
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,920 |
تعداد دریافت فایل اصل مقاله | 7,656,375 |
Interior inverse problems for discontinuous differential pencils with spectral boundary conditions | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 131، دوره 13، شماره 2، مهر 2022، صفحه 1643-1648 اصل مقاله (356.23 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2020.20812.2202 | ||
نویسندگان | ||
Abdolali Neamaty* 1؛ Yasser Khalili2 | ||
1Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran | ||
2Department of Basic Sciences, Sari Agricultural Sciences and Natural Resources University, 578 Sari, Iran | ||
تاریخ دریافت: 15 تیر 1399، تاریخ بازنگری: 04 مهر 1399، تاریخ پذیرش: 22 آبان 1399 | ||
چکیده | ||
In this work, we investigate the inverse problem for differential pencils with spectral boundary conditions having jump conditions on (0; 1): Taking the Weyl function technique, we prove a uniqueness theorem from the interior spectral data. | ||
کلیدواژهها | ||
Interior spectral data؛ Differential pencil؛ Boundary condition dependent on the spectrum؛ Discontinuity؛ Weyl function | ||
مراجع | ||
ces [1] S.A. Buterin, On half inverse problem for differential pencils with the spectral parameter in boundary conditions, Tamkang J. Math. 42 (2011), no. 3, 355–364. [2] S.A. Buterin and V.A. Yurko, Inverse spectral problem for pencils of differential operators on a finite interval, Vestn. Bashkir. Univ. 4 (2006), [3] A. Chernozhukovaa and G. Freiling, A uniqueness theorem for the boundary value problems with non-linear dependence on the spectral parameter in the boundary conditions, Inverse Prob. Sci. Engin. 17 (2009), no. 6, 777–785. [4] J.B. Conway, Functions of one complex variable, Vol. I, Springer, New York, 1995. [5] G. Freiling and V.A. Yurko, Inverse problems for Sturm-Liouville equations with boundary conditions polynomially dependent on the spectral parameter, Inverse Probl. 26 (2010), no. 6, 055003. [6] G. Freiling and V.A. Yurko, Inverse Sturm-Liouville Problems and their Applications, NOVA Scince Publ., New York, 2001. [7] G. Freiling and V. Yurko, Recovering nonselfadjoint differential pencils with nonseparated boundary conditions, Appl. Anal. 94 (2015), no. 8, 1649–1661. [8] Y. Khalili, A. Dabbaghian and M. Khaleghi Moghadam, Uniqueness of inverse problems for differential pencils with the spectral discontinuity condition, Sci. Bull.-Ser. A-Appl. Math. Phys. 80 (2018), 207–218. [9] Y. Khalili, M. Yadollahzadeh and M.K. Moghadam, Half inverse problems for the impulsive operator with eigenvalue-dependent boundary conditions, Electron. J. Differ. Equ. 2017 (2017), no. 190, 1–5. [10] O.N. Litvinenko and V.I. Soshnikov, The theory of heterogeneous lines and their applications in radio engineering, Radio, Moscow, 1964. [11] V.P. Meschanov and A.L. Feldstein, Automatic design of directional couplers, Sviaz, Moscow, 1980. [12] K. Mochizuki and I. Trooshin, Inverse problem for interior spectral data of Sturm-Liouville operator, J. Inverse Ill-Posed Prob. 9 (2001), 425–433. [13] A. Neamaty and Y. Khalili, Determination of a differential operator with discontinuity from interior spectral data, Inverse Problems in Science and Engineering 22 (2013), no. 6, 1002–1008. [14] A.S. Ozkan and B. Keskin, Spectral problems for Sturm-Liouville operator with boundary and jump conditions linearly dependent on the eigenparameter, Inverse Prob. Sci. Engin. 20 (2012), no. 6, 799–808. [15] C.T. Shieh and V.A. Yurko, Inverse nodal and inverse spectral problems for discontinuous boundary value problems, J. Math. Anal. Appl. 347 (2008), no. 1, 266–272. [16] Y.P. Wang, Inverse problems for Sturm-Liouville operators with interior discontinuities and boundary conditions dependent on the spectral parameter, Math. Meth. Appl. Sci. 36 (2012), no. 7, 857–868. [17] Y.P. Wang, The inverse problem for differential pencils with eigenparameter dependent boundary conditions from interior spectral data, Appl. Math. Lett. 25 (2012), 1061–1067. [18] Y.P. Wang, Uniqueness theorems for Sturm-Liouville operators with boundary conditions polynomially dependent on the eigenparameter from spectral data, Results Math. 63 (2013), 1131–1144. [19] Y.P. Wang and C.T. Shieh, Inverse problems for Sturm-Liouville equations with boundary conditions linearly dependent on the spectral parameter from partial information, Results Math. 65 (2014), 105–119. [20] C.F. Yang and X.J. Yu, Determination of differential pencils with spectral parameter dependent boundary conditions from interior spectral data, Math. Meth. Appl. Sci. 37 (2014), no. 6, 860–869. [21] V.A. Yurko, Inverse problems for non-selfadjoint quasi-periodic differential pencils, Anal. Math. Phys. 2 (2012), no. 3, 215–230. [22] V.A. Yurko, The inverse spectral problem for differential operators with nonseparated boundary conditions, J. Math. Anal. Appl. 250 (2000), no. 3, 266–289. [23] V.F. Zhdanovich, Formulae for the zeros of Dirichlet polynomials and quasi-polynomials, Dokl. Acad. Nauk SSSR 135 (1960), no. 8, 1046–1049. | ||
آمار تعداد مشاهده مقاله: 43,888 تعداد دریافت فایل اصل مقاله: 318 |