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Abstract

Let Q be a bounded open subset of RY, N > 2. In this paper we give an existence result of bounded solution, in
Musielak spaces, for unilateral problems associated to the nonlinear elliptic equation

—diva(z,u,Vu) + g(z,u,Vu) = f in Q,

where the nonlinearity g does not satisfy the well known sign condition and f is an integrable source.
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1 Introduction

Modular spaces have received significant attention in recent years, Musielak spaces are the adequate setting to give
mathematical models to various physical phenomenons. Also, there has been an interesting development in functional
analysis of the setting, minimal assumptions ensuring the density of smooth functions in the modular topology in
Musielak-Orlicz-Sobolev spaces were given (see [5]), namely

(®1) The function ¢ (resp. P) is locally integrable, that is for any constant number ¢ > 0 and for any compact set

K C Q we have / oz, c) de < oo.
K
(®2) There exists a function ¢ : [0,1/2] x [0,00) — [0,00) such that ¢o(.,s) and @o(x,.) are nondecreasing
functions and for all z,y € Q with |z — y| < % and for any constant ¢ > 0

p(z,5) < ollz —yl, )y, s) with limsup po(e, ce™V) < oo.

e—0t
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With only the Log-Holder continuity of the type: there exists a constant A > 0 such that for all x,y € Q with

A
P D forall > 1,
o(y,t)

the same density results have been given by Benkirane et al. in [§].

These new results among others are necessary to start the analysis of partial differential equations in the setting.
We list some models of equations to which the present result can be applied,

. |VulP~2Vu log(1 + |ul)
—d VulP =
v (G o) * fae V=
1
here (z,t) =P, p > 1, h(t) = AT 0<6<1and

exp (|Vu| + h(u))

2 __
et ulFogle 1) V=

_div (h(u) exp (|vu| + h(u))vu) +

1
(e +[t]) log(e + [t[)”
Let © be a bounded open subset of RV, N > 2, and let ¢ be a Musielak function satisfying the As-condition. Let

¢ : © — R be a measurable function such that Ky = {v € WJL,(Q) : v > ¢ a.e. in Q} is a nonempty set. Let us
consider the strongly nonlinear elliptic equation

here p(x,t) = t2 exp(t) and h(t) =

—div a(z,u, Vu) + g(z,u, Vu) = f in Q, (1.1)
u = 0 on 0. ’

Consider the unilateral problem associated to equation (1.1)) as follows

ue Ky, al-,u,Vu) € (Lx(Q)Y, g(-,u, Vu) € L'(Q),

x,u, Vu) - V(u —v)dz + /Q g(x,u, Vu)(u — v)dx (1.2)

Qa(
g/f(u—v)dx, Vo € Ky N L™(Q),
Q

where a satisfies the following condition

a(z,5,€).& > 95 (p(x, h(|s]))e(z, €]) (1.3)

where h : R — R™ is a continuous decreasing function with unbounded primitive. The Hamiltonian g(z,u, Vu) is not
assumed to satisfy the well known sign condition but grows naturally at most like ¢(z,|Vul|), namely

lg(z,5,6)| < Bls)e(x, [€]), (1.4)

where 8: R — RT is a continuous function, while the source term f € L().

We list some previews contributions concerning problem (1.1f), in the framework of Sobolev spaces VVO1 P(Q), (p>1),
existence of bounded solution of (1.1]) has been proved by Boccardo et al. [20], in the case where h is constant, f can
be changed by f —div F with f € L™(Q2), m > % and F € L"(Q) where r > 1%, see also [31].

The same result has been obtained by Boccardo et al. [21] but this time & is not necessarily constant, p = 2 and
f€L™(Q), m>% and in [43] the authors have find the result when p > 1 and f € L™(Q), m > max(%, 1).

In Orlicz spaces, if M is the N-function defining the Orlicz spaces, for ¢ = 0 and g # 0, Benkirane et al. in [44] [16]
have established existence of bounded solutions for problem (1.1]) under conditions A(z, s, ). > M (M (h(]s])))M(¢]),
lg(x,s,8)] < B(s)M(|€]) and either

feL(Q),
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or

m : _ rN
feLrL (Q)w1thm—mforsomer>0,

+o0 r
and/ (Mi(t)) dt < 4o0.

Let us recall some contributions concerning problem (1.2)) in some particular cases. In the classical Lebesgue spaces
(p(z,t) =7, 1 < p < +0), existence of bounded solution for problem ([1.2]) has been given in [22] with f = 0 and in
[23] for quasilinear operators without lower order terms (i.e. 8 = 0) and data satisfying

N
felL™Q), m> 5

and then under smallness a condition on the data f in [? | with
N
FeL™(Q), m > max (1; ?) (1.5)

using symmetrization methods.

In the non standard growth setting, the studies of variational inequalities (i.e. where f € W™1E3(Q)) were
initiated by Gossez and Mustonen in [35] to investigate the obstacle problem in the case g(x,u, Vu) = g(z,u) by
assuming some regularity conditions on the obstacle function . Vast works were interested on existence of solutions
for problem like (1.2) either in the variational case, see for example [2] or with L'-data (see [3, 4, 30]).

In Orlicz spaces where p(z,t) = M(t) (without z-dependence), existence of bounded solution for problem (|1.2])
has been investigated by Benkirane et al. in [I7] where the vector field a satisfies the following condition

a(w,5,€) - &> M (M(h(|s)) M(J¢]), (1.6)

Our aim here is to handle a more general case, precisely, we prove existence of bounded solutions for problem ([1.2]) in
Musielak structure, the result extends all works mentioned above.

The paper is organized as follows: in Section 2 we recall some preliminaries and auxiliary results about Musielak
spaces. Section 3 concerns the basic assumptions and the main result, while in section 4 we give the proof of the main
result.

2 Preliminaries

In this section we list briefly some definitions and facts about Musielak-Orlicz-Sobolev spaces. For further definitions
and properties we refer the reader to [5l, 37, 13} B39].
2.1 Musielak-Orlicz function

Let Q be an open subset of RY and let ¢ be real-valued function defined in Q x R, and satisfying the following
conditions
(a) o(z,.) is an N-function, i.e., convex, nondecreasing, continuous, ¢(x,0) =0, p(z,t) > 0 for all ¢ > 0 and

t
lim sup M =0 for almost all z €
=0 zcQ t
t
lim inf pl@,t) =oo for almost all z € Q.
t—o00 xEQN t

(b) (., t) is a measurable function.

A function ¢(z,t), which satisfies the condition (a) and (b), is called a Musielak-Orlicz function. For a Musielak-
Orlicz function ¢(z,t) we put ¢, (t) = p(x,t) and we associate its nonnegative reciprocal function with respect to ¢
and o, ! that is,

o, ez, 1) = oz, 0, (1) = t.
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For any two Musielak-Orlicz functions ¢ and « we introduce the following ordering:
(c) If there exists two positive constants ¢ and T such that for almost all z € Q

o(x,t) < vy(z,ct) for t > T,

then we write ¢ < v and we say that v dominates ¢ globally if T'= 0 and near infinity if 7' > 0.
(d) If for every positive constant ¢ and almost everywhere = € 2 we have

t
up £

}1_{%( P t))zo or lim (supso(x’Ct)>:0,
we ;

=00 \ zeq 7($7 t)

then we write ¢ << v at 0 or near oo respectively, and we say that ¢ increases essentially more slowly than ~ at 0 or
near oo respectively.

