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Abstract

This paper establish the existence of solution, and the Hyers-Ulam-Rassias stability of an Euler Lagrange type cubic
functional equation using the fixed point method.
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1 Introduction

S. M. Ulam raised a number of questions in his famous lecture of 1940 to the Mathematics Club of the University
of Wisconsin, one of which may be put as follows.

Suppose G is a group and G′ is a metric group and f : G −→ G′. Given ε > 0, does there exist a δ > 0 such that

d
(
f(xy), f(x)f(y)

)
< δ for all x, y ∈ G implies there exists a homomorphism L : G −→ G′ such that

d
(
f(x), L(x)

)
< ε for all x ∈ G ?

If there exist such a homomorphism L(xy) = L(x)L(y), then it is said to be stable. Similarly, if a functional
equation is replaced by a functional inequality, then when can we assert that the solution of the functional inequality
lie near the solution of the functional equation? The study of this problem led to the development of what is now
known as the stability problems of functional equations.

D. H. Hyers [9] was the first to give an affirmative answer to the above problem, in 1941, with respect to addition
in a Banach space. This result was extended by T. M. Rassias [18] in 1978 with an unbounded Cauchy difference, and
later in 1993, T. M. Rassias and P. Šemrl [19] further extended by considering a monotonically increasing symmetric
homogeneous function of degree p. In 1994, Gǎvruta [4] also further extended the result of T. M. Rassias. The problem
with regards to multiplication was addressed by John A. Baker [2] in 1980, and Skof [20] first discussed the stability
problem of a quadratic functional equation in 1983. Many researchers have contributed to the study of the stability
problems of functional equations.
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2 Preliminaries

In 2002, Jun and Kim [10] introduced and obtained a general solution of the cubic functional equation

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(2x− y) + 12f(x). (2.1)

and proved the Hyers-Ulam-Rassias stability.

In 2009, Eshaghi Gordji and Khodaei [6] introduced the functional equation

f(x+ ky) + f(x− ky) = k2
[
f(x+ y) + f(x− y)

]
+ 2(1− k2)f(x) (2.2)

for fixed integers k with k ̸= 0,±1 and obtain its general solution and the generalized Hyers-Ulam-Rassias stability in
quasi-Banach spaces.

In 2010, Jun et al. [12] introduced the functional equation

f(x+ ny) + f(x− ny) + f(nx)

= n2[f(x+ y) + f(x− y)] + (n3 − 2n2 + 2)f(x) (2.3)

where n ≥ 2, and established the equivalence of (2.3) and the cubic functional equation (2.1). It is interesting to note
that if f is a solution of (2.3) then (2.3) can be reduced to (2.2). One may also refer to [5], [14], [15], etc. for more
works on the stability problem of cubic functional equations.

In 1968, J. B. Diaz and B. Margolis [3] proved a fixed point result in a generalized complete metric space.

Definition 2.1. [3] Let X be a set. A function d : X ×X −→ [0,∞] is called a generalized metric on X if d satisfy
the following conditions:

1. d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x) for all x, y ∈ X;

3. d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

The pair (X, d) is then called a generalized metric space.

Let (X, d) be a generalized complete metric space. A mapping T : X −→ X is said to be Lipschitzian [13] if there
exists a constant k ≥ 0 such that for all x, y ∈ X,

d
(
Tx, Ty

)
≤ kd(x, y).

The smallest number k for which the above relation holds true is called the Lipschitz’s constant of J . A Lipschitzian
with the Lipschitz’s constant k < 1 is called a contraction mapping.

Theorem 2.2. [3] Let (X, d) be a complete generalized metric space and T : X −→ X be a contraction mapping with
the Lipschitz constant α < 1. Then for each x ∈ X, either

d(Tnx, Tn+1x) = ∞ for all nonnegative integers n,

or there exist a positive integer n0 such that

1. d(Tnx, Tn+1x) <∞ for all n ≥ n0;

2. The sequence
{
Tnx

}
converges to a fixed point z∗ of T ;

3. z∗ is the unique fixed point of T in the set

Y =
{
y ∈ X|d(Tn0x, y) <∞

}
;

4. d(y, z∗) ≤ 1
1−αd(y, Ty) for all y ∈ Y .

Using this result, many authors have discussed the stability problems of different functional equations. For instance,
one may refer to [8], [10], [12], [11], [16], [17], and the references therein.
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3 Main results

In this section, we consider the Euler Lagrange type cubic functional equation

f(nx+ y) + f(nx− y) + n
[
f(x+ ny) + f(x− ny)

]
= n(n2 + 1)

[
f(x+ y) + f(x− y)

]
, (3.1)

n ̸= 0,±1 and prove the existence of solution of the functional equation, and obtain the Hyer’s-Ulam-Rassias stability
of the same using the fixed point method.

