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Abstract

In this paper, the regularity of bilinear Fourier integral operators on L? x L? are determined in the framework of
Besov spaces. Our result improves the L? x L? — L' boundedness of those operators with symbols in the bilinear
Hormander classes.
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1 Introduction

The results of this paper extend previous findings on bilinear pseudodifferential operators, which were introduced
and thoroughly researched by Coifman and Meyer [I1], 12, [13]. They have the following form

1

Op, (1,02)(@) = (o [ e ate, &, )i (€0l (1)

The Calderén-Zygmund hypothesis has had an impact on the research of multi-linear operators. Indeed, many
of Coifman-Meyer’s pioneering discoveries [IT], T2, [I3] are the construction of pseudodifferential operators in terms of
Calderén-Zygmund type singular integrals. Their multi-linear technique has had a huge impact on operator theory
and partial differential equations. For example in [I3], the boundedness of a class of translation invariant bilinear
operators on Lebesgue spaces has been proved.

Moreover, Grafakos and Torres [I5] treated a bilinear Calderén-Zygmund theory that allowed those conclusions
to be extended to non-translation invariant bilinear pseudodifferential operators whose symbols depend on the space
variable.

A brief examination and discussion of applications to partial differential equations can be found in [5], and a
thorough analysis of bilinear pseudo-differential operators with symbols in bilinear Hérmander classes can be found
in [9].

For a more recent contribution on Triebel-Lizorkin and local Hardy spaces, see [19].
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Another set of results concerns bilinear (and multi-linear) operators with non-smooth symbols. [6] was the first to
notice their continuous features on modulation spaces.

These operators, unlike conventional bilinear pseudodifferential operators studied in, for example, [13], are handled
using time—frequency analysis techniques (see also [2], 3], [7, 8] @] 14} 20, 21]).

It’s merely a matter of adding an appropriate oscillation component to the bilinear pseudodifferential operator
defined in the form (L.1)) to get a bilinear Fourier integral operator.

In this paper, we often use the notation ¢ for the pair (£, &) € R?™.

We're interested in a particular class of bilinear Fourier integral operators having the following form

1
(27)2n

where a € BS{""™* and ¢ € ® (see the next section for definitions).

Toan (@) = g [ e ala, i () in(E)derdse

The aim of this work is to extend results obtained in [I7] for a bilinear Fourier integral operators. We will treat
the global boundedness of I, on L?(R™) x L*(R™).

Let us now describe the paper’s structure. The crucial notations and preliminaries that will be used throughout
the work are introduced in the second section.

Following that, we’ll go over some basic tools and necessary lemmas which will serve as the starting point for our
research. And the last section is devoted to prove our main goal.

We will conclude this section by stating why bilinear Fourier integral operators are important to examine. We
discuss the problem of confining solutions of certain hyperbolic partial differential equations along half-space subspaces,
which is inspired by some restriction difficulties. We present a typical problem that may arise in the case of the wave
equation on R?"x]0, oo.

Consider the wave equation on R?" x]0, oo[ with coordinates (x,t), where z = (x1;x2) € R*" and t > 0

atzf(xat) = Aa:f(x’t)
f(x,0) v1(z1)va(T2),
O f(x,0) uy (1) uz(22).

For each fixed t, the solution f(x,t) can be written as a sum of Fourier integral operators with phase functions
b+ (2,€) = € £t \/]&1]? + |&2]?, where € = (&1,&2) € R?™ is the dual variable of (27, x2).

When we consider the restriction of the solution f(z,t) along the diagonal x1 = x5, we obtain two bilinear Fourier
integral operators with phases ¢ and ¢_ acting on the pairs of functions (u1,us2) and (vy,v9). When the initial data
uy,uz,v1,v7 lie in L2(R™), it is natural to study the boundedness of these bilinear Fourier integral operators.

2 Preliminaries
2.1 Notations and definitions

In this sequel we define the class of amplitudes and phase functions that appear in the definition of operators
treated here. But at first we recall some notations that will be used.

We assume n € N throughout the whole paper unless otherwise noted. In particular n # 0. For all =, € R™ we
denote

eC:=) wi¢y and (¢) = (1+[¢H)Y2
=0
We set for all R >0 and L > n

. [u(y)|
Sn(u)(x) = R /an

and simply write S(u) for R = 1.
In addition, for all w € C*°(R") and 7 € R™ we define
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Partial derivatives with respect to a variable x € R™ scaled with the factor —i are denoted by
D2 = (=)l = (—q)lelogr .. 9o,
where a = (a1,...,a,) € N is a multi-index and |o| = Z?zl a; is the length of a. let us denote by B(z,r) the

euclidean ball centered at x with radius r > 0.