We recall that the Musielak function ¢ is said to satisfy the As-condition (or ¢ is doubling) if for some k£ > 0, and a
non-negative function ¢, integrable on 2, we have

o(x,2t) < ko(x,t) + c(z) for all z € Q and all ¢ > 0.

2.2 Musielak-Orlicz-Sobolev spaces

For a Musielak function ¢ and a measurable function u :  — R we define the functional
o) = [ plafuta)) do.

The set K,(Q2) = {u Q=R measurable : o, 0(u) < oo} is called the Musielak class (or the Musielak-Orlicz class

or generalized Orlicz class). The Musielak space (or Musielak-Orlicz space or generalized Orlicz space) L, () is the
vector space generated by K (£2), that is the smallest linear space containing the set K, (£2). Equivalently

L,(Q) = {u : Q= R measurable : Q%Q(%) < oo for some > 0}.

For a Musielak function ¢ we put

D(x,8) = ig}g {st - g@(x,t)}.

@ is called the Musielak function complementary to ¢ (or conjugate of ) in the sense of Young with respect to s.
we say that a sequence of function u,, € L,(€2) is modular convergent to u € L, () if there exists a constant A > 0

such that
. Up — U
lim Q4P7Q<7) =0.

n—00 A

In the space L, () we can define two norms, the first is called the Luxemburg norm, that is

l[ulle.o = inf{A >0: /Qso(x, |u(}\x)|) dr < 1}

and the second so-called the Orlicz norm, that is

el = sup /Q ju(z) v(z)| d,

lvllz<t

where @ is the Musielak function complementary to ¢. These two norms are equivalent and we have a Musielak class
K,(9) is a convex subset of the Musielak space L (2).

The closure in L, (£2) of the set of bounded measurable functions with compact support in € is denoted by E,(Q). It
is a separable space and (Ez(2))* = L,(2). We have E,(Q2) = K () if and only if K,(Q) = L,(Q) if and only if ¢
satisfies the As-condition for large values of t or for all values of ¢, according to whether €2 has finite measure or not.
We define

WL,(Q) = {u € L,(Q) : D* € L,(Q),Y]a| < 1}
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WE,(Q) = {u € B,(Q): D® € E,(Q),V|a| < 1}

where o = (a1, ..., an), |a| = |a1| + ... + |an| and D*u denotes the distributional derivatives. The space WL, () is
called the Musielak-Sobolev space. For u € W1L,(12), let

_ o ) _ u
2o0() = Y opa(D™w) and |lullq = inf {A>0:5,0(5) <1}
le|<1
these functionals are convex modular and a norm on W!L,(Q) respectively.

The pair (WL, (), |lull, o) is a Banach space if ¢ satisfies the following condition

there exists a constant ¢ > 0 such that in£2 o(x,1) > c.
HAS

The space WL, () is identified to a subspace of the product o<1 Ly (2) = IIL,; this subspace is o (IIL,, [1E3)
closed.

We denote by D () the Schwartz space of infinitely smooth function with compact support in 2 and by D(Q2) the
restriction of D(RY) on Q. The space W{ L, (1) is defined as the o(IIL,,I1E5) closure of D(£2) in W'L,(Q) and the
space Wi E,(Q) as the (norm) closure of the Schwarz space D () in W!L,(Q).

For two complementary Musielak functions ¢ and @ we have

i)The Young inequality:
ts < p(x,t) + p(x,s) for all t,s > 0,z € Q.

ii)The Holder inequality:

‘ / u(x) v(x) dz‘ <2||ullp,0 vz, for all u € L,(2),v € Lx(9).
Q

We say that a sequence of function u, converges to u for the modular convergence in W*L,(€2) (respectively in
Wi L,(£2)) if we have
lim @%Q<$> =0, for some A\ > 0.

n—oQ

Define the following space of distributions

W) = {FeD'(@): = 3 (~1)1D" fu where [, € L(0)}

and
W EA(Q) = {f e®(Q):f= S (~1)elDf, where f, € EE(Q)}.

| <1

2.3 Some technical lemmas

Definition 2.1. Recall that an open domain 2 C RY has the segment property (see [34]) if there exist a locally
finite open covering O; of the boundary 902 of 2 and a corresponding vectors y; such that if x € N O; for some 1,
then x +ty; € Q for 0 <t < 1.

Lemma 2.2. [§] Let Q be a bounded Lipschitz domain in RY, (N > 2) and let ¢ be a Musielak function satisfying
the log-Holder continuity such that
P(z,1) < c a.e in  for some ¢ > 0,

then D () is dense in L,(£2) and in Wi L,(f2) for the modular convergence.

Consequently, the action of a distribution in W' L#(Q2) on an element u of W L,(£2) is well defined.
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Lemma 2.3. [7](The Nemytskii operator) Let © be an open subset of RV with finite measure and let ¢ and v
be two Musielak functions. Let f : 2 x RP* — RP2 be a Caratheodory function such that

|f (@, 5)] < ) + kg (e, kals])),
for almost every x €  and all s € RP*, where ki, ko are real positive constant and ¢ € E,(€2). Then the Nemytskii
P
operator Ny, defined by Nf(u)(x) = f(z,u(x)) is continuous from (P(E%,(Q)7 1712)) - 11 {u € L,(Q) s d(u, E,(22) <
P
1712} into (Lw) * for the modular convergence.

P1 p2
Furthermore, if ¢ € E,(Q2) and v << 9 then Ny is strongly continuous from (P(E@(Q)7 k%)) into (Ev (Q))

Lemma 2.4. If f,, C L}(Q) with f, — f € LY(Q) a.e. in Q, f,,, f >0 a.e. in Qand [ f,(z)dx — / f(x) dz, then
Q o
fo— fin L(Q).

We will use the following real functions of a real variable
Ti(s) = max(—k, min(k, s)), Gr(s)=s—Ti(s) Vk >0,

and
oa(s) = sexp(As?), where X is a positive real number.

2
Lemma 2.5. If ¢ and d are positive real numbers such that A = (é) then

d

dpy(s) — cloa(s)| =
2.4 Decreasing rearrangement

We recall the definition of decreasing rearrangement of a real-valued measurable function u in a measurable subset
Q of RN having finite measure. Let |E| stands the Lebesgue measure of a subset E of Q. The distribution function of
u, denoted by i, is a map which informs about the content of level sets of u, that is

t) = |{z € @ ful@)| > 1}

, t>0.

