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Abstract

This paper deals with the existence of solutions to the system of nonlinear infinite-point fractional order boundary
value problems by an application of n-best proximity point theorem in a complete metric space. Further, we study
Hyers-Ulam stability of the addressed system. An appropriate example is provided to check the validity of obtained
results.

Keywords: Fractional derivative, boundary value problem, n-best proximity point theorem, metric space,
Hyers-Ulam stability
2020 MSC: Primary 34A08, Secondary 34B15, 47H10, 54H25

1 Introduction

Fractional calculus is one of the useful fields of applied mathematics which has applications in the areas such as
engineering, economics, control theory, chemistry, biology, medicine and other fields, see [21| 24, 25 [26], [39] [40].
Fractional differential equations can describe many phenomena in various fields of engineering and scientific disciplines
In consequence, the subject of fractional differential equations is gaining much importance and attention. In recent
years, there are a large number of papers dealing with the existence, uniqueness and multiple solutions of boundary
value problems for nonlinear differential equations of fractional order. For examples and recent development of the
topic, see [II, Bl [l [6], (7, T3], 16}, 17, 18], 20, 23] 27, 28, 29| 30, 34, [41] and references therein.

Fixed point theory is an indispensable tool for solving the equation Xz = z for a mapping X defined on a subset of a
metric space, a normed linear space or a topological vector space. As a non-self mapping X : A — B does not necessarily
have a fixed point, one often tries to determine an element z which is in some sense closest to Nz. Best approximation
theorems and best proximity point theorems are pertinent in this perspective. A classical best approximation theorem,
due to Fan [12], asserts that if A is a non-empty compact convex subset of a Hausdorff locally convex topological vector
space Y with a semi-norm p and X : A — Y is a continuous mapping, then there is an element z in A satisfying the
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condition that dp(z,8z) = dy(XNz, A). There have been many subsequent extensions and variants of Fan’s Theorem, see
[2, [8, 14} (15, [19] 221 31, [32], 85, [36] and references therein.

Basically the proximity theory is useful tool to find proximity point when the given mapping is non self. Let A and
B be two non empty subsets of Y such that X : A — B then a point z € A for which d(z,Nz) = d(4,B) is called a best
proximity point of X. It should be noted that best proximity point reduced to fixed point when the mapping N is self
mapping that is A = B.

In [5], Afshari, Jarad and Abdeljawad discussed the admissibility of two multi-valued mappings in the category of
complete b-metric spaces to obtain the existence of a common fixed point and by using the triangular admissibility,
they proved the uniqueness of the common fixed point. As an application of their finding, the existence and uniqueness
of the following fractional order boundary value problem studied,

D2z (s) + £(s,22(s)), 0<s <1, 1 <p<2,
"D§,2a(s) + 8(s,z1(s)), 0<s <1, 1<E<2,

1 1
21(0) = 22(0) = 0, 2 (1) = / o (6)z1 (6)dt, za(1) = / o (6)za(t)dt.

Recently, Prasad, Khuddush and Leela [30] established the existence of unique solution for a two-point fractional order
boundary value problem,

RlpCz(s) + F(s,z(s),z(s),z(s)) + ¢(s)z(s) =0, 0<s < T, 2<( <3,

by proving the existence and the uniqueness of solutions of the operator equation A(z,z,z) + Bz = z in a real Banach
space. Motivated by aforementioned works, in this paper we study the concept of n-best proximity point in a complete
metric space and establish the existence and uniqueness theorems. Moreover, as an application of our results we study
the following system of n-nonlinear infinite-point fractional order boundary value problems

RLDg}%—Zl(S) =81 (S,Zl(S),ZQ(S), ) Zn_l(S),Zn(S))7
M2 2a(s) = g2 (s, 22(s), 21(s), -+ -, Zn-1(8), Zn(s)),
(1.1)
RLDngzn—l(S) = gn—l(svzn—l(s)sz(s)v e zi(s), Zn(s)),
RLDgQL—Zn(S) = 8n (szn(s)sz(s)v T zn—l(s)vzl(s))v
satisfying
zi(0) =0 and ™Dfiz;(1) = 8;™Dfiz(0i(tiy)), i =1,2,-,n, (1.2)

j=1

where 0 <5 < 1,1 <8, <2, 0< o <B; -1, 8;5 >0, RLD6+ denotes the standard Riemann-Liouville fractional
derivative of order x € {B;, ;},¢ = 1,2, -, n, g : [0,1] x [0, +00)* — [0,400), 0; : [0,1] — [0,1] are continuous
functions. In [30], authors studied the fixed point theorem of mixed monotone ternary operators on Banach spaces,
whereas in this paper, we study n-best proximity poin theorem on metric spaces. Therefore, by applying our results we
can study different kind differential equations whereas results in [30] can only applicable for certain type of differential
equations.

2 Preliminaries

In this section, we construct kernel for the boundary value problem (1.1))—(1.2]) and estimate bounds for it, which
are useful for our later discussions.

Definition 2.1. [2I] The Riemann-Liouville fractional integral of order & > 0 of a function g : (0,+00) — R is
defined by

s s — E—1
“1bge) = [ e
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Definition 2.2. [2I] Let k be a positive integer. The Riemann-Liouville fractional derivative of order & > 0 of a
continuous function g : (0, +00) — R is defined by

dk s —_t k—&—1
*pl, g(s) = @/O (Sr(k)_a)g(t)dt,

where k — 1 < § <k, provided that the right-hand side exists.

Remark 2.3. ([2I]) In this work we need the following composition relations:

(a) ™D§, ™18, &(s) = &(s). & > 0,g(s) € L' (0, +00):

(b) RLDSJrRLIf}g(s) = RLIS;Cg(s), &> 0>0,g(s) € L0, +0).

Remark 2.4. ([10]) For ¢ > —1, we have

T 1
RLpE, 8¢ = (C+1) 3
rc-&+1)
giving inparticular RLD(‘K;+ &=m —0,m=1,2,---, N, where N is the smallest integer greater than or equal to &.

Lemma 2.5. [21] Let k be a positive integer. The general solution to RLDS;g(s) = 0 with k—1 < & < k is the function

k
g(s) = > asst 7,
j=1

where a; is a real number.

Lemma 2.6. [2I] Let ¢ > 0. Then for any function g : (0, +00) — R, we have
k
RLI(§+RLDS+€(S) =g(s) + Z%SC_J,
j=1
where a; is a real number and k is the smallest integer greater that or equal to ¢, and

RLD§+RLIS+ g(s) = g(s).

