (1.2) to the polar derivative of a polynomial and proved that if
P (z) ∈ Pn, P (z) ̸= 0 in |z| < 1, then for every complex number α with |α| ≥ 1,

max
|z|=1

|DαP (z)| ≤ n

2
(|α|+ 1)max

|z|=1
|P (z)|. (1.7)

Fucther, Rather, Ahangar and Suhail [13] proved that if P (z) having all its zeros in |z| < k where k ≤ 1, then for
δ ∈ C with |δ| ≤ 1,

max
|z|=1

|DδP (z)| ≤ n

(
|δ|+ k

1 + k

)
max
|z|=1

|P (z)|. (1.8)

As a generalization of (1.7), Aziz and Shah [5] proved that if P (z) have no zeros in the disk |z| < 1, for all real or
complex number αi with |αi| ≥ 1, i = 1, 2, · · · , ..., t, then for |z| ≥ 1, we have

|Pt(z)| ≤
nt

2

{
(|α1α2 · · ·αt||z|n−t + 1)max

|z|=1
|P (z)| − (|α1α2 · · ·αt||z|n−t − 1) min

|z|=1
|P (z)|

}
(1.9)

where Pt(z) is defined as (1.6), and
nt = n(n− 1) · · · (n− t+ 1). (1.10)
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As an Lr analoge of (1.9), Mir and Baba [11] proved that if P (z) ∈ Pn, P (z) having no zeros in |z| < 1, then for
every real or complex number αi, i = 1, 2, · · · , t, t ≤ n− 1, with |αi| ≥ 1, and real or complex β with |β| ≤ 1, and for
r > 0, {∫ 2π

0

∣∣∣∣Pt(e
iθ) + β

mnt(|α1 · · ·αt| − 1)

2

∣∣∣∣r dθ}
1
r

≤ ntBαtCr

{∫ 2π

0

∣∣P (eiθ)
∣∣r dθ} 1

r

. (1.11)

where Pt(z) is defined as (1.6), nt is defined by (1.10), m = min
|z|=1

|P (z)|, and Bαt
= (|α1|+ 1)(|α2|+ 1) · · · (|αt|+ 1),

Cr =

{∫ 2π

0

∣∣1 + eiγ
∣∣r dγ}− 1

r

. (1.12)

If we put r → ∞ in (1.11) and choose the argument of β with |β| = 1 subitably, we get (1.9).

In 2007, Dewan and Mir [7] proved the following result.

Theorem 1.1. If P (z) ∈ Pn, P (z) having all its zeros in |z| ≤ 1, then for every real or complex number αi, i =
1, 2, · · · , t, t ≤ n− 1, with |αi| < 1, then for |z| ≤ 1

|Pt(z)| ≤
nt

2

{
(|α1α2 · · ·αt||z|n−t + 1)max

|z|=1
|P (z)| − (1− |α1α2 · · ·αt||z|n−t) min

|z|=1
|P (z)|

}
, (1.13)

where Pt, nt are defined as (1.6), (1.10) respectively. The result is best possible and equality holds for the polynomial
P (z) = zn+1

2 .

2 Main results

In this paper, we shall prove the following more general result which is an Lr norm generalization of (1.13).

Theorem 2.1. If P (z) ∈ Pn, P (z) having all its zeros in |z| ≤ 1, then for every real or complex number αi, i =
1, 2, · · · , t, t ≤ n− 1, with |αi| < 1, and real or complex β with |β| ≤ 1, and for r > 0,{∫ 2π

0

∣∣∣∣Pt(e
iθ) + β

mnt(1− |α1 · · ·αt|)
2

∣∣∣∣r dθ}
1
r

≤ ntBαtCr

{∫ 2π

0

∣∣P (eiθ)dθ
∣∣r} 1

r

, (2.1)

where here and thoughout

Pt(z) = Dα1
Dα2

...Dαt
P (z),

Bαt
= (|α1|+ 1)(|α2|+ 1) · · · (|αt|+ 1),

nt = n(n− 1) . . . (n− t+ 1).

(2.2)

m = min
|z|=1

|P (z)| and Cr is defined in (1.12).

In the limiting case, when r → ∞, the above inequality is sharp and the equality in (2.1) holds for P (z) = zn+1
2 , where

αi < 1, i = 1, 2, · · · , t are real.

Many interesting results easily follow from Theorem 2.1. Here, we mention a few of these.

Remark 2.1. If we let r → ∞ in (2.1), and choose the argument of |β| with |β| = 1 suitably, we get (1.13).

If we put β = 0 in (2.1), we have the following result.