The decreasing rearrangement of u is defined as the generalized inverse function of p,, that is the function u* :
[0,]€2]] = [0, 400], defined as

u*(s) = inf {t >0 pyu(t) < 5}7 s € 0,9

In other words, u* is the (unique) non-increasing, right-continuous function in [0, +00) equi-distributed with u. Fur-
thermore, for every ¢t > 0
w* (a(8)) < . (2.1)
We also recall that
u*(0) = esssup |ul. (2.2)

3 Statement of the problem and main result

Through this paper Q will be a bounded open subset of RN, N > 2, satisfying the segment property and ¢ is a
doubling Musielak function. There exists an Orlicz functions ¢ (see remark below) such that

q(t) < p(z,t).
Let us consider the following convex set
Ky = {v EWyLy(Q):v>1a. e in Q} (3.1)

where 9 : Q — R is a measurable function. On the convex K, we assume that
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(A1) o+ € WEL,(Q) N L=(Q),

(A2) For each v € Ky, N L>(Q), there exists a sequence {v;} C Ky N Wi L,(Q) N L>®(Q) such that v; — v for the
modular convergence.

Let A: D(A) C WgLy(92) = W~1L5(Q) be the mapping (non-everywhere defined) given by
Au=—div a(z,u, Vu),

where a : Q x R x RY — R is a Caratheodory function satisfying, for almost every = € Q and for all s € R, &,n €
RN (&€ # 1) the following conditions

(As) The vector field a(.,.,.) verifies the degenerate coercivity,
a(z, s,€)-£ > 7, (¢, h(|s]))e (=, [€]) (32)

where h : R — R* is a continuous decreasing function such that : h(0) < 1 and its primitive H(s) = / h(t) dt
0

is unbounded.

(A4) There exist a function ¢(x) € Ez(2) and some positive constants ki, ko, k3 and k4 and a Musielak function
P << ¢ such that

——1 __
la(z,5,6)| < c(@) + k1P, (p(x, kals])) + ks (0(z, kal€]))- (3.3)
(A45) a is strictly monotone
(atz.5,6) = atz.s,m) - (6= n) >0 (3.4)
Let g: 2 x R x RY — R be a Caratheodory function satisfying

(Ag) For all s € R, ¢ € RN and for almost every = € ), g satisfies the natural growth,

l9(z,5,6)| < B(s)e(z, [£]), (3.5)

B(t)

TGy e L

where 8 : R — R is a continuous function. We assume that the function ¢ —

with ¢(t) < p(x,t) for all (z,t) € Q x RT. So that defining

B
= [ ) ™

for all s € R, we have that the function ~ is bounded.

For that concerns the right hand, we assume one of the following two assumptions: Either
fe LN, (3.6)

or

f e L™Q) with m = :_f_vl for some r > 0,

and/+oo (ﬁy dt < +o0. (3.7)

Remark 3.1. Notice that, in particular case, in variable exponent spaces when (z,t) = tP(#)  the Orlicz function
q(t) plays the role of tP | where p~ = ess ingp(x). Moreover, ¢(t) is an N-function satisfying the As-condition, for
e

its construction, see [27, Lemma A.4].
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Lemma 3.2. Let ¢ be a Musielak function and ¢ is an Orlicz function such that q(t) < ¢(x,t) for all (z,t) € Q x RT
then

7 ' (q(t) <7, (p(x, 1)) for all (z,t) € Q x RT,

where g and @ are the complementary functions of ¢ and ¢ respectively.

Proof . Let s,t € RT and z € Q. We have ¢(t) < ¢(z,t), then
st —q(t) > st — p(x, t).

Passing to the sup over ¢t > 0

sup{st — q(t)} > sup{st — p(z,1)}.
t>0 t>0

That means
q(s) > p(x,8) :=p,(s), for all s € RT.

It follows that for all s € RT,
7 '(s) <P ()
Taking s = q(t), since $, ! is increasing, we have Vt € R*, g7 1(q(t)) < %, (q(t)) < B, (p(x,t)). O
Our main result reads as the following.
Theorem 3.3. Suppose that the assumptions (A1) — (Ag), either (3.6) or (3.7) are satisfied and the modular function
 verifies the assumptions (®;) and (®2), mentioned in the introduction. Then the following obstacle problem
uwe Ky NL®(Q), a(,u,Vu) € (Lz(Q)N, g(-,u, Vu) € L*(Q),

; a(z,u, Vu) - V(u —v) dx + /Q g(z,u, Vu)(u —v) dz (3.8)

S/f(u—v)dx, Vo € Ky N L(Q).
Q

has at least one weak bounded solution.

4 Proof of the main result

The proof of theorem is divided into eight steps.
Step 1: Approximate problems. For n € N* let us denote by m* either N or m according as we assume (3.6|) or
(13.7). Define f,, := T,.(f), Apn(u) :== —diva(z, T,(u), Vu) and g, (z,s,§) := Tn(g9(x, s,£)). We can easily see that we
have |g,,(z,s,&)| < |g(z,s,€&)| and |gn(z, s,£)| < n. Let us consider the sequence of approximate problem,

Uy € Kd’ N D(An),

a(x, Tn(up), V) - V(uy, —v) do + /Qg(x,un7 V) (uy, —v) d (4.1)

< / fa(up —v)dz, Yo e Ky.
o
Let v be large enough. By (3.4) and Cauchy-Swhartz’s inequality one has

—a(m,Tn(s),f) ) v¢+ > —%a(x, Tn(S)ag) : f - a’(van<s>7 Vv"/]—i_) v¢+

R . v—1 Ja(z,Th(s),vViT)]
7 ol M) 5 o

7€)
Then, Young’s inequality enables us to get

—a(l‘,Tn(S),f) . V¢+ > _%a(x7Tn(S)7€) . € - a(x,Tn(S)?va+) . V¢+

. v—1_ la(z, T, (s), V)]
=B ol T ) 5 (o = S )

72 (ol AT (5))) Lol ).
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1
and the function -, by

Let us define the positive real number depending on z, p, () := @ ' (o(z, h(n))) y2—
v

Yo (z) == a(z, Tn(s),vVT) - Vit

. v—1_ la(z, Ty (s), vVepT)|
P e O R o T )

For each n € N the function +,, belongs to L' (). Thus we have

a(z, Tn(s),€) - (€ = VYT) > pu(2)p(x, [€]) = Ya(2)-

v—1

Then, by lemma pn(x) > pl = q_l(q(h(n)))T, and we have

a(@, Tn(s),£) - (€ = VYT) = pu(2)p(x, [€]) — () = o2, [€]) = Tn (@)

By [13], the operator A, satisfies the conditions with respect to ¢+, then the variational inequality ([4.1)) has at least
a solution u,,.
Step 2: Preliminary results.

Lemma 4.1. Let u, be a solution of (4.I). For all ¢,e € R with ¢ > ||4)T||o, one has the following inequality:

/ a(m, Tn(un), Vun) . V’u,n e'Y(uI) dr
{t<un<t+6}

< £ TG o (= [0 [loo)T))da

{un>t}
Proof Let ¢,¢,k in R with ¢ > [|¢)T . Define
0=ty = D TGy (Ti(wn)

where w,, = (u} — || ||oo)T and 7 = e~ 7). Thus, using v as test function in (@) and then using (3.2) we get

/Q@I(so(ﬂah(\Tk(urfl)))w(L VT (uyy])

B(Ty(u;))) (Ti(u))
" — n T TGy vy (Ti(wn))) do
7 a(h(|Tk (it ]))) e
+ a(z, Tn(un), Vuy) - VI (wy,) Tk gy (4.3)
t— [T [ oo <Th (wn) <t—|[9p+|loc+e}
+

In (T, Up, Vuy,) e (Tk () T (Gt | oo (Th(wy))) d

< | LT DTG,y (Te(wy))) da.
Q

(| Tg (u;r
By lemma of Pz (((x’ (EICH |)))) > 1 and then (4.3)) becomes
q

(h(|Tx (u])))
[ BB ot 9T ) T TG (Tel))
/ a(x, T (un), V) - VI (wy,) YTk o
E= oo < (w,) St 6+ | oo te} (4.4)
In (T, Up, Vuy, )eV(T’“(“D)TE(Gt,WWm(Tk(wn))) dx

f e (Thlul D T(Grm o (T (wn)) dv.