The usual inner product of u,v € L?(R") is denoted by (u,v), and the notation |u(x)| < |v(z)| means that
|u(z)| < Clv(z)| for some unspecified constant C' > 0.

Let S(R™) be the space of rapidly decreasing smooth functions (Schwarz space), we define the Fourier transform
@ and its inverse F~1(u) of u € S(R") by

(¢) = Flu)(¢) = / e u(e)dr and f*l(u)(x)zﬁ / eru(a)dc

Definition 2.1 (The amplitude). Let mi,ms € R and 0 < §, p < 1. We denote Bng‘pl’m2 the class of all functions
a(x,&1,&2) € C°°(R3") such that for all a, 81, B2 € N™ there exists Cy, 5, 3, > 0 we have

00808 a2, 61,6)| < Capy fEa) ™ 101910 gyl =o1
Remark 2.2. BSngl’m2 is called the bilinear Hormander class.

Definition 2.3 (The strong non-degeneracy condition). A real value function ¢(z,£1, &) € C? (R™ x R™\{0} x R™\{0})
satisfies the strong non-degeneracy condition, if there exist ¢1,cy > 0 such that

82¢(xa §1a 52)

ede, | 2@ for all (z,&1,&) € R" x R"\{0} x R"\{0},

‘det

and
82¢(ﬂ3, §1a 52)

(91'852 Z C2 fOT all (£a§1>€2) € R™ x Rn\{o} X Rn\{o}

‘det

Definition 2.4 (The phase function). We denote by ® the space of all real valued function ¢(x, &y, &) € C°°(R™ x
R™\{0} x R™\{0}), such that ¢(x,&;,&) is positively homogenous of degree 1 jointly in the variables (&1, &2), and
satisfies the strong non-degeneracy condition.

Example 2.5. For all k € R the phase function ¢(x,&1,&2) = kx(&1 + &) is belonging to @

2.2 Basic tools

In this section we will use a dyadic partition of unity (¢;),s, C Cg°(R™) such that

720

Y o) =1 VEeR?,

j=0

and
supp ¢; C{€ e R : 2771 < |¢| < 27H1} v > 1.

The dyadic partition of unity can be constructed such that supp ¥y C m, P;(€) = 1#1(217]‘5) for all j > 1
holds
02,0 < C2 1 gl Vo €N, 5> 0.

Moreover, we note that

f@) = (D) f(x) VfeSR,

Jj=20

where

bi(Da)f = F [05() F(€)].
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Definition 2.6. Let s € R,1 < p,q < co. Then the Besov space By ,(R") is defined by
B3, (R") = {u e SR : ully, < oo
where
ifg<oo |ullp,, = {2 g;(Da)uli, |
j=0

and '
ifg=o00 |lullgs =sup2”|¢;(Dy)ul ., -
pree j=0

Here the exponent s is the order of B, , p is called integration exponent, and g is called summation exponent.

»q?

Remark 2.7. 1. It is well known that the definition of Besov spaces By , is independent of the choice of (d)j)j>0 .
2. For all s > 0. Then BZ are called Holder-Zygmund spaces. -

00,00

3. B3, is identical with Sobolev spaces H*

Lemma 2.8. Let se R,1 > p,q1,q2 > o0, and 7 > 0. Then

Zf @ < 92 then B;Mh - BZSMIQ’

and

S+T s
B, <= B,1.

Proof . See [I] O

We will investigate the decomposition of a in the rest of this section, assuming mi,ms € R and a € Bng 0. Let
(1j)j>0 be a dyadic partition of unity and ¢ € S(R™) such that

suppyp C [—1,1]",

and

d pl€—a)=1 VEeR™

agZmn

We decompose as follows using these functions

a($7£1’§2) = Z Zaj,k($,§1,§2) = Z Z Zaj,avk($>£17£2) (2'1)

keN2 jeN keN? a€Zn jeN
where k = (k1, k2), @ = (a1, a2) and
a’j,k(x? glv 52) = [w] (Dx)a’} (33, 517 gQ)wkl (gl)wkz (52)a

and
ja,k(®,61,82) == a;k(x,&1,82) 061 — a1)p(&e — o).

In order to prove our main result, we must use the following lemmas.

