
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,786 |
تعداد دریافت فایل اصل مقاله | 7,656,233 |
Legendre cardinal functions and their applications in solving nonlinear stochastic differential equations | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 141، دوره 13، شماره 2، مهر 2022، صفحه 1757-1769 اصل مقاله (517.18 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.23965.2644 | ||
نویسنده | ||
Rebiha Zeghdane* | ||
Department of Mathematics, Faculty of Mathematics and Informatics, University of Bordj-Bou-Arreridj, Algeria | ||
تاریخ دریافت: 22 تیر 1400، تاریخ بازنگری: 26 مهر 1400، تاریخ پذیرش: 25 آذر 1400 | ||
چکیده | ||
This paper presents a new numerical technique for solving stochastic Ito integral equations. A new operational matrix for integration of cardinal Legendre polynomials are introduced. By using this nexw operational matrix of integration and the so called collocation method, stochastic nonlinear integral equations are reduced to systems of algebraic equations with unknown coefficients. Only small dimension of Legendre operational matrix is needed to obtain a satisfactory results. Some error estimations are provided and illustrative examples are also included to demonstrate the efficiency of the new technisue. | ||
کلیدواژهها | ||
Brownian motion؛ Legendre polynomials؛ Itô integral؛ Numerical solution؛ Collocation method؛ Operational matrix | ||
مراجع | ||
[1] A. Alipanah, Spectral Methods using cardinal functions, PHD Thesis in applied Mathematic, AmirKabir University of Technology, 2006. [2] M. Asgari, E. Hashemizadeh, M. Khodabin and K. Maleknedjad, Numerical solution of nonlinear stochastic integral equation by stochastic operational matrix based on Bernstein polynomials, Bull. Math. Soc. Sci. Math. Rouman. Tome. 57 (2014), 3–12. [3] W.F Blyth, R.L May and P. Widyaningsih, Volterra integral equations Solved in Fredholm form using Walsh functions, ANZIAM. J. 45 (2004), 269–282. [4] J.P. Boyd, Chebychev and Fourier spectral methods, Dover Publications, Inc., 2000. [5] C. Canuto, M. Hussaini, A. Quarteroni and T. Zang, Spectral methods in fluid dynamics, Springer, Berlin, 1988. [6] F. Mohamadi, A wavelet-based computational method for solving stochastic Itˆo-Volterra integral equations, J. Comput. Phys. 298 (2015), 254–265.[7] M.E.A. El-Mikkawy and G.S. Cheon, Combinatorial and hypergeometric identities via the Legendre polynomials- A computational approach, App. Math. Comput. 166 (2005), 181–195. [8] D. Funaro, Polynomial approximation of differential equations, Springer Verlag, New York, 1992. [9] M.H. Heydari, M.R. Mahmoudi, A. Shakiba and Z. Avazzadeh, Chebyshev cardinal wavelets and their application in solving nonlinear stochastic differential equations with fractional Brownian motion, Commun. Nonlinear Sci. Numer. Simul. 64 (2018), 98—121. [10] M. Heydari, Z. Avazzadeh and G.B. Loghmani, Chebychev cardinal functions for solving Volterra-Fredholm integro differential equations using operational matrices, Iran. J. Sci. Technol. 36 (2012), no.1, 13–24. [11] M. Ghasemi and C.M.T. Kajani, Application of Hes homotopy perturbation method to nonlinear integro-differential equations :Wavelet- Galerkin method and homotopy perturbation method, Appl. Math. Comput. 18 (2007), no. 1, 450–455. [12] A. Gil, J. Segura and N.M. Temme, Numerical Methods for Special Functions, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2007. [13] Gulsu, M. and Sezer, M. The approximate solution of high-order linear difference equation with variable coefficients in terms of Taylor polynomials , App. Math. Comput. 168(2005) 76-88. [14] M.M. Kader, N.H. Sweilam and W.Y. Kota, Cardinal functions for Legendre pseudo-spectral method for solving the integrodifferential equations, J. Egypt. Math. Soc. 22 (2014), 511–516. [15] P.E. Kloeden and E. Platen, Numerical solution of stochastic differential equations, Springer, Berlin, 1992. [16] K. Parand and M. Delkhosh, Operational matrix to solve nonlinear Riccati differential equations of arbitrary order, St. Pertersburg Polytech. Univ. J. Phys. Math. 3 (2017), 242–254. [17] M. Lakestani and M. Deghan, The use of Chebychev cardinal functions for the solution of of a partial differential equation with an unknown time-independent coefficient subjectto an extra measurement, J. Comput. Appl. Math. 235 (2010), no. 3, 669–678. [18] M. Lakestani and M. Deghan, Numerical solution of fourth-order integro-differential equations using Chebychev cardinal functions, Int. J. Comput. Math. 87 (2010), no. 6, 1389–1394. [19] Y. Mahmoudi, Wavelet Galerkin method for numerical solution of nonlinear integral equation, App. Math. Comput. 