Now, we will pass to the limit as k tends to +oc in (4.4)). In the first integral in the left-hand side of (4.4 the integrand
function is nonnegative, so that Fatou’s lemma allows us to get

/ Bl )p(, [Vt ) €D Tu(Go b () d

< liminf / BT (u))o(a, [V Tt ) T TGy (Th(wn)) d
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Observe that the second integral in the left-hand side of (4.4) reads as

/ a(:z:, Tn(un), Vun) - VT (wn) e'\/(Tk(“I)) dx
{t= 19 [loo <Th (wn) <t—||9bF |oo+€}

- a({E, Tn (un), Vun) . V'ujl_ e’Y(Tk(ui)) dz.
{t<uf <t+eyn{0<ud —[|t+| o <k}

It follows by applying the monotone convergence theorem, that

b a(z, Ty (un), Vi) - VT (wy,) V(T (ul)) g
k—+o0o {t— 19+ || oo <Tk (W ) <t—||1F || oo +€}
= a(z, Tn(un), Vuy,) - Vu,b oY (ud) de,

{t<ut <t+e}

while for the remaining terms in (4.4), being g, and f, bounded, we apply the Lebesgue’s dominated convergence
theorem. Consequently, letting k tends to +oo in (4.4) we obtain

/ﬂ 2, [V ) €00 TGy (wn) da

/ a’(xaTn(un), V’U/n) . Vun eV(uI) dx

t<u} <t+e} s
+/ (i, Vi) €7 T (G v (wn)) dar

fn e'y(uI) TE(Gt—Hwﬂlm (wy,)) dx.
)
Due to the fact that u, > 9T, the function w,, is equal to zero if u,, < 0. By virtue of (3.5) we get

B(u |Vu+|)e" )Te(thﬂdﬂrH(x,(wn)) dx

@\

(@ un,Vun)e”( DTGy o (wn)) daz
] (@, |Vut]) ) TGy gy (wn) deo

f (2, U, Vuy) €7 )T, (Gi—jyt|| (wy)) do > 0.
{un>0}

+

Hence, (4.5)) is reduced to
z, T (uyn), Vuy,) - Vuy, ) dy
a(
{t<uf <t+e}

S Afn e“’( " Tﬁ(Gt*Hw*Hm(wn)) dx.
Since Te(Gy— |+ (wn)) is different from zero only on the subset
{wn >t = [ loo} = {uyy >t}
and f, < fI we finally have
/ a(x, Ty (un), Vuy) - Vuy, ) dy
{t<upy <t+e}

< £ D TGy (= [0 [leo) D)) da

{un >t}

Lemma 4.2. Let u, be a solution of (4.1)). For all ¢,e € R* , one has the following inequality:

/ a’(xa Tn(un), Vun) -Vu, e'Y(“;) dx
{—t—e<up,<—t}

< [ e ) TGy () de.

{un<—t}

(4.6)
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Proof. For all k > 0, define the function v = u,, + e Tx(“)) T (G (Ty(u;))), the choice of v as test function in (@1,
yields

_/ a(x, T (un), Viun) - VT (uy) €T+ TGy (T (uy, )
B(Ti(uy,))
7 (q(h(|Tk(un)))))
— a(z, T (un), Vi) - VT (uy; ) e Te)) gy (4.7)

t<Ty (un ) <t4e}
B / n (@, tn, Vi) ) T(G(Ty(uy,))) da
Q

< _/ @ T TGy (Ti(uy))) da.
Q

The first integral in the left-hand side of (4.7) is written as

— | al@, Tu(un), Vun) - VTi(uy,) T TG (Ti(uy))

B(Tx(u,))
7 " (qg(h(|Tx(un)1)))

= a(z, Tn(up), Vuy,) - Vuy, () T, (Gi(uy,))
{—k<u,<0}

B(Tk (uy))
7 (a(h(| Tk (un)1)))

By the monotone convergence theorem, we have

— | a(z, Th(upn), Vun) - VI (u,) eV (Tk(ur)) T (G(T(uy,)))
BTy (uy))
7 Ha(h(| T (un)1)))

a(x u w) - V., e (tn) u B(Tx(ur))
%/Q (& Taltin)y Vitn) - Vein fete ”))a‘l(q(h(\Tk(u;)l)))

as k — +oo. For the second integral in the left-hand side of (4.7)), we write

dzx.

- / a(.’E, Tn (un), Vun) . VTk (U;) e'Y(Tk' (uy)) dx

t<Ty (upn ) <t+e}
- / a(x, T, (Un), Vun) -Vu, e’Y(“;) dr
t<Ty(upn ) <t+e}n{—k<u, <0}
j a‘($7 T, (un>, Vun) -Vu, eV(u;) dz.
{_t_5<ung_t}ﬂ{—k<un§0}

Applying again the monotone convergence theorem, we obtain

_/ a(x, Tn(un)y vun) : VTk(u;) eV(Tk(“;)) dx
{t<Tx (uy ) <t+e}

- a(x7Tn(un),V’U,n) -Vu, eV(u;) dz.
{—t—e<un<-t}

as k — 4oo. For the remaining terms in (4.7), being g, and f, bounded, we apply the Lebesgue’s dominated
convergence theorem. Consequently, letting & tends to +oo in (4.7) we obtain

Blum)
7 (g(h(Jun])))
+ a(x, Ty (tn), V) - Vuy, ") dy

/ (@, T (), Vi) - Vit ) T (G ()
Q

—t—e<uy)<—t} (4.8)
- gn(z7 Un, Vun) ev(un) TE(Gt ('UJ:L)) dx
Q
< [ e TGeluy)) d

Q
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Since u,, = |u,| on the set {x € Q: u,(z) < 0}, using (3.2) we obtain

a(x U Up) - Vi, €7(n) U, M T
o), Fra) - Tt ) TGl ) e s
_/s G (@, un, V) € T (Gy(uy, ) dee
= /QS"?(SD(% h(|un)))) (@, [Vun]) e To(Gy(uy, )
S
T aunn))
A In (T, Up, Vi) e7(tn) T (Gi(u,,)) dx
2 (@, (| Tk (uy 1))
Bylemma 571( (Te(uz)) > 1 and then
Blum)

alx u Up) - YV, ") TG (ur)) ——n
/Q (@, Ta(tn) Vi) - ¥ R ()

(2, Upn, Vi) e (tn E(Gt(u;)) dx

f Bluy)o(, [Vug|) &) T(Gy(uy))) da
Q gn(z, un,Vun)eV(“")T(Gt( ) dz >0, by (3.5)
Observing that —f, < f, and {u, >t} N {u, <0} = {u, < —t}, we have finally
a(z, Ty (tn), Vi) - Vi, 7n) dz
{—t—e<un<—t}

< fr @ TA(Gy(uy) da.