In order to study the system of boundary value problems (1.1)—(1.2)), we first consider the corresponding linear
boundary value problem,

Bpbiz;(s) =hy(s), 0<s <1, (2.1)
(oo}

z;(0) =0 and *Dgiz;(1) = Zsijzi(cri(nj)), i=1,2,--n, (2.2)
j=1

where h; € C[0,1] is a given function.

Lemma 2.7. Suppose Z;”:l 8 (GL(TLJ-))B"’_l converges F(Qﬁr(fgz) . The boundary value problem ([2.1)—(2.2]) has a unique
solution

. B 1 . . B 0 ) o (Ti3) (0s(Ti5) — )Bﬁl |
wile) = [ oile- ol e §%A TEy (23)

where

1 sBimt (1 —g)Bimoml (s —g)Bm L, t<s,
SB‘_l(l—t)Bi_“‘_l, s < t.
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Proof . Let z;(s) be a solution of (2.1). Then, by Lemma [2.6] we have

N Bl B, —2 *(s—t)fi? ,
z;(s) = a1s + ags + | ————h;(t)dt, (2.4)

0 L'(8;)

where a1 and ay are constants. Using condition z;(0) = 0, we get ag = 0. So, (2.4]) reduces to

s —t B;—1
z;(s) = a1sﬁﬁ_1 +/ (s T )

; Thi(t)dt. (2.5)

Before applying (2.2)), we first take

and using Remark 2.4 to get

]_ 1 (1 _ t)ﬁg*(XL'fl
N B—1 ‘ U ————h;(t)dt
ST 805 (00 (i) - % o I — o)

j=1 Bi—o;
m o (Tiz) (04(Ti5) — t)ﬁi—l
— . i 4 h; .
jz_;ébj/(; F(BL) L(t)dt

Plugging as value into (2.5]), we obtain

zi(s) = ! [/01 S T

B:—1 ‘ R
Zgnzl éij (Gi(Tij)) - I‘(lj;fjigu) F(BI (XL) (2 6)
m o (Ti3) (O"(T”)ft)ﬁifl s (S_t)ﬁifl ’
8,—1 i\Tij
— s 5L/ hi(t)dt:| +/ 7h[(t)dt
J; > Jo I'(8:) o I(®)
Since
18552 (0 (Ti3)) | < 8is 1zl
and (i) 81 (1)
0:(Tej (GL(TL') _ t) i 5:s Oi(Tij
8, J h;(t)dt| < —= / v(t)h; (t)dt
i/ L < | [ swmo
8 i
< T'B;) /0 v(t)h;(t)dt
O
< F(f;_)HUIILthiHLU
where v(t) = (0;(T;;) — t)®% L. Then, by comparison test, the series in (2.2) and
>0 0 (Ti;) (0;(ts5) — t)Bi 1
6L~-/ A h;(t)dt
j; > Jo I'(8:)
are convergent. So, by taking the limit as m — oo in (2.6]), we obtain
R ) K c- o) T(B; — o) (04 (i) —£)% !
2:(s) :/ hy(t)dt — g% 5,/ ] n(t)dt
0 I'(8;) ; " Jo I(8;)?
S (s—t)8 !
+/ h; (t)dt (2.7)
o TE)

: S e B
= Gi(S,t)hi t)dt — ¥t 6L/ : A RN hi(t dt.
/ ® 2% ), EAE :
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Conversely, it is clear that (2.7)) satisfies z;(0) = O Next applylng the operator D i and Di to the two sides of (2.7)
respectively and using Remark and Remark [2.4] we obtain D0 ©z;(s) =h(s) and

1 B;—x;—1 l—t Bi—o;—1 o0 O-L'(Tij) . ) —t B;—1
Dg‘izi(s) :/ s ( ) by (t)dt — gBi—oi—1 Z‘Sij / (UL(TLJ) ) h; (t)dt
0 i—1 0

F(BL — OCL‘) F(BL)
+/OS (SF—(;)_ 0:) h; (t)dt.

Substituting s = 1, we get

1 e \Bi—oi—1 O'L(TLJ) N \Bi—1
iz =2 “ra?—oc) Zf’w/ GL(T”r)mL-)t) hu{e)de. (28)

But,

L

m m 1 B;—o;—1
ZéijZL(ci(Tij)) 22553‘ (cn('rij)) ‘ 1/0 ( IE)(B h; (t)dt
j=1 j=1

o ZSLJ 0; TLJ Bt 5 o) r B — CXL)(O—L(TLJ) — t)ﬁ !

i hg(t)dt
i= 1 : 0 I(B:)?
crL(-rLJ) U (T ) t)ﬁ,;—l
IAGZA]
Since Z;n:l d;5 (Ui(Tij))ﬁﬂ_l converges to F(Qﬁri(f‘gi), it follows by taking limit m — +o0o that
b 1 B;—o;—1
(1 _ t) P~
ZéLJZL(UL(TLJ)) :2/0 WhL(t)dt
j=1
> UL(T[,j) (O-(T) _ t)ﬁi—l
-2 654/ — h;(t)dt
Z J o F(BL) ( )
oc(Ti) (gy(ty5) — t)Bi 1
+ Zéu/ JF(BL-) h;(t)dt
=2 —a— 8ij h;(t)dt. 2.
/0 F(m — %) Z & I:) (®) (2:9)

By (2.8) and (2.9)), we get (2.2)). Which shows that the solution of the integral equation (2.3)) satisfies the differential
equation (2.1) under infinite-point boundary conditions (2.2)). O

Remark 2.8. The supposition Z;"Zl d; (()'(Tj)>ﬁ_1 converges to FQ(EEB;) in the Lemma is valid. For example: Let

18755(/5226), T = 55 and o(s) = s2/3. Then

827“:%763-:

Y 85(o(ty) T =Y 18T(5/6) _ 3T(5/6) _ 2I(8)

7T5/2j2 ﬁ 71“({3—0() as m — +0o0.

j=1 j=1
The following properties are evident from the definition of G;(s, t).
Lemma 2.9. The kernel G;(s, t) has the following properties:

(¢) G;(s,t) is nonnegative and continuous on [0, 1] x [0, 1].

(’LZ) GL'(S,t> < Gi(l,t) for s,t € [0, 1] X [O, 1].
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3 Main Results

To establish our main results, it is fundamental to recall some notions, definitions amd lemmas which will be useful
in the sequel.

