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Abstract

In this paper, we consider a more general class of rational functions r(s(z)), of degree mn, with s(z) being a polynomial
of degree m. Our results not only generalize the results due to Wali and Shah [JOA, 25 (2017), no. 1, 43-53] but also
improve the results obtained by Qasim and Liman [Indian. J. Pure Appl. Math. 46 (2015), no. 3, 337-348] and Mir
[Indian J. Pure Appl. Math. 50 (2019), no. 2, 315-331].
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1 Introduction

n
For a positive integer n, let P,, be the linear space of all polynomials P(z) := Z ajzj of degree atmost n over the
j=0
field C of complex numbers and P’ be its derivative. For any positive real number k, we denote

D, ={z€C:|z| <k}
Df={z€C:|z| > k}
T, ={z€C:|z| =k}.

Let

P
Ry =Rn(21,22, 0y 2n) i= { (2) :Pe PH},

w(z)
where

n
w(z) == H(z —2j), zj€D,i=12,..n.
j=1

Thus R, is the set of all rational functions with poles z1, 23, ..., 2, and with finite limit at co. Throughout this
paper, we shall assume that all poles 21, 23, ..., z,, lie in D:. We observe that the Blaschke product B(z) € R,,, where
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with w*(z) = z"w(2) = H;L:1(1 —%;z) and satisfying |B(z)| =1 for z € T3.

Li, Mohapatra and Rodriguez [10] obtained the following Bernstein-type inequalities for rational functions r € R,
with prescribed poles 21, 22, ..., 25

Theorem 1.1. Suppose that r € R,, has exactly n zeros and all lie in 77 U Df. Then for z € T}

r(2) <

BN ) (1)

In the same paper they also proved the following.

Theorem 1.2. Suppose r € R,, has exactly n zeros and all lie in 77 U D7 . Then for z € T}

(o) = ZE ) (1.2

Wali and Shah [9] improved Theorem by proving the following result.

Theorem 1.3. If r € R,, and all zeros of r lie in 77 U D7, then for z € T}

lan| — |ao
Ir'(2)| = 2{lB( )|+|an|+a0|}|7“(2)-

2 Composition of Rational Functions

Let r € R, and s € Py, then their composition 7 o s € R,,,, is defined as (r o s)z = r(s(z)).
Here

where P(s(z)) denote the composition of polynomials P and s, and

mn

w(s(2) = [[(z = 2).

j=1

Z—Zzj

B(s(z)) = W) _ (s( ? H d-%z)

Recently, Qasim and Liman [5] considered this class of rational functions and proved several Bernstein type inequalities
for rational functions. Among other things they proved.

Theorem 2.1. Let ros € R, and if ¢4, to, ..., t,, are zeros of B(s(z))+ A and s1, sa, ..., s, are zeros of B(s(z))— A, A €
Ty, then for z € T}

PG| < 5o (BE))' Km;; n|r<s<tk>>|> - <mm ) r(swkm)],

where m/ = min |s(2)].
zeTy
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n ) m )
If P(2) = ) a;2’ and s(z) = ) b;z?, then Pos € P, and
§=0 §=0
(Pos)(z) = P(s(2))
= an (bm2™ + bp—12™ 7+ o+ b))+

Q1 (bmzm Fbp2™ L+ bo)n_1 +...+ao

=a, l(g) by 2™" 4 ((T) b;‘;lbm1> el 4 bi

mn n
= g ¢;z’, where ¢y = E ajbd, ..., Cmn = anby,.
j=0 j=0

+ ...+ aiby + ag

3 Lemmas and Proofs of Lemmas
Lemma 3.1. Let f : D — D be holomorphic. Suppose f(0) = 0 and also assume there exists b € §D, such that f

extends continuously to b, |f(b)| =1 and f/(b) exists, then
2

|/ (0)] > FESTIO)

The above lemma is due to Osserman [6].

Lemma 3.2. Let r 0o s € R,y be such that all the zeros of r(s(z)) lie in 71 U Dy, then for some z € T}
lanby,| — | > a]’bé|
j=0 }

e iy
lanbl +| 2 aibg)

Therefore we have ,
r(s(2)) P(s(z)) w(s(2))
Equivalently
2(r(s(2)))") . 2(P(s(2)") . 2(w(s(z)))’
Re( "(5(2) ) - ( P(s(2) ) f ( W) ) (31
If 21, 22, ...2mn are the zeros of P(s(z)), then
P(s(2)) = ¢mn H(z —zj),z; € DT,

where ¢y, = a, .
1
Therefore, Q(s(z)) = zm"P(s(%)), has all zeros in Dy .