{un<—t}

Lemma 4.3. Let u,, be a solution of (4.1). There exists a constant ¢, not depending on n, such that for almost
every t > ||/ || and all € > 0, one has the following inequality:
d ——1

% Pr (el hllun)))p (@, [Vun|) de < 60/ [fnl da. (4.9)
{lual>t} {lun|>t}

Proof. Being 7 bounded, summing up both inequalities (4.2]) and (4.6) there exists a constant ¢y not depending on
n such that for almost every t > || || and all € > 0

/ a(z, T (up), Vuy,) - Vu, de < eco/ | frn] da.
{t<|un|<t+e}

{lun|>t}

Using (3.2)), dividing by € and then letting e tends to o™ we obtain (4.9).
t
Lemma 4.4. Let K(t) = % and p, (t) = [{z € Q: |uy(x)| > ¢}, for all £ > 0. We have for almost every ¢ > ||[{T || o0t

, C ndx
ey < 2ADEH0) Sy

- L 1 T 1 (410)
g (g)NCF pn ()~ 7 H(g())NOY pn(t)' ™

where Cy stands for the measure of the unit ball in RY and ¢y is the constant which appears in (4.9).

Proof . The hypotheses made on the N-function ¢, which are not a restriction, allow to affirm that the function Q(t) =

%% is decreasing and convex (see [40]). By lemma oz, |Vun|) > ¢(|Vun|) > 0 and 35 (o(, A(Jun]))) >
7 "(q(h(Jun]))) > 0, then

B (p(a, h(lun))e(z, [Vun|) > 7 (a(h(unl)))a(IVen])
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Using the fact that @ is decreasing and then Jensen’s inequality yield

/ 77 (0@, hlun])) o (@, [Viun|)da
{t<|un|<t+k}

Q
/ 7 ([ ))) |Vt |d
{t<un|<t+k}
/ 7 (q(h(un]))) ([ Vrun |y
S Q {t<\un\§t+k:}
/ 7 () Vtin |z
{t<un|<t+k}
/ K(Vunl)g (g(h(jun]))) [ Vitn |dz
_ g | J<tumistin
/ T ((h|un]))) [Vt dz
{t<|un|<t+k}
/ 7 (q(h(unl)))da
S {t<‘un‘§t+k}

7 (g(h(|un))) [ Vun|da
{t<un] <t}

T e+ R) )
7 (a(h(t + }))) / V| da

{t<un|<t+k}

Taking into account that g~!(q(h(t))) < g '(q(1)), using the convexity of Q and then letting k¥ — 0%, we obtain for
almost every ¢t > 0,

—4 B2 oz, h(juy, z, |Vuy|)dz
PRI [ et ot V)
7 ah(e) T4 [ Vi)
{un|>t}
DA N
-4 oo |Vuy,|dz

Now we recall the following inequality from [40]:

d 1/N 1- L
% - [Vuy|de > NCN ™ pn(t) for almost every t > 0. (4.11)
Up | >t

Combining (4.9) and (4.11]) and using the monotonicity of the function @ we obtain

1
7 Y(q(n(1)))
nldx
< —Hn(?) g /{un>t}f | 1
T a)NCY N ()N 7T a)NCY N ()N

Using the inequality in Orlicz spaces
q(t) <tg *(q(t)) < 2q(t) forallt >0

and the fact that 0 < h(t) < 1, we obtain (4.10). O

step 3: Uniform L°°-estimation. From (4.2f), using the rearrangement technics, we prove that there exists a
constant ¢, such that
”unHoo < Coo- (4.12)
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Proof . If we assume (3.6)), by Holder’s inequality one has
[ isalde < (0
{|un|>t}
Then for almost every ¢ > |||, inequality ([4.10) becomes

no) < 20 E0) K( collf 1 )
ST NCE (T \g ()NCY

Then, integrating between ||t)" |« and s, we get

[ nwars 200 g (nfnzv> [,
19+ oo a—l(q(l))NC’ﬁ 6‘1(q(1))NC]§ 0+ oo Mn(t)liﬁ

So, one has

L () K( collflln ) / —nt) g,
7 '(q)NCF 7 Y q)NCY ) Dl ()

Hence, a change of variables yields

1Y
H(s) < [0 oo + —2 g (”f”N) [
T aOINCE  \T gINCF ) S 55

By (Z.1) we get

¢ o]
H@(0)) < 9+ oo + ——LD g1 ( oll £l ) / di
7 ' (q())NCY 7Y q)NCy ) Jo tw

So that

N 2q(1)|22 ~ _ collf
H(Un(O)) S ||"/}+||oo + 771( )l | LK 1 (1 OH HN 1) )
7 (q(1)CY 7 (q())NCY
Thanks to (2.2) and the fact that BT H(s) = 400, we conclude that the sequence {u,} is uniformly bounded in

L (£2). Moreover, if we denote by H~! the inverse function of H, one has:

”UnHoo < g1t <|¢+|oo + QQ(1)|Q|%1 K1 ( CO”f”N ; )) . (4.13)
7 '(e(1)OF 7 '(a())NCY

We now assume that (3.7)) is verified. Then, using again Hélder’s inequality we have

/ Faldz < | Fllmpn ().
{lun|>t}

For almost every ¢ > ||1T||o, inequality (4.10) becomes

Moy < 2000 () K_1< ol )
~ T g)NCY i)' :

T H(D)NCY ()5~

Integrating between ||1)" || and s, we get

H(s) < |47 |
Zq—(l)/s _M/n(t)K—1< coll fllm )dt.
T @UINCY i (07 T (q())NCF ()%
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Then, a change of variables gives

H(s) <
[6+loo + —2D /'“ K1< collf ) do
o0 1 T —
7 M (q)NCF T 7 (q))NCYow—% ) o' 7%
By virtue of (2.1) we get
H (uy, (7)) <
o + — 220 "’K1< ollfllm ) do
) T + —
g (q())NCF I~ T Y q)NCT om—% ) o'W
Then, by (2.2]) we obtain
H([[unllo) <
o + — 221 "’K1< ollfllm ) do
) T + —
7 '(q))NCY Jo T Y q)NCT om—% ) o'W

A change of variables gives

‘g r +o0
H(un o) < 16+ loo + —— 2D / (O e (O
(@ (q(1)HINTCY A

COHJI”m1
7 '(g(V))NCY |9~

where \ = . Then, by an integration by parts we obtain that

H(|lunllso) <
+ 2q4(1)cp||f |17, K2 | (™ (s d)
19" oo + (Wl(q(1)))f‘+1NTCJ:,% ( AT +/K1()\) (fJ(S)) .

q

The assumption made on H guarantees that the sequence {uy} is uniformly bounded in L>°(Q2). Indeed, denoting by
H~! the inverse function of H, one has

”unHoo <

o (ot s 200l (Klm s d)) (414
(”w oo + (q_l(q(l)))r‘HN’“Cﬁ AT +/Kl(A) <Q(S))

Consequently, in both cases the sequence {u,} is uniformly bounded in L*°(2), so that in the sequel, we will denote
by ¢so the constant appearing either in (4.13) or in (4.14)), that is :

[unllos < oo (4.15)

0
Step 4: Estimation in WL, (). Using v, = u,, — ngx(u,, — ™), where n = e~ Meatl¥7ll)” | a5 test function in
(4.1), we obtain

/ a(x, Un, Vi) - V(u, — 1/)+)¢:\(un — 1) dz

Q

+/ gn(:v,un, vun)¢)\(un - w+) dz (416)
< an¢A(un — ) da.