Let A and B be any two nonempty subset of a metric space (Y,d). Define

Pr={z2 €Y:4(z1,22) = d(z1,A)},
d(A,B) :=inf{d(z1,2z2) : z1 € A,z5 € B},
Ap = {21 € A:d(z1,22) = d(A,B), for some z3 € B},

and
By = {z2 € B: d(z1,22) = d(4,B), for some z; € A}.

Definition 3.1. [37] Let A and B be two nonempty subsets of a metric space (Y,d). An element z € A is said to be a
best proximity point of the nonself mapping X : A — B iff it satisfies the condition

d(z,Nz) = d(4,B).

Definition 3.2. [33] Let (A,B) be a pair of nonempty subsets of a metric space (Y,d) with Ag # 0. Then the pair
(A,B) has P-property if and only if

B
) = d(z1,22) = d(y1,¥2),
where z1,2z9 € A and y;,y2 € B.
Definition 3.3. [1I] A map ¢ : [0,+00) — [0, +00) is called a c-comparison function if it satisfies:

(i) ¢ is a monotone increasing,

(id) D02 o @™ () converges for all ¢ € [0, +00).

If we replace the second condition by lim,_,~ ¢"(t) = 0 for all t € [0,4+00), we obtain the notion of comparison
function, which is more general than the one of c-comparison function. It is known that if ¢ is a comparison function,
then ¢(t) < t for all t > 0 and ¢(0) = 0.

Let © be the set of all continuous functions 0 : [0, +00)"*? — [0, +00) such that for every t,s,z1,22, -, 2n €

[0, 4+00),
0(0,t,8,21,22," * ', Zn—3,Zn—2,Zn—1,2n) = 0,
0(t,s,0,z1,22," " ', Zn—3,Zn—2,Zn—1,2n) = 0,
0(t,s,21,22,0, -, 2—-3,2Zn—2,Zn—1,2n) = 0,
0(t,s,z1,22,23, -, 0,2n—2,2n-1,2n) =0,
0(t,s,z1,22,23," - ", Zn—2,2n—1,0,2,) = 0,

if n is odd and
0(0,t,8,21,22," " *, Zn—3,Zn—2,Zn—1,2Zn) = 0,
0(t,s,0,21,22, - , Zn—3,2Zn—2,Zn—1,2n) = 0,
0(t,s,z1,22,0, *,2n—3,2n—2,Zn—1,2n) = 0,
0(t,s,z1,22,23, -, Zpn—2,0,2n-1,2,) =0,
0(t,s,z1,22,23," * *»Zn—2,Zn—1,2n,0) = 0,

if n is even.
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Definition 3.4. [37] Let 0 be a continuous function in © and ¢ be a comparison function. A mapping X : A — B is
said to be a generalized almost (i, 0)-contraction if

d(Nzq,Nzg) = <p(d(zl, 22)) + G(d(ZQ, Nz;) — d(A,B),d(z1, Nz3) — d(A, B),
d(z1,Rz1) — d(A,B),d(z2,Nz5) — d(A,B))
for all z1,zo € A.
Definition 3.5. [38] Let (Y,d) be a metric space with A # () and B # () are closed subsets. Let X : Y2 — Y be a

mapping such that d(Zl7N(Zl722)) = d(A, B) and d(ZQ,N(ZQ,Zl)) = d(A,B). Then XN has a coupled best proximity
point (z1,z2).

Definition 3.6. [27] An element (z1,22,23, * *, Zn—1,2,) € Y" is called an n-fixed point of a mapping N : Y* — Y if
N(Z]722,23,Z4, s '7Zn717zn) =2, N(227213233247 e ‘,anl,zn) = Z3,
N(23,22,21,24, c ',anl,Zn) = Z3, N(Z4azlvz3vzlv o ~,Zn,1,2n) = Z4,
N(Zn—17223237z47 o '7217271) = 271,—17 N(Z'IL7227Z37247 o '7Z'IL—1721) = ZTL'

Now we define n-best proximity point as follows:

Definition 3.7. Let (Y,d) be a metric space with A # () and B # () are closed subsets. Let X : Y* — Y be a mapping

such that
d(zl7N(217227237 o '7anlvzn)) = d(AaB)7 d(ZQa N(ZQ,Zl,Zg, . '7Zn717zn)) = d(A7 B)7

d(Z3,N(23722,Zl7 o 'azn—lazn)) = d(AaB)7 d(z47 N(Z4722,23,217 o '7Zn—1azn)) = d<AaB)a

d(zn_l,N(zn_1,22,23,~ . -,zl,zn)) = d(A,B), d(zn,N(zn,ZQ,z;),,- . -,zn_l,zl)) = d(A,B).

Then R has an n-best proximity point (z1,2z2,23, * *, Zn—1,2n)-
If A = B, then n-best proximity point (z1, 22,23, -+, Zn_1,2n) of N is an n-fixed pooint of .

Theorem 3.8. Let (Y,d) be a complete metric space. Let A # (), B # () are closed subsets with Ay and By are
nonempty. Let N : Y — Y be a continuous mapping which satisfies

(1) N(Ap X By X Ag X -+ X By X Ag(n products)) C By,
(i) N(Bg x Ap X By X -+ X Ag X Bp(n products)) C Ay,
(#31) Pair (A,B) has the (P)-property.
Let 0 be a continuous function in © and ¢ be a comparison function satisfying

d(X(z1,22,25, ", Zn—1,Z0)s R(¥1, Y2, Y3, Yn—1,¥n)) < @(M1) + 0(n2), (3.1)

h = d(z;,yi d
where 11 11;1L_agxn (z;,y:) an

N2 = (d(Yh N(217227z37 o '7zn—1azn)) - d(AaB)7d(Y27N(22721723, o 'azn—lazn)) - d(AvB)a

d(Y37N(Z37227217 o 'azn—lazn)) - d(A7B)a o '7d(Y7La N(Z’rHZQ;Z?ﬂ o '7Zn—1azl)) - d(A7B)7

d(zl,N(Zl,ZQ,Zg, o 'azn—lazn)) - d(A7B)7d(227N(223217237 o 'azn—17zn)) - d(AaB)a
(23, X(

Z37N Z3,22,21, " 'azn—lazn)) - d(A7B)a o ',d(Zn, N(Zn,ZQ,Zg,, T '7zn—1azl)) - d(A7B))

Q

for all z;,y; € Y. Then (y1,y1,¥y1," -, ¥1,y1) is the unique n-best proximity point of X.
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Proof . Choose zg2; € Ag and zg 2;—1 € Bg. Then, R(2¢,2, 20,1, 20,3, s Z0,n—1, Z0,n)s N(20,4, 20,1, 20,25 ***, Z0,n—1, Z0,n ) N(Z0,6, 20,1, 2