Lemma 2.9. Let 2 > r > oo, and let A be a finite subset of Z™. For each N > 0, we have

I IED D IED DD DI N /PN ERED]

a1 EN ax€Z™ as €N ay €EZ™ HEAN a1 taz=pu

S 2himthemeiN (card(A)'? un | 2 fuz | 2 ol o

for all j € N and k = (k1, k2) € N2
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Proof . Let ¢ € C°(R™) such that

suppp C [-2,2]" and @ |_1n=1.
For all oy, a0, 0 € Z™ and j > 0, we set

. ~(D—pn
Uia, = P(D — ai)ui, vju=o <2g+2> v.

Then, we have @y = ¢ that

va“j,a,k (u17 u2) = I¢7aj,a,k (u17041 s u2,(¥2)'
Hence, it follows from ({2.2)) that

<I¢vaj.a,k (u17 u2)7 U> = <I¢7aj,oc,k (ula UQ)’ vj7041+0¢2>
= <I¢7aj,a,k (u1:a1 ) u27052)> Uj7a1+042>'

By (2.3), [I7, Lemma 3.2] with N replaced by o = N 4+ n/r 4+ n/2 and Schwarz’s inequality, we have

Z Z |<I¢7aj,a,k(u1’u2)’v>‘: Z Z |<I¢7aj,a,k(u1,0¢17u27042)aUj7a1+042>|

a1 €N as €™ a1 €N as €L

52k1m1+k2m2—jg Z Z / S(uLal>($>S(u2,a2)(x)|vj’a1+a2(‘T)|d‘r
a1 EAN as€Z™ R™
< gkimitkama—je

1/2 1/2
x Y /R S(u1,a,)(2) ( > (S(uz,az)(x))2> (Z lvj,a1+a2(x)|2> dx

aj EA Qo EL™ Qo EZL™
k k —J 1/2
S ohmathama=ie(cqrd(A))Y/
1/2

1/2 1/2
></R< > (S(U1,a1)(w))2> <Z (S(uQ,ag)(w)f) Do loju@)P | de

"\aezn Q€L uEZn

It follows from [I7, Lemma 3.1] that

1/2 1/2
( > (S(U1,a1)(r))2> < < > S(IUl,a12)(x)>

a1 EZ™

and
1/2

Do lou@)P ) 20 (S (o) (@)

uEZL™
] dy 1/q 1/r
Jn s ,
2 </]R (14 27|z — y|)q> </ lv(y)|"dy

< an(1/2+1/r)||v‘

1/2

|LT7

where we use Holder’s inequality with 1/r + 1/¢ = 1/2 in the second inequality.
As a result of schwarz’s and Young’s inequalities, we get

5 5 W) o)l £ 297 cara) ([ (80 P)) " (8ualy ) o ) ol

a1 EA az€Z"

1/2 1/2

< 2hmtkememiNeard(A)| (S(lu[*)(2))
< 2k1m1+k2mgij

z2 ]l (S(luzl*) ()

card(A)||ur |2 [uzllp2[lv]l -

22 lv]l -

1569
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We may also estimate the total >, -1 >, czn in the same way.
Next, we consider the sum ZHE/\ Za1+0¢2:u' By (2.3), [I7, Lemma 3.2] and Schwarz’s inequality,

Z Z |(g,0;,0.k (U1, u2),0)| = Z Z [(g,05,0 (U101, U2,02)5 Vja1,0)|

BEN a1 tas=p REAN a1 t+az=p
b0 7 S [ (u00) @) o) @)l o)
HEN ay EZ™
1/2 1/2
g ity (Z 52(U1,a1)($)> (Z S2<u2,m><x>> [07,0(2)\de
weA Y RY \apezn ez
1/2 1/2 1/2
< 2kmathama=iecqyd(A / ( Z S? (U1 0, )( )) ( Z 52(1@’0‘2)(%)) Z [vj ()| dx.
a1 EL™ g €Z™ HEL™

The rest of the proof is the same as before. The proof has been established. [

We’ll end this section by quoting Schur’s lemma.

Lemma 2.10 (Schur’s lemma). Let (Uy,;), ,~, be a sequence of positive numbers satisfying

supZUkl < oo and supZUM < 0,
k20735 120 155

then

ZZUk,leVVZ ,SZVkQZWle

k>0 1>0 k>0 >0

for all positive sequences (Vi);~q and (W),

3 The boundedness of I, on L? x L?

We have the following result concerning the boundedness on L*(R™) x L?*(R™) of the bilinear Fourier integral
operator.