Let now v be large enough. By (3.4) and Cauchy-Swhartz’s inequality one has

1
—a(x, Uy, Vu,) - VT > —;a(m,un, Vuy,) - Vi, — a(@, u,, vVyt) - vyt
v—1 Ja(z,u,,vViT)]

2v 551(<p(x,h(|un|)))%4|Vunl-

~ %z (@, h(|un))))
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Then, Young’s inequality enables us to get
1
—a(x, U, V) - VT > —=a(x, un, Vuy,) - Vu, — a(z, un, V™) - Vo'
v

1 v—1_ a(x, Uy, vVt
ol b)) Y ()

(z, |Vugl).

77 () L

v—

Let us define the positive real number depending on z, p(z) := ;' (¢(x, h(cx))) %t and the function v, by

Yo(z) = a(w, u,,vVyT) - Vot

1 v—1_ a(z, up, vVip™
B ot N 8 (o R )

For each n € N the function ~, belongs to L!(Q). Thus we have

(@, tn, Vn) - V(un = 7) = p(2)p(, [Vin|) = n(2).

v—1

Then, by lemma [3.2[ p(z) > p* q_l(q(h(coo)))T, and we have
v

(@, tn, Vun) - V(un = 7) > p(2)p(, [Vun|) = yn(z) 2 p"0(z, [Vin|) = yn(2).

Being S continuous, thanks to (4.12)) the sequence {8(uy,)} is uniformly bounded. Thus, there exists a constant By
such that

18(un)lloe < Bo- (4.17)
In view of (3.5)), we can rewrite (4.16) as

| ot Fual) 765 = 4) = Bolon(wr ~ 0] da
ot ! ot
S/Q|fn|¢>\(un ¥ >|dx+/gwk<un o) de

2
Applying now lemma with ¢ = By, d = p* and )\ = <260*> , we get
p

x, |Vuy,|) d

D\

(4.18)

<= (||me* O (oo + 167 1o0) + 22 (@) O (eoe + 17 1)),

where m* stands for either N or m according as we assume (3.6) or (3.7). Hence, by Poincaré- type inequalities in
Musielak spaces from [§], the sequence {u,} is bounded in W L,(£2). Therefore, there exists a subsequence of {uy,},
still denoted by {u,}, and a function u in W{ L, () such that

U, = u in Wy L, (Q) for o(I1L,, 1ES) (4.19)
and the compact embedding (see Lemma 3.5 and Remark 3.6 of [28]) implies

U, = u in E,(Q) strongly and a.e. in . (4.20)

Step 5: Almost everywhere convergence of the gradients. Let us begin with the following lemma which will
be used later.

Lemma 4.5. The sequence {a(z,T},(un), Vuy,)} is bounded in (Lz(52))V.
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Proof . We will use the dual norm of (Lz(2))". Let ¢ € (E,(2))" such that ||¢||, = 1. By (3.4) we have

(a(w,Tn(un), Vuy) —a(z, T, (uy,), k%)) . (Vun — %) > 0.

By using (3.3)), (4.12) and Young’s inequality we get
/ a(x, Ty (un), Vuy,)pdx
Q

< k4/ a(z, Tp(un), Vuy) - Vu, de — k4/ a(z, Ty (uy), 2) -Vu, dx
Q Q k4

.
—i—/Qa(m,Tn(un),kj) odx

< k‘4/ a(x, T (un), Vuy,) - Vu, dz
Q

1

ClcoonHm* Qll_’"*
7 (q(P(cso)))

B(@, ao(x)) do + k(1 + k) /QE(:U, P (ola, k) da

+ kaC1 oo | fllm= |Q" ™% + ka(L + ky + ks)

+(1+k4)/

Q

+ (ks(1 + k) + (1 + k1 + k3) / o(2,1) da.
Q

Since ag(z) € Fz(12), / D(x,ap(z))dx < 400 and we have/
Q _ Q
recall that P << ¢ < % << P and use the fact that (see[6])

o(z,1)dz < +o00. To estimate the integral/ @(x,?;l(go(x, kocCoo))
Q

P<<P=Ve>0,3hc L}'(Q): (x,t) < P(x,ct) + h(x).

Thus, taking e < 1 and using that P is increasing, we get

/Q 2o, P2 (e, hacas)) di < /Q Pla, P, (e, kacoo))) da + /Q h(z) de

< [ PP plakac) do+ [ o) do

g/ﬂap(x,kgcoo) dx—f—/ﬂh(m) dz

< 00.

To end the proof, we show that / a(x, T, (uy), Vuy) - Vu, dz can be estimated independently of n. To do this, we
Q
have from ([3.3]), Young’s inequality, the As-condition on ¢ and (4.18]),

/ a(z, Ty (un), Vuy,) - Vu, de < / la(z, T (un), Vup)||Vu, | dz

Q Q

< /[ao(iv)lvun\ + k1 Vun| P, (o(@, ko T (un)) + ks | Vun 85 (0(2, ka |V, )] da
Q

< /Q[@(w, ao(x)) + @, [Vun|) + (@, k[ Vug|) + 8w, Py (@, kaTo(un))) + @@, ks|Vuy)

+ (2, 2, (o2, ka|Vun))))] d
g/Qa(z,ao(x))dﬁ(1+k’1+k;+k;)/ﬂ<p(z,\vunpdH/Q@(x,P;l(@(x,chm))) dx
< 0.