Y Z0,n—1,20,n), " ‘ . € Bg and R(2o,1, 20,2, 20,3, - : 5 Z0,n—1520,n), N(20,3, 20,2,
20,3, * "y 20,n—1,Z0,n), N(20,5, 20,2, 20,3, * * *,Z0,n—1,20,n), - € Ag. So, there exists z19; € Ag and z1 2,1 € By such
that
d(21,17 N(2o,1,20,2,20,3," * "+ Z0,n—1, Zo,n)) = d(21,27 N(20,2,20,1520,3," * s Z0,n—1, Zo,n))
d(Z1,3> N(Zo,3,zo,2720,1, C 5 20,n—1, ZO,n)) == d(Zl,m N(Zo,mzo,mzo,:a,' : ’720,11—1720,1))
= d(4,B).
Continuing this process, we construct n-sequences (zj2;) in A and (z,2,—1) in B for { = 1,2 - --,n such that
d(zk+1,17 N(Zk,17 Zk,27 Zk,3; ) Zk,nfla Zk:,’I’L)) = d(A7 B)?
d(zr+1,2, N(Zk,2, 28,1 28,3, 5 Zhon—1, Zkon) ) = d(A, B),
d(zk+1,3, N(Zk,3, 28,2, Zk 15" % Zhin—1,Zk,n) ) = d(4, B),
d(zk+1,n,—17 R(zg n—1,2Zk,2:2k,3, " - '7Zk,17zk,n)) =d(A,B),
d(zk+1,na N(Zk,na Zk,2,2k,3," " "y Zk,n—1, zk,l)) - d(A, B)
for k=0,1,2,-- -
Case (i) Suppose there exists k € N such that d(z1,2zk+1,1) = d(Zk.2, 2k112) = -+ - = A(2k 0, Zkt1,n) = 0. Thus,
d(A,B) <d(zk,1,N(2k,1,2k,2: 28,3, * s Zhyn—1, Zkn))
<d(zg1,Zk+1,1) + d(Zk+1,1, R(2zg1, 25,2, 28,3, * zk,n—lazk,n))
=d(A,B).
Thus we have d(A,B) = d(z;ml7 N(zg,1,28,2, 28,3, > Zkn—1, zk,n)). Similarly, we obtain
d(A,B) = d(zk,2, N(Zk,2, Zk,15 Zk,35 " * Zhon—1, Zkn) ) »
d(A7 B) = d(zk,37 N(Zk,?n Zk,27 Zk,la Y zk,nfla Zk,n));
d(A? B) = d(zk,’ru N<Zk7n7 zk727 Zk,37 Y Zk:,’nfla Zk,l))'
Therefore, (zx,1,2k,2,2k,3," " > Zkn—1,2Zkn) 1S an n-best proximity point of N.
Case (ii) Suppose that d(zx;,zk+1,;) > O for some i. Since pair (A,B) has the P-property, d(zk,l,
N(Zk—1,1,Zk-1,2,Zk—1,3," * +Zk—1,0—1,Zk—1,n)) = d(4,B) and d(zx41,1,N(Zk1,2k2,2Zk3, " * *» Zhin—1,2Zkn)) = d(A,B)
and using (3.1)), we have
d(zk,1,2641,1) = A(N(Zho1,15 Zk—1,2, Zk—1,3, " * *» Zh—1,n—1> Zh—1,n)> N(Zk,1, 28,2, Zk,3, " * *» Zhyn—15 Zhyn))
< ¢ max. d(zk—1,i,2k,:)) + 0(M3),
= p( X d(Zk—1,i,Zk,i)),
where

M3 = (d(Zk 1, N(Zk—1,1,2Zk—1,2, Zk—1,3, " '7Zk71,n7172k71,n)) — d(A7B)7

d(2k 2, N(Zk—1,2,Zk 1,1, Zk—1,3," - '7Zk71,n7172k71,n)> - d(A,B),
d(Zk 3, N(Zk—1,3,22, Zk—1,1," * s Zh—1,n—1, Z/c—l;n)) - d(A7 B),
d(Zk,n N(Zk—1,m5 Zk—1,2:Zk—1,3, " * » Zk—1,n—1,Zk—1,1)) — (4, B),

(

d(Zk 1,1, N(Zh—1,1,Zk—1,2: Zk—1,3+ " * *» Zh—1,n—15 Zk—l,n)) - d(A,B)7

d(2k—1,2, R(Zk—1,2: Zk—1,1 Zk—1,3, " * *» Zk—1,n—1, Zk—1,n)) — d(A,B),
(

d(zk-1,3, R(Zk—1,3: 22, Zk—1,1, " * " Zk—1,n—1, Zk—1,n)) — (4, B),

d(Zk—Lm N(Zk—1,n, Zk—1,2,Zk—1,3, " * s Zh—1,n—1, Zk—l,l)) - d(A»B))-
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Since d(z,1, R(Zk—1,1,Zk—1,2: Zk—1,3+ * * > Zh—1,n—1, Zk—1,n)) = d(A,B), it follows from the property of 6 that 6(n3) = 0.
Similarly, we can prove that

d(zk,5,Zk41,3) < @(121?<Xnd(zk—1,i,zk,@)), j=2,3,-n.

Combining above all, we get

max d(ze,g,2k+1,5) < o( oax d(ze-1, Zk.i))- (3.2)

Repeating (3.2)) k-times, we obtain

Joax. d(zk,5,zk41,5) < ¢ max A(zk—1,i5Zk,i))

2
< ( 12152(71 d(zg—2,;, Zk—l,i))

< @k( max d(Zo,i,Zl,i))-

1<i<n
Thus,
i d(zigziing) =0, 5 =12,
On other hand,
d(A,B) < d(zk,1,N(2k,1,2k,2: Zk,3: " * *» Zhyn—1, Zkn))

< d(zk,1,Zkt1,1) + d(Zk+1,1, N(zk1,28,2, 28,3, - 'azk,nflazk,n))

< d(Zka Zk+171) =+ d(A7 B)'
Letting k — +o00 in the above inequalities, we get

d(zk,1,N(Zk,1, 2,2, 28,35 " * > Zhin—1,Zk,n)) = A(A,B).

Similary, we can prove
d(zk,jaN(zk,lazk,Zasza Y zk,n—lazk,n)) = d(AaB)a J = 27 37 s n.