167 (2005), no. 2, 1119–1129. [20] K. Maleknejed, R. Mollapourasl and M. Alizadeh, Numerical solution of Volterra type integral equation of the first kind with wavelet basis, Appl. Math. Comput. 194 (2007), no. 2, 400–405. [21] K. Maleknejad, M. Khodabin and Rostami, Numerical method for solving m− dimensional stochastic Itˆo Volterra integral equations by stochastic operational matrix based on block-pulse functions, Comput. Math. Appl. 63 (2012), 133–143. [22] X. Mao, Approximate solutions for a class of stochastic evolution equations with variable delays-part II, Numer. Funct. Anal. Optim. 15 (1994), no. 1-2, 65–76. [23] G.N. Milstein, Numerical integration of stochastic differential equations, Math. Appl. Kluwer, Dordrecht, 1995. [24] F. Mirzaee and E. Hadadiyan, A collocation technique for solving nonlinear stochastic Itˆo-Volterra integral equation, Appl. Math. Comput. 247 (2014), 1011–1020. [25] F. Mirazee, S. Alipour and N. Samadyar, Numerical solution based on hybrid of block-pulse and parabolic function for solving a system of nonlinear stochastic Itˆo-Volterra integral equations of fractional order, J. Comput. Appl. Math. 349 (2019), 157–171. [26] F. Mirazee and N. Samadyar, On the numerical solution of stochastic quadratic integral equations via operational matrix method, Math. Meth. Appl. Sci. 41 (2018), no. 12, 4465–4479. [27] F. Mirazee and N. Samadyar, Application of hat basis functions for solving two-dimensional stochastic fractional integral equations, Comput. Appl. Math. 37 (2018), no. 4, 4899–4916. [28] F. Mirazee and S. Alipour, Approximation solution of nonlinear quadratic integral equations of fractional order via piecewise linear functions, J. Comput. Appl. Math. 331 (2018), 217–227. [29] F. Mirazee and A. Hamzeh, A computational method for solving nonlinear stochastic Volterra integral equations, J. Comput. Appl. Math. 306 (2016), 166–178. [30] F. Mirazee and N. Samadyar, Numerical solutions based on two- dimensional orthonormal Bernstein polynomials for solving some classes of two-dimensional nonlinear integral equations of fractional order, Appl. Math. Comput. 344 (2019), 191–203.[31] F. Mirazee and N. Samadyar, Using radial basis functions to solve two dimansional linear stochastic integral equations on non-rectangular domains, Engin. Anal. Bound. Elem. 92 (2018), 180–195. [32] F. Mirazee and N. Samadyar, Numerical solution of nonlinear stochastic Itˆo-Volterra integral equations driven by fractional Brownian motion, Math. Meth. Appl. Sci. 41 (2018), no. 4, 1410–1423. [33] F. Mirazee, N. Samadyar and S.F. Hoseini, Euler polynomial solutions of nonlinear stochastic Itˆo-Volterra integral equations, J. Comput. Appl. Math. 330 (2018), 574–585. [34] M.H. Heydari, A new direct method based on the Chebyshev cardinal functions for variable-order fractional optimal control problems, J. Franklin Inst. 355 (2018), 4970—4995. [35] M.H. Reihani and Z. Abadi, Rationalized Haar functions method for solving Fredholm and Volterra integral equations, J. Comput. Appl. Math. 200 (2007), 12–20. [36] X. Shang and D. Ha, Numerical solution of Fredholm integral equations of the first kind by using linear Legendre multiwavelets, Appl. Math. Comput. 191 (2007), no. 2, 440–444. [37] A.M. Wazwaz, A first in integral equations, New Jersey, World Scientific, 1997. [38] S. Yousefi and M. Razzaghi, Legendre wavelets method for the nonlinear Volterra-Fredholm integral equations, Math. Comput. Simul. 70 (2005), no. 1, 1–8. [39] S.A. Yousefi, A. Lotfi and M. Dehghan, He’s variational iteration method for solving nonlinear mixed Volterra-Fredholm integral equations, Comput. Math. Appl. 58 (2009), no. 11-12, 2172–2176. | ||
آمار تعداد مشاهده مقاله: 44,144 تعداد دریافت فایل اصل مقاله: 433 |