]
Thanks to (4.12)), (4.19)) and (4.20)) we obtain, u € Wy L, (€2) N L>(£2), so lemmagives that there exists a sequence

{v;} in D(Q) such that v;—u in Wi L,(Q) as j—oc for the modular convergence and almost everywhere in (2.
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For s > 0, we denote by x; the characteristic function of the set
Q; ={z € Q:|Vu(z)| < s}

and by x® the characteristic function of the set 2° = {z € Q : |Vu(z)| < s}. We have ||upllcc < Coo, since 3 is
continuous the sequence {f(u,)} is bounded, then there exists a constant Sy such that

[18(un)llse < Bo- (4.21)

Choosing v = u, — ngx(u, — v;), where n = exp(=A(N + 2)%c%), as test function in ([¢.1), for n large enough, we

obtain

/ a(r, Up, V) - (Vuy, — ij)d);\(un —v;)dx + / Gn (T, Un, Vg )oa(uy, — vj)dx
Q Q

(4.22)
< / fn¢)\(un _'Uj)dm-
Q
Denote by €;(n,7), (i =0,1,...), various sequences of real numbers which tend to 0 when n and j — oo, i.e.
lim lim €;(n,j) = 0.
j—00 n—00
From (4.12) and (4.20)), we have ¢x(u, — v;) = da(u — v;) weakly* in L>°(R), it follows that
/ fnda(un —v;) = / foa(u—wv;) as n—oo.
Q Q
we have as j — 00, u — v; = 0 weakly® in L>(§), then / for(u—wvj) = 0.
Q
And we get for the right-hand side of (4.22)), we have
[l =)z = ol ). (423)
Q
The first integral in the left-hand side of (4.22)) is written as
/ a(x, Un, Vi) - (Vuy, — ij)gﬁ;\(un —v;)dz
Q
:/ (a(x,un,Vun) — a(:c,un,ijX;)) . (Vun — ijxj) dx
¢ (4.24)

+ /Q a(x, un, ijX;) - (Vuy, — ijxj)gi);\(un —vj;)dx
— / a(x, Un, Vi) - ijqzb;\(un —v;)dx
o\Qs

We will pass to the limit over n and j, for s fixed, in the second and the third terms of the right-hand side of (4.24)).
By Lemma we deduce that there exists & € (Lz(2))" and up to a subsequence a(z, T}, (un), Vu,) — & weakly
in (L(2))" for o(IlLg, IIE,,). Since Vujxa\es € (E,(2))N, we have by letting n — oo,

/ a(x, Up, Vi) - ij¢;\(un —vj)dr — &o - ijqb;\(un —v;) dz.
\Q: \Q:

Using the modular convergence of v;, we get as j — oo

/ §0~ij¢;\(unfvj)dx% & -Vudr as j — oco.
a\Q: 0\Q¢

Hence, we have proved that

/ a(x, Up, V) - ijgb;\(un —v;)de = / & - Vudr + €1(n,j). (4.25)
o\Q: o\Qs
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For the second term, as n — oo, we have

/Qa(x,un, Vu;x;) - (Vuy, — ijx‘;) ¢;\(un —v;) dz

— /Qa(x,u, ijx‘;) . (Vu — ijx‘;) (b//\(u —v;) dz,

since a(x,un, Vjx5) = a(x,u, Vu;x§) strongly in (E5(€))" as n — oo by lemma and Vu, — Vu weakly in
(Ly(2))N by (£19). And since Vujx; — Vuy® strongly in (E,(92))N as j — oo, we obtain

/ a(z,u, Vo;x3) - (Vu— Vu;x3) oy (u— v;)dz — 0
Q

as j — 0o. So that
/ a2, tun, Vu;x3) - (Vn — Vojx5) oy (ty — v;) dz = ez(n, 7). (4.26)
Q

Then, from (4.23)), (4.25)) and (4.26]), we obtain

/Q (a(z,un, Vi) — a(z, un, Vo;x3)) - (Vin — Vux35) Oy (U — vj) do
—|—/ Gn (T, Un, Vuy,) - o (Vu, — Voj) da (4.27)
Q

z/ &o - Vudx + e3(n, j).
Q\Qs

Let us define dp := — fo , thanks to lemma
Pz (p(z, h(cx)))

Bo
7 H(a(h(cx)))

50 S 68 =
From (3.5), (3.2) and (4.12) we get
|/ Gn (&, Un, VUun)oa(Vuy, — V) do
Q

< / Blun)p(, [Vt ])| o7 (Vttn — Voy)] dac
Q

Blun) -Vu Uy, — v;)| do
S/Q agl(cp(m,h(|un|)))a(x’u"’vu”) V n|¢k( n ])|d

< 55/ (a(:c, Up,y Vup) — a(T, Uy, ijxj-)) . (Vun — ijxj)
Q
X o (un —vj)| dx

+ 68 /;2 a(x,un,VUij) ' (Vun - VU]Xj) |¢))\(Un - Uj)' dx

(4.28)

+ 58/ a(, tup, Vug) - VUix;|oa(u, —v;)| de.
Q
Arguing as above, we obtain
56‘/ a(x,uvajxj-) . (Vun — ijxj) |ox(un, — vj)| dz = €a(n, j)
Q

and
66/ a(x, up, Vi) - ijxj\qﬁ)\(un —vj)| dz = e5(n, j).
Q
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Which reduces (4.28)) to
\/ Gn (2, Up, Vur)ox(Vuy, — Vuj) da|
Q
< 05 A (a(x,un,Vun) — a(:muvajxj)) . (Vun — ijxj-) |ox(wn, — vj)| da
+ 66(”7.7)'
Combining this last inequality with (4.27) to have
/ (a(a:,un, Vuy) — a(z, uy, ijxj)) . (Vun — ijxj)
Q
X (o (tn — ;) = 53| da (un — v7)]) dav
< / & - Vudzr + e7(n, j).
Q\Qs

*

5E\2
Applying now lemma [2.5, with d =1, ¢ =63 and A = (2—3) , and we get

/ (a(x,un, Vuy) — a(z, uy,, ijxj)) . (Vun — ijxj)
Q
§2/ &o - Vudr + 2e7(n, j).
Q\Q=
On the other hand

(a(z, un, Vuy) — a(z, un, Vux?)) - (Vu, — Vux®) dz

5

A (a Z, Uy, Vug,) — a(z, un,ijX])) . (Vun — ijxj) dx

/ a(z, Up, V) - (ijxj- - Vuxs) dx

)

/ a(x, un, Vux®) - (Vuy, — Vux®) de

2

+/ a(x, up, Vuix;) - (Vun—ijX;) dx

2

Proceeding as above, we obtain

/ a(x, U, V) - (ijxj — Vux®) dz = es(n, j),
Q

and
/ a\T, Un, VUX ) (vun - VU’XS) dr = Eg(naj)a

and
/ a(w, up, VUix;) - (Vu, — V’UJ‘X?) dx = €19(n, j).
Q

Then, by (4.29) we have
/ (a(z,un, Vuy) — a(z, un, Vux?®)) - (Vu, — Vux?®) dx
Q

= e11(n, j) +/ o - Vudz.
o\Qs

(4.29)

(4.30)
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For r < s, we have

0< (a(z, un, Vuy) — a(z, up, Vu)) - (Vu, — Vu) dz

T

IN

(a(x, un, Vuy) — a(x, up, Vu)) - (Vu, — Vu) dz

s

S~ — S

(a(x, un, Vuy) — a(x, up, Vux?®)) - (Vu, — Vuy®) dz

s

IN

(a(x, un, V) — a(x, up, Vux?®)) - (Vu, — Vuy®) dz
<en(n,j)+ 2/ &o - Vudz.
Q\Q¢

Passing to the limit superior over n and then over j, yields

0< limsup/ (a(x, upn, Vuy) — a(z, up, Vu)) - (Vu, — Vu) dz

n—oo

< / & - Vudz.
Q\Q°

Letting s — 400 in the previous inequality, we conclude that

lim (a(x, upn, Vup) — a(z, up, Vu)) - (Vu, — Vu)dz = 0. (4.31)

n—oo [or

Define A,, by
A, = (a(z, up, Vuy,) — a(x, up, Vu)) - (Vu, — Vu) .