Consider € > 0. Since (pk(lrgax d(zg,;, 21,5)) as k — 400, there exists kg € N such that

<i<n

1
d(2k,is Zkt1,i) < 5(5 —p(e))

hold for all k > kg and i =1,2,-- -, n.

Claim: max d(zk,;, 2m,;) < € for all m >k > k. (3.3)

We use the induction on m to prove above claim. Assume inequality (3.3) holds for m = p. Now, we prove relation
(3.3) for m = p + 1. By using the triangular inequality, we have

A(zk,1,2p+1,1) < UZk,1,2841,1) + A(ZRt1,15 Zp11,1)- (3.4)

Since pair (A,B) has the 7P-property, d(zk_,_l,l,N(zk71,zk72,zk73,- . ~,zk7n_1,zk,n)) = d(zp+171,N(zp,1,zp72,
Zp3, ' Zpn—1,Zpn)) = d(A,B) and using (3.1, we have

A(Zk+1,1, Zpt1,1) Zd(N(Zk,1,Zk,27Zk,3w S Zhn—1,2Zkn), N(Zp1,Zp,2, Zp,3, - - '»Zp,nflvzp,n))

< o( max d(zei2p0)) +0(4), (3.5)
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where
b = (d(zp,laN(zk,laZk,ZaZk,Sa' © Zkn—1,Zkn)) —d(A,B),
d(zp,27 N(Zk,Za ZEk,15,2k,3," " "y Zkn—1, Zk,n)) - d(Aa B)a
d(zp,n, N(Zk,na Zk,2,2k,3," " "y Zkn—1, zk,l)) - d(Av B)a
d(zk,1, N(Zk,1, 28,2, 2,3, "+ Zhyn—15Zk,n)) — d(A,B),
d<zk,27 N(Zk,Zv Zk,152k,3y " " "y Zk,n—1, Zk,n)) - d(A7 B)7
d(zk,n, N(Zkns 28,2, 2,35 * 5 Zhon—15Zk,1)) — d(A, B))
By using the properties of 0 and klirf d(2,1,N(Zk,1, 2820 230+ 5 Zhin—1, Zk,n) ) = d(A, B), we get
c—r+00
limsup 6(¢;) = 0.
k——+oo
Similarly, we can have
d(Zk41,i Zpt1,) =A(N(Zk,1, 28,2, ZR,35 > Zhyn—15Zkn) s N(Zp,1, Zp,2, Zp3: % Zpon—1, Zpin) )
= QO( llgLaSXn d(zkw ZILL)) + 9(&), (=23, ) TV (3 6)

and
limsup 6(¢;) =0,

k—+oo
Thus for kg large enough, we have

0(4)) < %(5 @), i=1,2,- .

Combining all the relations, from i = 1 to n, we obtain

max d(zk i, Zpr1.) < E.
12i5m (/wv P+ 7L)

Hence, the claim. Thus (2 2;) and (zg2;—1) are Cauchy sequences in A and B respectively. Since (Y,d) is complete,
there exist y; € Y, i =1,2,- - -, n such that

lim zg; =y;, i=1,2,---,n.
ks o0 A Yis 4y 9

Since A and B are closed, we get yo; € A and yo;_1 € B. Since R is continuous,

kEI—iI-lood(sza N(Zk,1,2k,2, 21,3, " * s Zhn—1,2kn)) = A(A,B),

implies

d(ylv N(Y17Y27Y3a t HYn—laYn)) = d(Aa B)

Similarly, we can prove

d(Y27 N(Y27Y17Y37 o
d(Y3, N(Y37Y27Y1, o

d(yna N(anYQ,YS, o

Thus, (y1,y2,¥3, "
Using the P-property of pair (4,B), we get

d(YhYQ) = d(N(ylaYQay?n t

5 Yn-1, Yn)) =
5 Yn—1, yn)) =

'7Yn—17yn)7 N(YQ’Yl,Y?n :

‘7Yn—1ay1)) = d(Aa B)

“yYn—1,Yn) is an n-best proximity point of X. Now, we show that yy =ya =y3 =+ =yn_1 = ¥n-

: 'aYn—hYn))-
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Using inequality (3.1), we get

d(y1,y2) =d(R(y1,¥2, 98, - > Yn—1,¥n)s R(¥2, Y1, Y85 - s Yn—1,¥n))
< p(max{d(y1,y2),d(y2 y1)}) +0(¢)
<¢(d(y1,y2)), (3.7)
since
(= (d(Yz,N(yz,yl,ys, © 5 ¥n-1,¥n)) — d(A,B),d(y1,N(y2,¥1,¥3: - - ¥n—1,¥n)) — d(A,B),

d(y Y2,Y1,Y3a' CHyYn-1,¥Yn ) (A B
d(ylaN Y27Y11Y3, s Yn-1,¥n ) (A;B
(A,B

Y

B),

) (YmN(YzaYleBa” y Yn— 1aYn) (

7d(y21 Y%Yl»YS»"'aYnflaYn) ( ) )7
(
(

~— ~— ~—

—d A,B))
A,B),
d(yns R(y2,¥1, 735 Yn—1,¥n)) — d(4,B),d(y1, N(y2,¥1, Y3, * » ¥n—1,¥n)) — d(4,B),

O7d(y37N(y27y1ay3a T 'aYnfher)) - d<AaB)a o 'vd(YmN(Y%YLY& o 'aerlaYn)) - d(A7B)>
So, 8(¢) = 0. Since p(t) < t for all t > 0, we have from that

d(yBaN ¥2,¥1,¥3," " 5 ¥n—1,Yn ) d ) (Yn7N(y23y1ay37'";Yn—17Yn )

Y

/\

(O,d(y1,N(Y2,y1,y:a,--nyn_l,yn)) d(A,B),d(ys, R(y2,¥1,¥3: - s ¥n-1,¥n)) —d

d(y1,y2) < @(d(y1,y2)) <dly1,y2) = y1 =y2.

Similarly, we can prove y; = y2 = y3 = - - - = y,. 10 prove the uniqueness, let ¢ be another n-best proximity point.
Then,

d(y1,0) =d(R(y1,y1,y1, - - y1,¥1), R(G, G, G-+, G, 0))
<¢(d(y1,0)).
Again, since ¢(t) <t for all t > 0, we conclude that d(yy, ) = 0. Thus, y; = . The proof is completed. [J

Corollary 3.9. Let (Y,d) be a complete metric space. Let A # (), B # () are closed subsets with Ay and By are
nonempty. Let X : Y — Y be a continuous mapping which satisfies

(1) N(Ap X Ag X -+- X Ag(n products)) C By (or) N(Bg X By X -+ X By(n products)) C Ay,
(#4) Pair (A,B) has the P-property.
Let 0 be a continuous function in © and ¢ be a comparison function satisfying
d(N(21,22,23,~ S Zn—1,Zn)s N(V1, V2,73, ~,yn_1,yn)) <oMm1)+0(m2), forall z;,y; €Y.
where 17 and 13 are defined in Theorem Then (y1,y1,¥1," -+, ¥1,y1) is the unique n-best proximity point of X.

