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Abstract

Using fixed point methods, we prove the Hyers-Ulam stability and the superstability of n-Jordan x-homomorphisms
in Fréchet locally C*-algebras for the generalized Jensen-type functional equation

i () s (50 = 2sta)

where 7 is a fixed real number greater than 1.
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1 Introduction and preliminaries

The stability of functional equations was first introduced by Ulam [37] in 1940. Assuming G; and G5 to be Banach
spaces, Hyers [I7] gave a partial solution to Ulam’s problem for the case of approximate additive mappings. Aoki [2]
generalized Hyers’ theorem for approximately additive mappings. In 1978, Rassias [35] generalized the theorem of
Hyers by considering the stability problem with unbounded Cauchy differences. Rassias’ influential paper [35] played
a key role in the development of what we call Hyers-Ulam-Rassias stability of functional equations.

Theorem 1.1. [35] Let f: E — E’ be a mapping from a normed vector space E into a Banach space E’ subject to
the inequality

[f(a+0b) = fla) = FO)I < e(llal|” + [1b]"), (1.1)
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for all a,b € E, where € > 0 and p < 1 are constants. Then, there exists a unique additive mapping T : E — E’ such
that

2¢
2-2v

[f(a) = T(a)|| < lall”, (1.2)

for all a € E. If p <0, then (1.1)) holds for all a,b # 0, and (1.2 holds for a # 0. Also, if the function ¢ — f(ta) from
R into E’ is continuous for each fixed a € X, then T is linear.

Rassias’ theorem was generalized by Forti [13] and Gavruta [14], who permitted the Cauchy difference to be
arbitrarily unbounded. Some results on the stability of single variable functional equations and nonlinear iterative
equations can be found in [Il [38]. Isac and Rassias [22] were the first to apply the stability theory of functional
equations to new fixed point theorems and their applications.

The concept of n-Jordan homomorphism in complex algebras was introduced by Eshaghi Gordji et al. [7]. Also,
see [8, [0 15l B0]. Jamalzadeh et al. [23] introduced the Hyers-Ulam stability and the superstability of n-Jordan
x-derivations in Fréchet locally C*-algebras.

During the last few decades, several stability problems of functional equations have been investigated by many
mathematicians. See [5l [10] [1T], 12} 08| 19] 2], 24} 25] 26 27, 29, [31], 32, [33].

The remainder of this section is devoted to some preliminaries which will be needed in what follows.
Definition 1.2. Let X be a set. A function d : X x X — [0,00] is called a generalized metric on X whenever the

following hold.

(1) Given z,y € X, d(z,y) = 0 if and only if x = y.
(2) For all z,y € X, d(z,y) = d(y, x).
(3) For all z, y and z in X, d(z,2) < d(z,y) + d(y, 2).

Next, we recall a fundamental result of fixed point theory.

Theorem 1.3. ([3, [6]) Let (X, d) be a complete generalized metric space, and J : X — X be a strictly contractive
mapping with Lipschitz constant L < 1. Then for each given element x of X, either

d(J"z, J" ™ z) = oo

for all nonnegative integers n, or there exists a positive integer ng such that
(1) d(J"z, J"z) < oo, for all n > ng;
(2) the sequence {J"z} converges to a fixed point y* of J;
(3) y* is the unique fixed point of J in the set Y = {y € X | d(J™z,y) < oo};
(4) d(y,y*) < _Ld(y,Jy), forally e Y.

In this paper, we assume that n is an integer greater than 1.

Definition 1.4. ([16]) Let A and B be complex algebras. A C-linear mapping h : A — B is called an n-Jordan
homomorphism if

for all a € A.

Definition 1.5. Let A and B be C*-algebras. An n-Jordan homomorphism h : A — B is said to be an n-Jordan
x-homomorphism if

for all a € A.

Definition 1.6. A topological vector space X is said to be a Fréchet space if

(1) it is complete as a uniform space,
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(2) it is locally convex, and
(3) its topology can be induced by a translation invariant metric, that is, a metric d : X x X — R such that
d(z,y) =d(z+a,y+a) for all @, z and y in X.

For more detailed definitions of such terminologies, we refer the reader to [I0]. Note that a ternary algebra is called
a ternary Fréchet algebra whenever it is a Fréchet space with a metric d.