Corollary 2.2. If P (z) ∈ Pn, P (z) having all zeros in |z| ≤ 1, then for every complex number αi with |αi| < 1, i =
1, 2, · · · , t, and for r > 0, {∫ 2π

0

∣∣Pt(e
iθ)

∣∣r dθ} 1
r

≤ ntBαtCr

{∫ 2π

0

∣∣P (eiθ)dθ
∣∣r} 1

r

. (2.3)

where Pt, nt, Bt, Cr are defined as Theorem 2.1.
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If we put t = 1 in (2.1), we get the following result.

Corollary 2.3. If P (z) ∈ Pn, P (z) having all its zeros in |z| ≤ 1, then for every complex number α with |α| < 1, and
for r > 0, {∫ 2π

0

∣∣∣DαP
(
eiθ

)
+ βmn(1−|α|)

2

∣∣∣r dθ} 1
r

≤ n(|α|+ 1)Cr

{∫ 2π

0

∣∣P (
eiθ

)∣∣r dθ} 1
r

, (2.4)

where m,Cr are defined as Theorem 2.1.

If we let r → ∞ in (2.4) and choose the argument of β with |β| = 1 suitably, we get the following result, which is
a special case of Theorem 1.1.

Corollary 2.4. If P (z) ∈ Pn, P (z) having all its zeros in |z| ≤ 1, then for every real or complex number α, with
|α| < 1, then for |z| ≤ 1

|DαP (z)| ≤ n

2

{
(|α||z|n−1 + 1)max

|z|=1
|P (z)| − (1− |α||z|n−1) min

|z|=1
|P (z)|

}
. (2.5)

The result is best possible and equality holds for the polynomial P (z) = zn+1
2 .

3 Lemmas

For the proof of our Theorem 2.1, we need the following lemmas. The following lemma is due to Aziz [2].

Lemma 3.1. If all the zeros of an nth degree polynomial P (z) lie in a circular region C and if none of the points
α1, α2, · · · , αt lie in the region C, then each of the polar derivatives

Dα1
Dα2

· · ·Dαt
P (z), t = 1, 2, · · · , n− 1,

has all of its zeros in C.

Lemma 3.2. Let P (z) be a polynomial of degree n have all its zeros in |z| ≤ 1, then for all real or complex numbers
αi with |αi| < 1, i = 1, 2, . . . , t, t ≤ n− 1 , and for |z| ≤ 1, we have

|Pt(z)| ≤ |Qt(z)| −mnt(1− |α1α2...αt||z|n−t),

where Q(z) = znP ( 1z ) and m,nt, Pt are defined as Theorem 2.1.

Proof of Lemma 2: Let m = min
|z|=1

|P (z)|, we have |λm| < |P (z)| on |z| = 1 for any λ with |λ| < 1. By Rouche’s

theorem the polynomial F (z) = P (z) + λm has all its zeros in |z| ≤ 1.

Therefore the polynomial G(z) = znF ( 1z ) = Q(z) + λmzn will have all its zeros in |z| ≥ 1. Also |F (z)| = |G(z)|
for |z| = 1. Therefore, for any complex number δ with |δ| > 1, the polynomial F (z) − δG(z) has all its zeros in
|z| > 1. Hence by the repeated application of Laguerre’s Theorem [10], if α1, α2, · · · , αt are complex numbers with
|αi| < 1, i = 1, 2, · · · , t, the polynomial Dα1

Dα2
· · ·Dαt

(F (z)− δG(z)) has all its zeros in |z| ≥ 1. Equivalently all the
zeros of Dα1Dα2 · · ·DαtF (z)− δDα1Dα2 · · ·DαtG(z) lie in |z| ≥ 1. This imples that for |z| ≤ 1,

Dα1Dα2 · · ·DαtF (z) ≤ Dα1Dα2 · · ·DαtG(z).

On substituting F (z) and G(z) in the above inequality, we obtain the following for every real or complex number
αi with |αi| < 1, i = 1, 2, ..., t and for any real or complex number δ with |δ| > 1 and |z| = 1,

|Dα1Dα2 · · ·Dαt(P (z) + δm)| ≤ |Dα1Dα2 · · ·Dαt(Q(z) + δmzn)|.

Equivalently

|Dα1Dα2 · · ·DαtP (z) +mδn(n− 1) · · · (n− t+ 1)|
≤|Dα1

Dα2
· · ·Dαt

Q(z) +mδn(n− 1) · · · (n− t+ 1)α1α2 · · ·αtz
n−t|.
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This gives

|Dα1
Dα2

· · ·Dαt
P (z) +mδn(n− 1) · · · (n− t+ 1)|

≤|Dα1Dα2 · · ·DαtQ(z)|+m|δ|n(n− 1) · · · (n− t+ 1)|α1α2 · · ·αt||z|n−t.