Proof . Choose 20,i S Ao. Since N(AO X AQ X X Ao) g Bo, we get, N(ZOJ, 20,2,20,3, """, 20,n—1> ZO,n); N(Zo)g, 20,1,20,3, "
‘o ZO,»,L_17ZO7,,L), e N(Zo,n, 20,2,20,3," * "5 20,n—1, 20,1) S Bo. Then by fOHOWiIlg Theorem we get that (yl,YQ, y3,-
“Yn—1,¥n) is the unique n-best proximity point of X. [

Take B = A in Theorem we have the following result.

Corollary 3.10. Let A a closed subsets of a complete metric space (Y,d). Let X : Y* — Y be a continuous mapping
with R(A x A x -+ - x A(ntimes)) C A. Suppose there exists a comparison function ¢ and 6 € O such that

d(N(thQazZia T ’7zn—1vzn)7N(ylay23y37 t '7Yn—17Yn)) < 90(111) + 6(113), for all z;,y: €Y.
where 11 is defined in Theorem [3.§ and
N3 = (d(y17N(zla227z37 o 'aZn—17Zn))7d(Y2, N(Z2721723, o '7Z7L—lazn))7

d(y37 N(Zfi; 22,21, '7zn—1azn))7 t '7d(Yna N(zn7223 Z3," " ’7Zn—1azl))7

d(zlv N(Zla Z2,23," " ‘,anlvzn))vd(227 N(227217237 ) znflazn)),
d(ZBa N(Z3; 22,21, '7zn—1vzn))7 t ',d(Zn, N(znsza Z3, " '7Zn—1vzl))>-

Then there exists a unique n-fixed point of N.
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4 Existence of Solutions for System of Fractional Order BVPs (|1.1)—(|1.2)

In this section, we derive necessary conditions for the existence of solutions for the problem ([1.1))—(1.2)). On the
set Y = C([0, 1], R) of all continuous real-valued functions defined on [0, 1], we take the metric d on Y defined by

d(z,y) = Zlﬁ)pl] |z(s) — y(s)|

for all z,y € V.
Define an operator X : Y* — Y by

N(Zlu Z2," " '7Zn717zn) = Z Nizh
=1
where .
Riza(s) = [ Gile,0)ea(6,21(0).2a(t). 2 (B))de
0

o1(T1y) (01(T1j) _ t)Bl—l

—gh! ; d1; /0 I'(B) g1(t,z1(t),z2(t), - - -, Zn(t))dt,

NQZQ(S) = ‘/O G2(87t)g2(t,22(t),21(t), .. '7Zn(t))dt

o2(T25) (O‘Q(ng) o t)BZ—l

- sm_l;f’zi/o ['(B2) g2(t,22(t), z1(t), - - -, Zn(t))dt,

Rz () :/0 G (5, £)8n (£, 20 (£), Z2(£), - - -, 20 (£))dt

> 0n(Tny) 0p(Thi) —t Bp—1
—ghnt Zénj /0 (On IJ‘zB ] ) gn(t,zn(t),2z2(t), - -, z1(t))dt.
=1 "

Then from Lemma, it is clear that (z1,za,- - -, z5) is a solution of the system (1.1))—(1.2) if and only if it is a fixed
point of N.

Theorem 4.1. Suppose there exists M > 0 such that

|gi(S,ZL7Z27 21, '7Zn) - gL(S»YuY% Y1, 7Yn)| S MZ |z£ - YL| for all ZiyYi S (41)
i=1
and (= 1,2, - -, n. Further, there exist p; > 0 and 0 < @2 < 1 such that
|g£(t,0,0,~ : 70a0)| < 1

and

i o+ 20(8;) <
— g F(BL + I)F(BL — O(L‘) = P2

where G} = maxg¢[p,1] fol G;(s,t)dt. Then there exists a unique solution to the boundary value problem (1.1))—(1.2).

1602
1 —ngpa

. Then it is clear that A is a

Proof . Define a set A by A = {z € Y: |z(s)| < p3 for s € [0,1]}, where p3 >
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closed subset of Y. Now, we prove N(A x A x - - - X A(ntimes)) C A. Let (z1,22,- - +,2,) € A™. Then,

n

N1 2oz <3 Nzi(s) = 3
=1

(=1

> o) (gy(ty5) — t)Bi 1
B;—1 [ANZA
— 8" E 55»/ gi(t,z;(t),z2(t), - -, 2,(t))dt
= J 0 F(B,) ( ( ) ( ) ( ))

1
/0 Gi(s, £)gi (b, 2:(8), 22(8) - - 20 (8))dlE

=2 U 1Gi(s, )| [l (6, 2i(8), z2(8), - 2a (1)) — :(5.0,0, -, 0)] + |gi(£. 0,0, -, 0)[]dt
U’(T'J) o+ \B:—1
+ |s|® _126”/ GL(TL%)(BL)t) [lgi (£, 2i(t), 22(t), - - -, Zn(t)) — £i(£,0,0, - - -, 0)]
+ lgi(£,0,0, -,o>|]dt}
GI(TLJ) ) B;—1
< z:: {/ Gi(s, t) z:lzJ )|+ 1gi(t,0,0,- -, 0)[]dt +|s LJ/ G,(TL%)(Bi)t)

Z|zJ )| + |gi(t, 0,0, - )|]dt]

M=

(i) (g.(T..) — £)Bi—1
[/ G5, £)l(ns + 1)t + Z dis /0 (GL(TL%)(ﬁ)t) (ng3 + @1)dt}

i=1 ji=1
n X 1 [ -
< : _ (o (T )P
_(n@?,"'pl); [GL + F(BL+1> j;éLJ(GL(TLJ)) ]
- * 2F(ﬁb>
= . ; = . < .
(nps + 1) ; [Gb TG DI, - ou)} (ns + 1)z < s