Hence,
Gls(2)) = zP(s(2)) _ _Cmn =z —%
Q(s(2)) Cmn 5y 1-%Z2
is analytic in T4 U Dy, with G(s(0)) = 0,|G(s(z))| = 1 for z € Ty. Therefore applying Lemma to G(s(z)), we have
2
(3.2)

G(s(2))) > —.
(N> S eeon)
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o ) 2PGs(z) = P(s(z)
zP(s(z zP(s(z 2= (mn=1) p(g(z
G =t — T I
aop(s(D)  PGE)
Therefore, for z € T}
z(G(s(z)))/ — (i — . z(P(s(z)))l
EEE . ”+”<1%w>>
Also
zP(s(z Com T zZ =z
““”)Qéégzamll<rww>
This gives
2(G(s(2)))’ 1z
G T ETaE
Therefore for z € Ty
z(G(s(z )/ B SN
Also by vieta’s formula
, mn | Z:Oajbg)|
()| = 1] 51 = o

On combining and and noting P(s(z)) #0 for z € Ty, we get

—(mn — 1)+2Re<z(P(s(z)))/> S 2lanb?,|

P(s(2))

Hence for z € T,

!
Re(z(P(s(z))) ) > T 1 n |anbmn| ~
Janb| + | 3 a;bg)|
Jj=0

Again since

therefore

Now using the fact that for z € T}

we get

Also

(w*(5())" = mn="""(s(2)) — 2" (w(s(2)))

Therefore it can be easily be verified that for z € Ty

z(w*(s(z)))/ — o — Re z(w(s(z)))/
&<www>>‘ R( ( >)

> o —.
|anb?, | + | > a;by|
7=0
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From [3:7) and [3.8] ,we get

Re(z(r(s(z))) ) > mn = 1 N |anbfnn| - nm — |(§(3(Z)>) |
|anbpn| + | goajb{)\

Equivalently

oY Jantil = | 2 ;0]
Re{((()))} > ;{’(B(s(z)))/’ + =0 }

n .
lanbi ] + | 2 asby)
j=0
This completely proves the Lemma. [J

Lemma 3.3. Let ros € Ry,. if ty, ta, ..., t, are zeros of B(s(z)) + A and s, Sa, ..., s, are zeros of B(s(z)) — A\, A € Th,
then for z € T}

() P+ 107 D) [ < 5

—
v
—
»
—~
R
=
T
| — |
-~
n
[
75
1)
3K
3
=
V)
—~
=
=
N—
—
N———
[\
+
-~
n
[
x5
)
3K
3
=
»
—
=
Eal
N—
~—
M

The above lemma is due to Mir [I].

Lemma 3.4. If P(z) is a polynomial of degree n, having all zeros in T3 U D7, then

in |P'(2)] > in |P(2)].
min |P(z)] = nmin |P(2)]

The inequality is sharp and equality holds for the polynomials having all zeros at origin.

The above Lemma is due to Aziz and Dawood [3].

4 Main Results

In this paper, we first prove the following.

Theorem 4.1. Let r 0 s € Ry, If all the zeros of r(s(z)) lie in T3 U Dy, then for any z € Ty

| 1 AR
PN 2 e (Bl |+

}I?‘(S(Z))I,

n .
|anb| + | Zoajb%|
i=

where m denote the degree of s(z) and M’ = max |s(2)].
zelh

The result is sharp and equality holds for r(s(z)) = aB(s(z)) + 8, where s(z) = z with «, 8 € T7.

Proof . Since for z € T}, we have
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Therefore, we get by using Lemma[3.2] for z € T}

antl| = | 3 a0
= }r<s<z>>|. (41)

n .
|anby,| + | Zoajb%|
i=

Now .
[(r(s(2)))'] = Ir'(s(2))s'(2)] < |7‘/(8(Z))|§g¥f\5'(2)\-
This gives by using Bernstein’s inequality [4],

|(r(s(2))] < Ir'(s(2)) Im max |s(2)].

z€Ty

Equivalently ,
[(r(s(2))) | < mM'|r’ (s(2))].
Therefore from [I.1], we get

n .
lanbpy,| — | > ajb(J]
7=0

(s = 5 ,{\<B<s<z>>>’|+ : _}|r<s<z>>.
it anbsl +| 3 ast4|

O

Remark 4.2. Since all the zeros of r(s(z)) lie in 71 U Dy, we have [a,by,| > | 327, a;b}|, showing that Theorem
improves the result due to Qasim and Liman [5].

Remark 4.3. For 5(z) = z, Theorem [4.1] reduces to a result due to Wali and Shah [9].

We next prove the following.