Chooseing argument of δ suitably on left hand side above and letting |δ| → 1, we get, for |z| ≤ 1

|Dα1
Dα2

· · ·Dαt
P (z)| ≤ |Dα1

Dα2
· · ·Dαt

Q(z)|
−mn(n− 1) · · · (n− t+ 1)(1− |α1α2 · · ·αt||z|n−t).

This completes the proof of the Lemma.

Lemma 3.3. If P (z) ∈ Pn, then for every complex α and r > 0,{∫ 2π

0

|DαP (eiθ)|rdθ
} 1

r

≤ n(|α|+ 1)

{∫ 2π

0

|P (eiθ)|rdθ
} 1

r

.

The above lemma is due to Rather [12].

Lemma 3.4. If P (z) ∈ Pn and Q(z) = znP ( 1z ), then for every r > 0 and γ real,∫ 2π

0

∫ 2π

0

∣∣P ′(eiθ) + eiγQ′(eiθ)
∣∣r dθdγ ≤ 2πnr

∫ 2π

0

|P (eiθ)|rdθ.

The above lemma is due to Aziz and Rather [4]. The following lemma is due to Aziz and Rather [3].

Lemma 3.5. If A,B and C are non-negative real numbers such that B + C ≤ A, then for every real number γ,

|(A− C)eiγ + (B + C)| ≤ |Aeiγ +B|.

4 Proof of the Theorem

Proof of the Theorem 2.1: Since P (z) ∈ Pn and P (z) ̸= 0 in |z| < 1, then the polynomial Q(z) = znP ( 1z ) ∈ Pn,
and it can be easily verified that, for 0 ≤ θ < 2π,

nP
(
eiθ

)
− eiθP ′ (eiθ) = ei(n−1)θQ′ (eiθ),

and
nQ

(
eiθ

)
− eiθQ′ (eiθ) = ei(n−1)θP ′ (eiθ).

Hence

nP
(
eiθ

)
+ eiγnQ

(
eiθ

)
= eiθP ′ (eiθ)+ ei(n−1)θQ′ (eiθ) + eiγ

(
eiθQ′ (eiθ)+ ei(n−1)θP ′ (eiθ)

)
= eiθ

(
P ′ (eiθ)+ eiγQ′ (eiθ))+ ei(n−1)θ

(
Q′ (eiθ) + eiγP ′ (eiθ)

)
,

which gives

n
∣∣P (

eiθ
)
+ eiγQ

(
eiθ

)∣∣
≤

∣∣P ′ (eiθ)+ eiγQ′ (eiθ)∣∣+ ∣∣∣Q′ (eiθ) + eiγP ′ (eiθ)
∣∣∣

= 2
∣∣P ′ (eiθ)+ eiγQ′ (eiθ)∣∣ .

(4.1)
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Also, we have ∣∣DαP
(
eiθ

)
+ eiγDαQ

(
eiθ

)∣∣
=| nP

(
eiθ

)
+
(
α− eiθ

)
P ′ (eiθ)+ eiγ

(
nQ

(
eiθ

)
+

(
α− eiθ

)
Q′ (eiθ)) |

=|
(
nP

(
eiθ

)
− eiθP ′ (eiθ))+ eiγ

(
nQ

(
eiθ

)
− eiθQ′ (eiθ))+ α

(
P ′ (eiθ)+ eiγQ′ (eiθ)) |

=|
(
Q′(eiθ) + eiγP ′(eiθ)

)
ei(n−1)θ + α

(
P ′(eiθ) + eiγQ′ (eiθ)) |

≤
∣∣∣P ′ (eiθ) + eiγQ′ (eiθ)

∣∣∣+ |α|
∣∣P ′ (eiθ)+ eiγQ′ (eiθ)∣∣

= (|α|+ 1)
∣∣P ′ (eiθ)+ eiγQ′ (eiθ)∣∣ .

(4.2)

The above inequality (4.2), with the help of Lemma 3.4, gives, for each r > 0,∫ 2π

0

∫ 2π

0

∣∣DαP
(
eiθ

)
+ eiγDαQ

(
eiθ

)∣∣r dθdγ
≤ (|α|+ 1)r

∫ 2π

0

∫ 2π

0

∣∣P ′ (eiθ)+ eiγQ′ (eiθ)∣∣r dθdγ
≤ 2πnr(|α|+ 1)r

∫ 2π

0

∣∣P (
eiθ

)∣∣r dθ.
(4.3)

Further, let T (z) = P (z) + eiγQ(z) is a polynomial of degree n so that Tt(z) = Pt(z) + eiγQt(z) is a polynomial of
degree n− t, t ≤ n− 1, we have by the respected application of Lemma 3.3, for r > 0,∫ 2π

0

∣∣Dα1
Dα2

. . . Dαt
P
(
eiθ

)
+ eiγDα1

Dα2
. . . Dαt

Q
(
eiθ

)∣∣r dθ
≤ (n− t+ 1)r (|αt|+ 1)

r ∫ 2π

0

∣∣Dα1Dα2 . . . Dαt−1P
(
eiθ

)
+ eiγDα1Dα2 . . . Dαt−1Q

(
eiθ

)∣∣r dθ
...