As a consequence of ([4.31)), one has A,, — 0 strongly in L!(Q"), extracting a subsequence, still denoted by {u,}, we
get A, — 0 a.ein Q". Then, there exists a subset g of Q", of zero measure, such that: A, (z) — 0 for all z € Q" \ Q.

Using , and then lemma we obtain for all z € Q" \ Q,
An(2) 2 B (p(, hlcso))) o (, [V ()
— (@) (1472 (¢, kal Van (@)]) + [Vun (@)
> 7 (a(h(es)))p(, [Vun()])
— a1(@) (1497 (pl@, ka| Vun (@)))) + [V ()]
where ¢, is the constant which appears in and ¢ (z) is a constant which does not depend on n. For z fixed

the sequence {Vu, ()} is bounded in R else, if {Vu, ()} is unbounded, there exists a subsequence still denoted by
{Vu,(z)} which tends to +o00 and we have p(z, |Vu,(z)|) — +0o0 and recall the inequality

p(x,t) < 7, (2, 1)) < 20(x,1),

for all £ > 0, which implies that
20(, k4| Vun (2)])
k4|Vu,(x)|

Since ¢ satisfies the Ay-condition, there exists a positive constant & and a positive L!-function ¢ such that

T (p(x, k[ Vun(2)]) <

2p(@, ka|Vun(@)]) _ 2kp(@, [Vun(2)])

Po (ol Vun(@)])) < SE g P < SRS

+ c(x).

Consequently, the right term in each inequality goes to 4+o0c as n goes to 400, which is a contradiction with
lim A, =0. Thus, {Vu,(z)} is bounded, then for a subsequence {u, (x)}, we have

n— oo

Vi (z) = & inRY,
(a(z,u(z),§) — a(z,u(z), Vu(z))) - (£ = Vu(z)) = 0.
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Since a(x, s, £) is strictly monotone, we have £ = Vu(zx), and so Vu,(z) — Vu(x) for the whole sequence. It follows

that
Vu, = Vu a.e. in Q.

As a consequence, since 1 is arbitrary, we get
Vu, — Vu a.e. in Q.

Then, it follows
a(z, Tn(un), V) — a(z,u, Vu)  weakly in  (Lz(Q))V.
Step 6: Modular convergence of the gradients.

From (4.29)), we get

/ a($7unjvun) ’ vun dx S / a(l‘, Un,s Vun) . V'UJX; dx
@ Q

+/ a(x, un, VU;X3) - (Vu, — Vusxj) dz
Q
+2/ € - Vude + 2er(n, ).

Q\Qs

Using now (4.30]), we obtain

/ a(x, Uy, V) - Vu, de < / a(x, un, Vuy) - Vo;x; do
Q Q

—|—2/ §O-Vudx+2612(n,j).
Q\Qs
Passing to the limit sup over n and then over j, we get

limsup/ a(x, upn, Vi) - Vu, de < /
Q

n—00 Q

a(z,u, Vu) - Vux® dz + 2/ & - Vudz.
Q\Q¢

Let s go to oo, we have
lim sup/ a(x, Up, Vuy,) - Vi, de < / a(z,u, Vu) - Vu dz.
n—o0o Q Q
On the other hand we get, by using Fatou’s lemma,

/ a(z,u, Vu) - Vudr < liminf/ a(x, Up, Vi) - Vu, de
Q Q

n—oo

Finally, we obtain
lim [ a(z,un, Vuy,) - Vu, de = / a(z,u, Vu) - Vu dz.

Then, lemma [2.4] yields
a(x, tup, Vug) - Vu, — a(z,u, Vu) - Vu in L)

Using the convexity of ¢, we have

(a: |V, — Vul

1 1
) < 390 [Vual) + So(a, [Vul).
h

——1
Taking into account that ||un|lco < oo, Sigi (e, Al |)))))) > 1 and then using (3.2) yield
P

|Vu, — Vul 1 __
(2277 < oty P (P bl )t V)
! B, Ho(x U z,|Vu
Ty P (et ) et [V
1
= B Gl e V) Ve
+ 1 a(z,u, Vu) - Vu.

25, ' (o(x, h(cs)))

(4.32)

(4.33)

(4.34)
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1 1
Applying now lemma which implies —— < — and we have
25, (p(@,hlcs))) ~ 27 (g((ec0)))
|Vu, — Vul 1
plz, < — a(x, Un, V) - Vi,
(=) < ey :
+ L a(z,u, Vu) - Vu.

Finally, since a(x, u,, Vu,) - Vu, — a(z,u, Vu) - Vu in L*(Q), it follows
u, = u in WgL,(Q) for the modular convergence

Step 7: Equi-integrability of the non-linearities. Now, we shall prove that g, (x, u,, Vu,) — g(x, u, Vu) strongly
in L}(2), we need to use Vitali’s theorem. Thanks to (4.20) and ([4.32) we have g, (z,un, Vu,) — g(x,u, Vu) a.e. in
Q, it suffices to show that the sequence {g,(z, un, Vuy,)} is uniformly equi-integrable in 2. Let E C € be a measurable

subset of , from (3.5) and (4.21)) we have
|gn(x, Un, vun)| < ﬂO‘P(zy |vun|)

Using (3.2), (4.12) and then lemma we get

Bo
In (T, Un, Vuy dJJS/ — a(z, Un, Vi) - Vuy,| dx
Jlot = 5ot b)) )

L a(r,u (22 VU T
PG J vt T Tl

Finally, by virtue of the strong convergence of {|a(z, u,, Vu,) - Vu,|} in L*(Q), so that

<

Gn (T, U, V) — g(z,u, Vu) strongly in L' (Q) (4.35)

Step 8: Passing to the limit. Let v € K, N L*°(Q). By (As2) there is a sequence {v;} C Ky N W E,(2) N L>(Q)
such that v; —» v for the modular convergence in W L, (). For all n > co, using v; as a test function in (4.1) yields

/ a(z, un, Vuy,) - V(u, —vj)dx —|—/ n (@, Un, V) (un — vj)de
Q Q
< / fn(un *Uj)dx'
Q
Since Vv; € (E, ()Y, by ([:33) one has
/ a(z, Uy, Vuy,) - Vojde — / a(z,u, Vu) - Vu;dx
Q Q
as n — oco. So that by (4.34) we get
/ a(z, un, Vuy,) - V(u, —v;)dz — / a(z,u,Vu) - V(u —v;)dz.
Q Q

Using (4.12) and (4.35)), passing to the limit as n — +oo

/Qa(amu, Vu) - V(u—vj)de + /

g(z,u, Vu)(u —vj)dr < / flu—vj)de.
Q Q

As we have, up to a subsequence still indexed by j, v; = v a.e. in Q and weakly for o(IIL,,IILg), we can pass to the
limit as j — oo to obtain

/Qa(w, u, Vu) - V(u — v)dz + /

A g(x,u, Vu)(u —v)dx < /Q flu—v)dx.

By virtue of (4.20) we have v € Ky N L>°(€2). This completes the proof of Theorem (3.3
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