That is, (21,22, - -, z,) € A. Therefore, N(A™) C A. Next, let (z1,22, -+, 2n), (y1,¥2," -, ¥n) € Y". Then

d(N(zlvz27 o ',Zn), N(Y17Y27 o ayn)) = bl[lp] |N(21322a e '7271) - N(Yh}’% o 7Yn)|
s€[0,1

< sup {/ |G;(s,t) |gL (t,2z:(t),za(t), -, z1(t), - -, zn(t))
_gi(tayi( )’y2( )"' '7y1(t)a' : "yn(t>)|]dt

o[Bi—1 Y i) (o () — )%t 2:(t). 2 - ez
+| | j_zlébj/o F(BL) [|gL(t, L(t)7 2(t)7 ) 1(t)7 ; n(t))

- gi(tayi<t)’y2(t)v o '7y1(t)a' : "yn(t>)|]dt
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n 1
< [ [ faits.t |Z|zk £)lde
i=1 L70
0UTs) (g;(11) — £)Bi
+ ZéLJ/ ( JF)(B) ) Z |zx (t |dt}
n 1
<y [ | lGits.t)lm max faits) ~ yi(o)le

=1

o; (TLJ) O-L(T[j) _ t)ﬁi—l

+25LJ/ ) n max |z;(s) - yi(s)|dt]

< n; [/0 |Gi(s,t)] 11252(”{ Sltp |z:(s) — Y,:(S)|} dt

s€0,1]

o (Ti5) ) +)\Bi—1
+n Z 5LJ / UL(TL%)(Bi)t) 1r£iagxn { sup |ZL~(S) — YL'(S)} dt:|

s€[0,1]

O'L(TLJ) GL(TLJ) _ t)ﬁ -1

i [/ 1Gi(s, t) \dt+25LJ/ ) dt] [max d(zi,:)

" 2T'(B;)
<13 [6+ e )

<n max d(z;,y;)-
= N2 2 (wyL)

Define ¢ : [0,+00) — [0,+00) by ¢(s) = ngss and 0 : [0, 4+00)*" — [0,+00) by 0(t1,t2," -, tn,S1,82, - -, 8p) =
inf{ty,ts, ", tn,s1,82, -, Sn . Then

d(N(Zl7227 t '>Zn)>N(Y1aY27 o aYn)) < §92 lglLa<X d(ZL7YL)

< ¢( max d(z;,v:))

1<i<n
< p(max d(z;,y:)) +8(Ca),
where
by = (d(YhN(Zl,Zz,Zs, o Zno1,2Zp)),d(y2, N(22, 21,23, 1, Zn—1,2Zn)),

d(yg,N(23,22,zl,~ . ~7zn,1,zn)), . -,d(yn, N(zp,, 22,23, - - ~7zn,1,zl)),

d(Zl,N(Zl,ZQ,Z3,' . ~7zn,1,zn)),d(227N(22,zl723,~ . -,zn,hzn))7

d(23,N(23,22,zl,~ . ',zn_l,zn)), . ~,d(zn, N(zp,, 22,23, - - ~,zn_1,zl)))
O

5 Hyers-Ulam Stability Analysis

In this section, we derive necessary conditions for the stability analysis of Hyers-Ulam’s type. For some positive
€, >0,i=1,2--- n, consider the system of inequalities given by

RLD

IN

+zl( ) — 81 (Sazl(s)vZQ(s)" ! '7Zn—1(s)’zn(s)) €1,

RLDgi 2(s) — g2 (s,ZQ(s),zl(s),- . ~7zn,1(s),zn(s))‘

IN

€2,

(5.1)

M0 20-1(5) — 801 (5,20-1(8),22(8), -+, 21(8), 20 (8)) | < 0,

RLD

:20(5) = 8 (8,20(5),22(8), - 201 (), 22(s)) | < e
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for s € [0,1] := I. Then the system of boundary value problems (1.1)-(L.2) is Hyers—Ulam stable if there exist constants
L; >0,i=1,2,---,n such that for each solution (z1,zs, - +,z,) € C*(I,R) of the system of inequalities (|5.1)), there
exists a unique solution (y1,y2,- -+, yn) € C*(I,R) with

|(21’Z2’ . 'azn)(s) - (Y17Y27 o '7yn)(s)‘ < (Z L; +Mp2> €. (5'2)

i=1
Remark 5.1. We say that (z1,za, - -,z,) € C*(I,R) is a solution of the system of inequalities ((5.1]) if there exist
functions {Pp; € C"(I,R) which depend upon z; respectively such that

(1) ;| <e; s €1, and

(#4) for s € I,

RLDgizl(S) =81 (Sa Zl(S), 22(3)7 o '7271*1(3)’ Zn<s)) +¢1(S)7
"LDR: Z5(s) = g2 (s, 22(8),21(8), -, Zn1(8), Zu(8)) + Wa(s),
(5.3)
RLDngZn—l(S) =gn-1(s,2n-1(s),22(s), - - -,21(8), Zn(8)) + Wrn-1(s),
RLDgiZ”(S> = g”(s’ Zn(s)7 22<S)7 o '7Zn71(s)’zl(s)) +1l)n(s>7

Lemma 5.2. Let (21,22, -, 2,) € C"(I,R) be the solution of the system of inequalities (5.1). Then the following
inequalities hold:

21(s) —/0 G1(s, )gn (b, 21(£), 2a(t), - - -z (t))dt

> o1(T15) o1 (Tq:) — )81
ret Yoy [ R (210,200 2 ()| < i,
=1
1
22(s) ~ | Galo. Dlga(t 22(0). 21 (). 2 (0)de
0
o ()'2(T2j) 09(To:) — t B2—1
rett Yoy [ ROzl 2a(e) 2 (0| < Lo
j=1

1
zn(s) — / Gn(s,t)gn(t,zn(t), z2(t), - - -, z1(t))dt

0

e on(Tnj) 0n(Thi) —t Bn—1
+55 7Y B /0 (nllTng) — ) gn(t,zn(t),22(t), - - -, z1(t))dt
j=1

< Ln n-
T'(8,) =
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Proof . From the Remark and Lemma the solution of (5.3) and (1.2)) is given by
1
21(5) = [ 616, 0)len(t,21(0) 2a(), 20 (0) + 1 (0)d
0

s Z 613 /G1 TIJ) O-l(Tlli)(Bl)t)Bll [gl(tvzl(t)vz2(t)v’ " zn(t)) + wl(t)}dt

22(s) = / Ga(s, t)[ga (b 25(t), 21 (8), - -+, 2 (8)) + Wa(t)]d

(72(T23) ) — )B2—1
5% 12623/ GQ(T?)(BQ;) [g2(¢,22(t), 22(t), - - -, 2n(t)) + a(t)]dt

Zn(s) = /0 Gn(s,t)[gn(t,2n(t), 22(t), - - - 21 (1)) + Wn(t)]dt

I'(B,)

From first equation of the system (5.4), we have
1
21(s) - / 615, D)ga (6,21 (), 22(8), - 2o (£))dt
0

0'1("(13) ) +\Bi—1
e [ O s ) e

Gl(TlJ) 0— Ti:) — t B31—1
/ 161 (s, £ Is (8) [t + ||~ 12613 / ! 1;)(51)) [a(t)lde

x 2I(81)
= [Gl * (B + 1)F(lf31 — o)

:| €1 :=Lieq.