≤ (n− t+ 1)r . . . (n− 1)r (|αt|+ 1)
r
. . . (|α2|+ 1)

r ×
∫ 2π

0

∣∣P ′ (eiθ)+ eiγQ′ (eiθ)∣∣r dθ.
(4.4)

Integraing both sides of (4.4) with respect to γ from 0 to 2π, we get with the help of (4.3) that for each r > 0,

∫ 2π

0

∫ 2π

0

∣∣Pt

(
eiθ

)
+ eiγQt

(
eiθ

)∣∣r dθdγ ≤ 2πnr
tB

r
αt

∫ 2π

0

∣∣P (eiθ)
∣∣r dθ, (4.5)

where nt, Bαt are defined as (2.2).

Now by Lemma 3.2, for each θ, 0 ≤ θ < 2π and αi, 1 ≤ i ≤ t, t ≤ n− 1 with |αi| < 1 , we have∣∣Pt(e
iθ)

∣∣ ≤ |Qt(e
iθ)| −mnt(1− |α1α2...αt|),

This imples

|Pt(e
iθ)|+ mnt

2
(1− |α1α2...αt|) ≤ |Qt(e

iθ)| − mnt

2
(1− |α1α2...αt|), (4.6)

Take
A = |Pt(e

iθ)|, B = |Qt(e
iθ)|, C =

mnt

2
(1− |α1α2...αt|).

in Lemma 3.5, we get
B + C ≤ A− C ≤ A.

Hence for every real γ, with the help of Lemme 3.5, that∣∣∣{|Qt(e
iθ)| − mnt

2
(1− |α1α2...αt|)

}
eiγ +

{
|Pt(e

iθ)|+ mnt

2
(1− |α1α2...αt|)

}∣∣∣ ≤ ∣∣|Qt(e
iθ)|eiγ + |Pt(e

iθ)|
∣∣ . (4.7)

This implies for each r > 0, ∫ 2π

0

|F (θ) + eiγG(θ)|rdθ ≤
∫ 2π

o

∣∣|Qt(e
iθ)|eiγ + |Pt(e

iθ)|
∣∣r dθ, (4.8)

where
F (θ) = |Pt(e

iθ)|+ mnt

2
(1− |α1α2...αt|); G(θ) = |Qt(e

iθ)| − mnt

2
(1− |α1α2...αt|).
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Integrating both sides of (4.8) with respect to γ from 0 to 2π, we get with the help of (4.5), that for each r > 0,∫ 2π

0

∫ 2π

0

|F (θ) + eiγG(θ)|rdθdγ

≤
∫ 2π

0

∫ 2π

0

∣∣|Qt(e
iθ)|eiγ + |Pt(e

iθ)|
∣∣r dθdγ

≤2πnr
tB

r
αt

∫ 2π

0

|P (eiθ)|rdθ.

(4.9)

Now for any real γ and s ≥ 1, it can be easily verified that |s+ eiγ | ≥ |1 + eiγ |. Which implies for each r > 0,∫ 2π

0

|s+ eiγ |rdγ ≥
∫ 2π

0

|1 + eiγ |rdγ.

If F (θ) ̸= 0, we take s =
∣∣∣F (θ)
G(θ)

∣∣∣, then by (4.6), s ≥ 1 and we get

∫ 2π

0

∣∣F (θ) + eiγG(θ)
∣∣r dγ = |F (θ)|r

∫ 2π

0

∣∣s+ eiγ
∣∣r dγ ≥ |F (θ)|r

∫ 2π

0

∣∣1 + eiγ
∣∣r dγ. (4.10)

This inequality is true if F (θ) = 0.
Integrating both sides of (4.10) with respect to θ from 0 to 2π, we get, for every r > 0,∫ 2π

0

∫ 2π

0

|F (θ) + eiγG(θ)|rdθdγ ≥
∫ 2π

0

∣∣∣|Pt(e
iθ)|+ mnt

2
(1− |α1α2 · · ·αt|)

∣∣∣ ∫ 2π

0

∣∣1 + eiγ
∣∣r dγ. (4.11)

Now using the fact that for every complex number β with |β| ≤ 1,∣∣∣Pt(e
iθ) + β

mnt

2
(1− |α1α2 · · ·αt|)

∣∣∣ ≤ ∣∣∣|Pt(e
iθ)|+ mnt

2
(1− |α1α2 · · ·αt|)

∣∣∣ , (4.12)

which gives on using (4.9), (4.11), and (4.12), we get (2.1). This completes the proof of Theorem 2.1.
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