
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,908 |
تعداد دریافت فایل اصل مقاله | 7,656,366 |
C*-algebra valued partial metric space and some fixed point and coincidence point results | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 124، دوره 13، شماره 2، مهر 2022، صفحه 1535-1551 اصل مقاله (408.57 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.23731.2590 | ||
نویسندگان | ||
Sushanta Kumar Mohanta* ؛ Priyanka Biswas | ||
Department of Mathematics, West Bengal State University, Barasat, 24 Parganas (North), West Bengal, Kolkata 700126, India | ||
تاریخ دریافت: 31 خرداد 1400، تاریخ بازنگری: 21 بهمن 1400، تاریخ پذیرش: 24 بهمن 1400 | ||
چکیده | ||
In this paper, we introduce the concept of C*-algebra valued partial metric as a generalization of partial metric and discuss the existence and uniqueness of fixed points for a self mapping defined on a C*-algebra valued partial metric space. We use these results to obtain some coincidence point and common fixed point results in this setting. Some examples are provided to justify our results. | ||
کلیدواژهها | ||
Partial metric؛ C*-algebra valued partial metric؛ C*-algebra valued contraction؛ fixed point | ||
مراجع | ||
[1] M. Abbas and G. Jungck, Common fixed point results for noncommuting mappings without continuity in cone metric spaces, J. Math. Anal. Appl. 341 (2008), 416–420. [2] I. Altun and O. Acar, Fixed point theorems for weak contractions in the sense of berinde on partial metric spaces, Topol. Appl. 159 (2012), 2642–2648. [3] I. Altun, F. Sola, and H. Simsek, Generalized contractions on partial metric spaces, Topol. Appl. 157 (2010), 2778–2785. [4] H. Aydi, M. Abbas, and C. Vetro, Partial Hausdorff metric and Nadler’s fixed point theorem on partial metric spaces, Topo. Appl. 159 (2012), 3234–3242. [5] M. Bukatin, R. Kopperman, S. Matthews, and H. Pajoohesh, Partial metric spaces, Am. Math. Mon. 116 (2009), 708–718. [6] L. Ciri´c, B. Samet, H. Aydi, and C. Vetro, Common fixed points of generalized contractions on partial metric spaces and an application, Appl. Math. Comput. 218 (2011), 2398–2406. [7] R. Douglas, Banach algebra techniques in operator theory, Springer, Berlin, 1998. [8] R. H. Haghi, Sh. Rezapour, and N. Shahzad, Some fixed point generalizations are not real generalizations, Nonlinear Analysis: Theory, Methods Appl. 74 (2011), 1799–1803.[9] R. Heckmann, Approximation of metric spaces by partial metric spaces, Appl. Categ. Structures 7 (1999), 71–83. [10] G. Jungck, Common fixed points for noncontinuous nonself maps on non-metric spaces, Far East J. Math. Sci. 4 (1996), 199–215. [11] E. Karapinar and I. M. Erhan, Fixed point theorems for operators on partial metric spaces, Appl. Math. Lett. 24 (2011), 1894–1899. [12] Z. Ma and L. Jiang, C ∗ -algebra-valued b-metric spaces and related fixed point theorems, Fixed Point Theory Appl. 2015 (2015), 2015:222. [13] Z. Ma, L. Jiang, and H. Sun, C ∗ -algebra-valued metric spaces and related fixed point theorems, Fixed Point Theory Appl. 2014 (2014), 2014:206. [14] S. Matthews, Partial metric topology, Ann. N. Y. Acad. Sci. (1994), no. 728, 183–197. [15] S. K. Mohanta, Common fixed points for mappings in G-cone metric spaces, J. Nonlinear Anal. Appl. 2012 (2012), doi:10.5899/ 2012/ jnaa-00120. [16] , Common fixed point results in C ∗ -algebra valued b-metric spaces via digraphs, CUBO A Mathematical Journal 20 (2018), 41–64. [17] , Fixed points in C ∗ -algebra valued b-metric spaces endowed with a graph, Math. Slovaca 68 (2018), 639–654. [18] G. Murphy, C ∗ -algebra and operator theory, Academic Press, London, 1990. [19] H. K. Nashine and Z. Kadelburg, Cyclic contractions and fixed point results via control functions on partial metric spaces, International J. Anal. (2013), Article ID 726387. [20] S. Romaguera, A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory Appl. (2010), Article ID 493298. [21] M. P. Schellekens, The correspondence between partial metrics and semivaluations, Theoret. Comput. Sci. 315 (2004), 135–149. | ||
آمار تعداد مشاهده مقاله: 44,065 تعداد دریافت فایل اصل مقاله: 428 |