Theorem 3.1. Let Iy, be the bilinear Fourier integral operator defined by

Toalt1,02)(0) = oz [ (e, s (6)il0) s o, (3.1)

(27’()2”

where & = (£1,&) € R*™, ¢ € ®(R?") and a € BSy;"™.

For all my,my <0, my +mg = —% and ¢ € [1,2], then I4, can be extended as a bounded bilinear operator from
L?(R") x L?(R™) to Bgﬁl(R”).

Proof . From (2.1)), we can write

(Ipa(ur,ug)v) = >3 > (I, ., (u1,uz),v)

keN? j>0 acz?”

= +> Y Toapan(ua,u),v)

ki<ks ki>ks/) j>0«acZ2n

We only consider the first sum in the last line due to symmetry, because the argument below works for the second.

Let (¥x)k>0 be a dyadic partition of unity and (Q;k)kzo C S(R™), such that
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supp o C B(Ogr, 4),
supp ¢y, C {¢ € R™: 282 < [(| <2872} WEk > 1,
Uklsupp v =1 Yk > 0. since for all i € {1,2}

VsV = Vs,
and it holds that
<I¢)aj,cx,k (ula UQ)’ U> = <I¢,aj,a,k (Ul,kl ) U2,k2), U> s
with for all ¢ € {1,2}

Wi g, (2) = Vi, (Dy)ui(z) Vo € R™

We also use the decomposition

v(z) = Zvl(x) Vo e R",

1>0

where v;(z) 1= 1 (Dy)v(x) = F b (¢)9(¢)]. Then, we can write

Ipaur,uz),v) = D" 3N (Tpay o (Wak, Uz ky), 01) -

ky<ks j>0 acZz2n 1>0

We also split the sum in the following manner.

Z Z Z Z <I¢vaj,a,k (ul,k1vu2,k2)vvl> =A; + Ay,

k1<k2 720 a€Z2™ 1>0

A = Z Z Z Z Z<I¢,ajyark(ul,k17u2,k2)avl>a

ko—3<j k1<ko j>0 a€Z2™ >0

Ay = Z Z Z Z Z<I¢,aj,a,k(u1,k17u27k2)’vl>'

ko —3>j k1<k2 j>0 a€Z?>™ 1>0

where

and

Now we will estimate A;. We have for all [ > 1
supp v; C {( eR": 271 < I<| < 2l+1},
and for all j > ky — 3, ks > k1 we have
supp F [Ip.a; 0 (Wi ks u2,k,)] C B(Opn,29%6),

it follows that <I¢,aj,a,k (U1 k15 U2 ks ), vl> =0 if [ > j + 7. Furthermore, we see that if sSupp xa,(¢) N supp Yx, = <,
then a; o1 = 0, and consequently
(L, (W1 k15 U2,k ), 01) = 0.

So, from these observation, A; can be written as
Al = Z Z Z Z Z <I¢vaj‘a,k (u1,k17u2,k2)1vl> .

1<j+7 j>ko—3 ky<ks a1 €Z™ an€As

with
Ay :={a € Z" : supp Xa, (@) Nsupp Vi, # I}
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Note that the number of elements of Ay satisfies card (Ay) < 2¥2". Using lemma [2.9| with » = p and N > 0, we have

A <

1<j+T7j>ko—3 k1<ka a1 EZ™ as €A

<

~Y
1<jt7 j>ko—3 k1 <ks

S DD DED D aal [IFA 21
1<j+T j>ka—3 ky <kz

< Z 22_jN||U1,k1||L2(Rn)
j>ka—3 k1<ka

<

~J
>ko—3 k1 <ks

S D 27VGE DG+ | D k3@
3>0 k1>0

S llwallz@ylluzllize@n llvlisg @)

which implies the intended estimate.

For estimating As, we divide it as follows

where

'U;Q’k2 ||L2(R1L)

|U2,kz ||L2(R")

Nl

Yoo > > D s urmuze) v

SN N okmatkemamiN{eard (Ag))2 [Jug gy |2 u2,ka 22y 0| oy

|Ul ||Lp(Rn)

> vl o

I<j+7

Z Z 2- JN (g + 7)|lua, k1||L2(]R")Hu2 k2||L2(R" (SUP”UZHLP(R")

Z ||U2,k2||i2(w)

ka>0

=0Q1+ Q2

Nl

Ivllsg .