A Fréchet algebra, named after Maurice Fréchet, is a special topological algebra whose topology can be induced by
a translation invariant metric. Trivially, every Banach algebra is a Fréchet algebra, as the norm induces a translation
invariant metric with respect to which the space is complete.

A locally C*-algebra is a complete Hausdorff complex x-algebra A whose topology is determined by its continuous
C*-seminorms, in the sense that a net {a;};er converges to 0 if and if the net {p(a;)}ier converges to 0, for each
continuous C*-seminorm p on A. See [20 B4]. The set of all continuous C*-seminorms on A is denoted by S(A). A
Fréchet locally C*-algebra is a locally C*-algebra whose topology is determined by a countable family of C*-seminorms.
Clearly, any C*-algebra is a Fréchet locally C*-algebra.

Given locally C*-algebras A and B, a morphism of locally C*-algebras from A to B is a continuous *-morphism ¢

from A to B. An isomorphism of locally C*-algebras from A to B is a bijective mapping ¢ : A — B such that ¢ and

! are morphisms of locally C*-algebras.

Hilbert modules over locally C*-algebras generalize Hilbert C*-modules by allowing the inner products to take
values in locally C*-algebras rather than in C*-algebras.

In this paper, using fixed point methods, we prove the Hyers-Ulam stability and the superstability of n-Jordan
x-homomorphisms in Fréchet locally C*-algebras for the following generalized Jensen-type functional equation

rf (“:b> trf (“;b> — 2/(a).

2 Stability of n-Jordan *-homomorphisms

Lemma 2.1. ([28]) Let A and B be linear spaces, and f : A — B be an additive mapping such that f(ua) = pf(a)
for all a € A and all 4 € T' := {\ € C: |\| = 1}. Then, the mapping f : A — B is C-linear.

Theorem 2.1. Let A and B be Fréchet locally C*-algebras, and f : A — B be a mapping for which a function
p:Ax A—[0,00) exists such that

rif (Cl_:b) +ruf (a - b) —2f(pa) < ¢(a,b), (2.1)

[f(a™) = f(a@)"]| < ¢(a,b) (2.2)
and

[f(a®) = f(a)"|| < ¢(a,b), (2.3)

for all 1 € T" and all a,b € A. If there exists L < 1 such that ¢(a,b) < rLyp(2,2) for all a,b € A, then there exists a
unique n-Jordan x-homomorphism A : A — B such that

(@) = h@)] < ;= (a0), (2.0

for all a € A.
Proof . It follows from ¢(a,b) < rLp(2,2) that
J

o I
lim ro(r’a,r’b) < lim r]ﬁgp(a,b) =0, (2.5)

j—o0 Jj—o0
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for all a,b € A. Letting p =1 and b =0 in (2.1, we get

rf (%) = fla)|| < e(a,0) (2.6)
for all « € A. Hence,
L f(ra) — f(@)|| < T p(ra,0) < Li(a,0) (27)

for all a € A. Define a generalized metric on the set X = {g| g: A — B} by
d(h,g) = inf{C € R" : [[g(a) = h(a)|| < Cp(a,0), Va e A}.
It is easy to show that (X, d) is complete. Now, we define the linear mapping J : X — X by
1
T(h)(a) = ~h(ra),
for all a € A. By [4, Theorem 3.1],
d(J(g),J(h)) < Ld(g, h)
for all g,h € X. It follows from (2.7) that
a(f,J(f)) < L.

By Theorem J has a unique fixed point in the set X7 = {h € X : d(f,g) < oo}. Let h be the fixed point of J.
Then, A is the unique mapping for which
h(ra) = rh(a)
holds for all @ € A. On the other hand,
lim d(J*(f),h) = 0.

k—o0

So,

lim ikf(rka) = h(a) (2.8)

k—oo T

for all a € A. It follows from d(f,g) < 27d(f, J(f)) that

L
< —.
This implies (2.4). Also, it follows from (2.1)), (2.5) and (2.8)) that
a+b a—>b . 1 _ _
D o0 <o) = A s 0) 4 764 - 0) - Sl

SRS S
< klgrolo T—kga(r a,r"b) =0,

for all « € A. Hence,

b —b
rh <a+ ) +rh (a ) = 2h(a)
r r
for all a,b € A. Letting s = “T“’ and t = “T’b in the above equation, we get

h(s) + h(t) = %h <T(52+ ”) (2.9)

for all s,t € A. If we let t = 0 in (2.9)), we get Sh(s) = h(5s). So, h(t) = h(5t). Therefore, H is Cauchy additive.
Letting b = a in (2.1)), we obtain