Similarly we can prove other inequalities. [J

% G (Tny) ) )t
_ Sﬁn*l z_; 6nj A (Un(TnJ) t) [gn(t,zn(t), ZQ(t)’ .. .721(t)) +¢n(t)]dt

Theorem 5.3. Suppose (4.1]) holds. Then the system of boundary value problems (1.1))—(1.2)) is Hyers-Ulam stabile,

if .
D LitMps <1,
=1

where o is defined in Theorem [.1]

Proof . Let (z1,2z1, -+, 2zn) € C"(I,R) be the solution to the system of inequalities (5.1) and let (yi1,y1,- -

'aYn) €
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C"(1,R) be the unique solution to the system of boundary value problems (1.1)~(L.2). Then by Lemma[5.2] we have

1
1z1(s) — y1(s)| < |z1(s) —/0 Gi(s, t)gi(t, y1(t), y2(t), -, yn(t))dt

0 o1(T13) o1(T1:) — t B1—1
+SB1_1261j/0 o) ) g1(t, y1(t), y2(¢), - - -, ya(t))de
j=1

['(81)
<

1
21(s) - / 61 (5 t)g1 (£, 21 (), Za(t), - - - 20 (£))dlt
o0 01(T13) ) _ +\B1—1
pob Y ay [ T a1 0,200z (o)
j=1

['(81)
+/0 G1 (s, t)llg1 (£, 21(t), 2z2(t), - - Zn(t)) — &1 (£, 71(t), y2(t), - - -, yu(t)) |dt
e 00 | o1(T15) (Ul(le) _ t)131—1

+ |s] ;613/0

X g1 (t,21(t), z2(t), - -+, Zn(t)) — &1 (£, y1(t), y2(t), - - -, ya(t)) [dt

<Lig; +M/ G4 (s, t Z|zJ t)]dt
Gl(le) ) B31—1 1
+MZ&1J/ Gl(ﬁli)(ﬁl)t) Z|zJ t)|dt

<Lie; +M/ |G1(Sat)|dt2”2j — vl
0 j=1

Ul(le) (o1(T15) _t)ﬁl—l n
J
+Mzau / by il

Taking supremum on both sides over s, we obtain

2T (81)
— <L M|GF
o = val < ey 4 [ }ZHJ sl

Similarly, we can have

2I'(8 .
o = il < Laes +1 |67 + g — ]ZHZJ yl. =23 n

Adding all the above inequalities from i = 1 to n, we obtain

NG
Zna ybn<zLa+Mz[c* A B%}znzj g3l
< ZLL‘& +M@22 lz5 = ysll-
i=1 j=1

That is

Z”ZL yill < 1- ZL Ei-

Let e = max{e; : i =1,2,---,n}. Then, we have
n
||(21,ZQ,' : 'azn) - (y1,y2, o 'ayn)H S Z ”Zj - Yj”

< ZEL=1LL€
T 1Mo
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U
Example 5.4.
1
RpdPzi(s) =145+ 5 5in (z1(s) — 22(s)),
1 (5.5)
RLDgﬁzQ(s) = 2sin(s) + 3 cos (z2(s) — z1(s)),
for 0 < s < 1, satisfying
z;(0) =0 and ™Diiz;(1) =Y 8;"Diz(0i(tyy)), i =1,2. (5.6)
j=1
So, we have n = 2, 8 = % 132 =2 Letoy =3, xp =1, 815 = 1%55(/52/6), 895 = 60ﬂr(;31£(2§/):;?(”/20), Ty = j%, Toj = %,

o1(s) = s%/% and oy(s) = Then

2613 o1 (1) = Z 18T(5/6) _ 30(5/6) _ 20'(B:)

= —
/22 Ui (B —ag) BT

and

% it T 60+/21(19,/20) sin(7r/20)
;523' (o2(m2)) ™ =3 m2T(3/4)32

j=1
10v/20(19/20) sin(7r/20)  2I'(By)

F(3/4) _F(ﬁg—ocg) as m — +oo.

Let z;,y; € Y. Then

1(5.21,22) — g1(5,1,72)| < g5 (21(s) — 22()) — 5in (31(5) — y2(9))

%|(zl(s) — zz(s)) — (yl(s) - VQ(S))l

1 2
o E |zi _yi‘v
3

i=1

IN

IN

lg2(s, 21, 22) — ga(s,y1,y2)| < 1\ cos (z1(s) — za(s)) — cos (y1(s) — ya(s))|

(21(5) — 22(2)  (31(5)  1o(e)
2 e

lga(s, z1,22)| = |1+ s| < 2, |ga(s, z1,22)| = |2sin(s)| < 2. So, M = % p1 = 2 and

;
< —
=3
1
3

<

2 2
20(8;)
x ~ 0.5571212542 = y.
;:1 §: {G TE T (Bi—oq)] 0.55712125 0o

i=1

Z L; 4+ Mps ~ 0..7428283389 < 1,

(=1

Therefore, all the conditions of of Theorem are satisfied, so there exists a solution for the system (5.5)—(5.6)). Also,
in view of Theorem the condition of Hyers—Ulam stabilities are also satisfied. Therefore, the solution of system

(5.5)—(5.6]) is Hyers—Ulam stable.
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6 Conclusion

The proximity theory is useful tool to find proximity point when the given mapping is non-self. We established
the existence of solutions to the system of nonlinear infinite-point fractional order boundary value problems by an
application of n-best proximity point theorem in a complete metric space. By applying our results we can study
different kind differential equations whereas results in [28] [30] [33] can only applicable for certain type of differential
equations. Therefore, our findings are extended and more general. In the future, the following aspects can be explored
further: (1) we study best proximity points of cyclic mappings. (2) we try to apply our obtained results for fractional
difference equations, dynamical equations on time scales, fractional differential equations on time scales, etc.
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