Theorem 4.4. Let 7 05 € R, be such that all the zeros of r(s(z)) lie in 73 U DY, then for any z € T}

2(r(s(z / ‘ 2": ajbé‘ — |anbfn|
Re{( () }< 1{!<B<s<z>>)’| = }

r(s(2)) 2 |anb?, | + | ZO a’jb%|
]:

Proof . Since all zeros of 7(s(z)) lie in 7} U D}, and

therefore,

p— '
where ¢, = a0,

1
Therefore, Q(s(z)) = z”mP(s(%)) has all zeros in Dy .

Hence,
H(s(:) = ) =2 ] (1 2 )
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is analytic in T3y U Dy, with H(s(0)) = 0,|H(s(z))| =1 for z € T}. Thus applying Lemma [3.1| for H(s(z)), we have for

zely

/ 2
H(s(z >
T S areon

Now

Therefore, for z € T

Also for z € Dy,

H(s(z)) = Zg((;((;)))) = zz::j 1T <1 _ZJZ>

Therefore, it can easily be verified that for z € Ty

2(H(s(2))) /
HeC = oo |
Also by vieta’s formula
|(H(8(0)))/ 1 - |anbm|

[T 251 | X asby
j=1 7=0
On combining and and noting P(s(z)) # 0,for z € Ty, we get

2| 3 a by
7=0

P(s(2))

(mn +1) — 2Re<Z(P(S(Z)))I> >

Hence for z € T,
a;bl
Re(z(P(s(z))) ) < mn+1 |];o Ll
PEED 72 abgl + 3 ot
§=0

Also by we have

2(w(s(2))"\  nm—|(B(s(2)))’]
Re( ) )— 5 .

Using [£.7] and [£.8] in [4:2] we get

> —
|anby,| + | Zoajb6|
=

PR anbil = | 32 a
Re{( (s )))) } < ;{](B(s(z)))/] + =0

n .
|anb| + | Zoajb%|
J:

O

Remark 4.5. For s(z) = z, Theorem reduces a result due to Wali and Shah [9].

(4.3)

(4.5)

(4.6)

(4.8)

We also prove the following improvement of a result due to Qasim and Liman [5] and hence a generalization of the

result due to Wali and Shah [9].
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Theorem 4.6. Let ros € R, be such that all the zeros of r(s(2)) lie in TyUD]". If 1, to, ..., t,, are zeros of B(s(z))+\
and s1, S2, ..., S, are zeros of B(s(z)) — A, A € Ty, then for z € T}

|7/ (s(2))] < 1 ,!(B(S(Z)))'|[< max |r(s (tk))l) +< max [r(s (m))l)

2mm 1<k<mn 1<k<m
| 2 a;bg| — lanby,| S
gt mvwmr

|35 ath] + lanbin| (B
=0

where m’ = miTn |s(2)].
z€ly
The result is sharp and equality holds for r(s(z)) = B(s(z)) + A\, A € Ty, where s(z) = 2.

Proof . We assume 7(s(z)) # 0 for z € Ty. Now for z € T}, it can be verified that if

then

Hence for z € Ty, with r(s(z)) # 0, we get by using Theorem
. 72 72

r(s(2)) (s( )
B SN2 (r(s(z))) 27 oY | Re z(r(s(z))),
— (BN |+ [F55 ﬂwu»HR{TMm }

12 Z(T(S(Z))), ’ / { )/ ‘gzoajbd_‘an ml}

3 agbil + lanby
7=0

n .
r2 |20 aibgl = lanby,|
) 7=0

n .
| 22 a;bp| + |anb]|
§j=0
Equivalently for z € T1, we get

|32 o]~ laut
|(r(s(2)))|” + L [(B(s(2))'|| (r(s(2)))]
| goajb(])‘ + |anb%|

Using Lemma [3.3]in the above inequality, we get

12 12 "2 | ﬁjoajbél_mnb%| / 2
2 (r(s(=)) [ < [(r(s@)) | + [ (D) | = 5 | (B(s(2))) || (r(s())]|
|3 o+ lant

< ;!(B(S(z)))/f[(lg}ggx (s (tk))|> +< Jax |r(s (M))I) 1

| Z a;by| — [andy,|

[(Bs(2)) [ (r(s(2)) ™

| Z ajb |+ |an 7n‘
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Equivalently, we get by using Lemma [3.4]

O

- 2mm/ 1<k<mn 1<k<mn

2 2
7' (s(2))] < : |(B(S(Z)))/|l< max IT(S(tk))|> +< max IT(S(uk))I)

n .
| > a;by| — lanby,|
=0

-2

1
r(s()P ] 2
|3 agth) +lanty| [(BGE))'

j=0

Remark 4.7. A result due to Wali and Shah [[9], Theorem 1] is a special case of Theorem [4.6] where s(z) = z.
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