Q1= Z Z Z Z (Tpa; p (UL ks U2 ks )5 VL) 5

ko—3<ki<ks jSk272 a€Z2n >0

and

Z Z Z Z<I¢,aj,a,k(u1,k1,U2,k2),vz>-

k1<ko—3j<ks—2 aEZ2n >0

Firs, we consider the estimate for Q1. For all k1 < ko, j < ko — 2 we have

supp (‘F[I¢7aj,a,k(ulakl7u27k2)]) C B(OR"52k2+3)7

consequently, for all [ > ko + 3 we have

<I¢,aj,a,k(u1,k17uz,kz),vl> =0.

In addition, by the fact supp (0;) C supp (1), we see that if (oq + ag + [-2712 2j+2]”) N supp (YP) =

<I¢7aj,oc‘k (ul,lﬁ ) u27k2)’ Ul> = 0.

We can write @1 as a result of combining these observations by

Q= > > > D >

ko— 3§k1§k2]<k2+3l§k2+3I/GAJ'l(11+O{2 =v

where

Aj7l:{l/€Zn2(l/+

I¢a]ak UL, Ky, U2, kz) Ul>

[—27%2 27F21") N supp (1) # @},

(R™)

&, then
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with card (Aj;) < 2"U*D. Hence, it follows from lemma [2.9| with 7 = p and N > 5 such that

Qi < > > > S0 [TsayanWaky,uzm,),vr) |

I<ko+3 j>ko—3 ko—3<ki<ks a1tas= ’/VEA]l

DYDY S ofmithema=iN{eard (A )7 |un g, | Lo ey lu2.k, |2 e [0l Lo ey
1<ka+3 j>ka—3 ka—3<ki<ks

D DD DI - (WY Y [N et [ s
J<ko—31<ko+3 ka—3<ki<ko

S Z 2k1m1+k2m22k2n/2”u17k1”LQ(RH)HUZM”LQ(RH)”,U”BS&O(R")
ko —3<k1<k2

< > 2R ey luz |z 0l s en) -

ko —3<k1<k2

We put k; = ko — k' with k¥’ € {0,1,2,3}, so for all ks —3 < k1 < ko we have

3
Q11 S Y D 27 w2y 2 ks | 2 ) -

k2>0k/'=0
By Schwarz’s inequality, the right hand side of the last sum is estimated as

1/2 1/2

3

_ ’
> 27N (g lIZe > luzwalze | S lluallze fluz e
k'=0

k220 k2>0

which gives the desired result.

Next, we gave a estimate for Q2. For all j < ko — 3, k1 < ko — 3 we have
supp (Fllp,ay o, (U kU2 k,)]) C {¢ € R™ 28272 < |¢[2R2 2,
it follows that for all [ < ko — 3 or ko + 3 < [ we have
(Ipay op (Ut ks U2 ky)s Vi) = 0.
As before, if supp Xa, (©) Nsupp Yx, = <, then
<I¢7aj,a’k(u17kl,ug,k2),vl> =0.

Moreover, we obtain
ko+2

Z Z Z Z Z <I¢7aj,a.k(u1,k17u2,k2)yvl>-

J<ko—3 k1<k2—3l=ko—2 a1 €EZ™ ags€EANg
By lemma we have

ko+2
Q2] < Z Z Z Z Z |(Tg,0; 00 (W1 ey > U2 ) 00|

I=ko—2 j<ky—3 k1 <ka—3 0 €L an €A,
ko+2

S, Z Z Z 2k1m1+k2m27]N2k1n/2||ul,k1||L2(]R")||u2,k2||L2(]R")||UIHLP(]R")
I=ko—2 j<ka—3 k1 <ka—3

ks —k

S 2 EImyuy e luz g |2 e 0]l Bg )
ki1<ko—3

SO0 Y 2RIy e e w2 ks | 2@y 0] BY_ (-

k120 k220
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Since m1 < 0 we have
sup Z olk1—kalm1 0,

k120 k220
and
sup olki—kalmi g
k220 klZO
So, by Schur’s lemma we have
1/2 1/2
D Ml 172 > lluz k172 lvlle . < llutllpzfluzllzz2 (vl sy -
k120 k2>0

So, by duality we proved that Iy, is bounded from L*(R™) x L*(R") to BY |, where é +2=10

Corollary 3.2. Let I, be a class of bilinear Fourier integral operators defined as (3.1)), then for all m;, ms < 0 and
my +mz = —35 we have
Ipa: L*(R™) x L*(R™) — L*(R™) are bounded.

Proof . By Bf; < L' and theorem [3.1| we get our desired result. (]
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