< ¢(a,a)

rif (2;) —2f(pa)
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for all a € A. This implies that

1h(2pa) — 2uh(a)]| = Jim | F(2prka) — 2pf(rta)]

: 1 k k
< Jlim (e, ra) =0,

for all p € T and all @ € A. By Lemma 2.1, the mapping h : A — B is C-linear. It follows from (2.2)) that

|
3

[h(a") = (h(a)")]

IN
e
5
=
2
S
2
~—

A
8
b
pS
—
=
8
.
&

[h(a®) = (R(a)")] = h}gﬂ Wh(a ) — W(h(a))
1
< kllngo Wﬁp(rka,rka)
< lergO rikcp(rka,rka)
= 0,

for all a € A. Thus, h: A — B is an n-Jordan *-homomorphism satisfying (2.4)), as desired. O

Now, we prove the Hyers-Ulam stability for n-Jordan *-homomorphisms in Fréchet locally C*- algebras.

Corollary 2.2. Let p € (0,1) and 0 € [0,00) be real numbers. Suppose f : A — B satisfies
a+b a—b
rf (r) +wf< " ) —2f(pa)

1£(a™) = f(a)"|| < 26]|al”

< O(llal” +[1617),

and

1(a®) = fa)"|| < 20]|a|)”,

for all p € T and a,b € A. Then, there exists a unique n-Jordan *-homomorphism h : A — B such that

ORVOIET =

for all a € A.

Proof . Let ¢(a,b) := 0(||a[” + [|b]|?), for all a,b € A, and L = 2P~! in Theorem [2.1] to obtain the desired result. O

3 Superstability of n-Jordan x-homomorphisms

In this section, we prove the superstability of n-Jordan x-homomorphisms on Fréchet locally C*-algebras for the
generalized Jensen-type functional equation. We need the following lemma to establish our main results.
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Lemma 3.1. Suppose that A and B are Fréchet locally C*-algebras. Let 8 > 0 and, p and q be real numbers with
g>0andp+q#1. If f: A— B satisfies f(0) =0 and

s (“52) vt (“52) = 21| < Ol ol (3.1)
for all p € T and all a,b € A, then f is C-linear.
Proof . Letting b =0 in (3.1) we obtain

f(ra) =rf(a), f(na) = pf(a), (3-2)

for all 4 € T and all a € A. Hence, it follows from (3.1) and (3.2]) that
[f(a+b)+ fla—b) = 2f(a)l| < Ollal["[|b]]*, (3-3)

for all a,b € A with a # 0. Since f(r"a) =" f(a) for all a € A and all integers n, we get

rPra\ "
I ta+0)+ fla =) - 20@] <0 (22 ) alPlole
for all integers n and all a,b € A with a # 0. Thus,

fla+b)+ fla—1b) =2f(a)

for all a,b € A with a # 0. Since f is odd, the last equality holds for all a,b € A. Hence, f is Cauchy additive and we
conclude that f is C-linear by Lemma [2.1} O

Now, we prove the superstability of n-Jordan #-homomorphisms in Fréchet locally C*-algebras.

Corollary 3.1. Counsider p,s € Rand 6,q € (0,00) with p+¢q # 1, s # 2. Let A and B be Fréchet locally C*-algebras.
Suppose that f: A — B satisfies f(0) =0,

wa (ajb) +ruf (a ; b) — 2f(ua)

(™) = f(a)"|| < llall®,

< Olal”llb]*

and

for all 4 € T and all a,b € A. Then, f is an n-Jordan x-homomorphism.

Proof . By Lemma 3.1, f is C-linear. Hence,

(@) = (f(a)"]| < Ok>"[la|l®

for all integers k and all a # 0. Therefore, f(a™) = f(a)", and the desired result follows. O

Corollary 3.2. Consider p € R and 6,9 € (0,1) with p + ¢ # 1,2. Suppose that A and B are Fréchet locally
C*-algebras. If f: A — B satisfies f(0) = 0 and
a+b a—"b
’mf (r) +ruf ( " ) —2f(pa)

for all 4 € T and all a,b € A, then f is an n-Jordan *-homomorphism.

max{|[f(a®) = (f(a)*[l, [I/(a") = (f(a))"],

} < Olal”lo]*
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