We first note that f(x) = cx3 is a solution of (3.1) for all c ∈ R. Also, if f is a solution of (3.1) then, putting
x = y = 0, y = 0 and x = 0 in (3.1), we get f(0) = 0, f(nx) = n3f(x) and f(−y) = −f(y), respectively.

In light of this, we call the functional equation (3.1) an Euler Lagrange type cubic functional equation.

3.1 Existence of solution

Let X and Y be real linear spaces.

Theorem 3.1. If a mapping f : X −→ Y is a solution of the functional equation (2.3), then f is a solution of the
functional equation (3.1).

Proof . Let f be a solution of (2.3). Then, putting x = y = 0, y = 0 and x = 0 in (2.3) we get f(0) = 0,
f(nx) = n3f(x) and f(−y) = −f(x), respectively.

Replacing x by nx in (2.3), we get

n3[f(x+ y) + f(x− y)] + f(n2x) = n2[f(nx+ y) + f(nx− y)]

+ n3(n3 − 2n2 + 2)f(x)

=⇒ n[f(x+ y) + f(x− y)] + n4f(x) = [f(nx+ y) + f(nx− y)]

+ n(n3 − 2n2 + 2)f(x)

=⇒ n[f(x+ y) + f(x− y)] = [f(nx+ y) + f(nx− y)]

+ (2n− 2n3)f(x). (3.2)

Since f(nx) = n3f(x), (2.3) can be rewritten as

f(x+ ny) + f(x− ny) = n2[f(x+ y) + f(x− y)] + 2(1− n2)f(x). (3.3)

Multiplying (3.3) by n and adding the resultant equation with (3.2), we get (3.1), showing that every cubic function
is a solution of (3.1). □

Remark 3.2. It may be noted that a mapping f is a cubic mapping if and only if it is a solution of the functional
equation (2.1) (refer [10]) or the functional equation (2.3) (refer [12]). It is interesting to prove the equivalence of the
functional equation (3.1) with either (2.1) or (2.3).

Theorem 3.3. If f : R −→ R is a solution of the functional equation (3.1) and is continuous at a point then f is
continuous on R and f(x) = f(1)x3 for all x ∈ R.

Proof . Suppose that f is continuous at α ∈ R and {xk} is a sequence in R with xk −→ 0 as k → ∞. Then for a
fixed m and n,

f
(
nα+mxk

)
= n3f

(
α+

m

n
xk

)
= n3f(x0)

as n→ ∞, showing that f is continuous at 0.
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Now, replacing y with ny in (3.1), we get

n3
[
f(x+ y) + f(x− y)

]
+ n

[
f
(
x+ n2y

)
+ f

(
x− n2y

)]
= n(n2 + 1)

[
f(x+ ny) + f(x− ny)

]
and replacing x with x+ y and y with x− y, respectively in the above, we get

8n3
[
f(x) + f(y)

]
+ n

[
f
(
(n2 + 1)x+ (1− n2)y

)
+ f

(
(1− n2)x+ (n2 + 1)y

)]
= (n3 + n)

[
f
(
(n+ 1)x+ (1− n)y

)
+ f

(
(1− n)x+ (n+ 1)y

)]
Substituting x = α and y = xk in the above equation, we get f(xk) −→ 0 as k → ∞. □

3.2 Stability

Considering X to be a real linear space and Y a complete linear metric space, we obtain a stability result of the
functional equation (3.1) in the sense of Hyer’s-Ulam-Rassias using the fixed point method.

Theorem 3.4. Let ϕ : X2 −→ [0,∞) be a function such that a mapping f : X −→ Y with the property f(0) = 0
satisfies the inequality ∥∥∥f(nx+ y) + f(nx− y) + n[f(x+ ny) + f(x− ny)]

− n(n2 + 1)[f(x+ y) + f(x− y)]
∥∥∥ ≤ ϕ(x, y) (3.4)

for all x, y ∈ X and n ̸= 0,±1. If ψ : X −→ [0,∞), defined by ψ(x) = ϕ
(
x
n , 0

)
for all x ∈ X, be such that there exists

α < 1 with
ψ(x) ≤ αn3ψ

(x
n

)
(3.5)

for all x ∈ X, then there exists a unique Euler Lagrange type cubic function C : X −→ Y such that∥∥f(x)− C(x)
∥∥ ≤ α

1− α
ψ(x) ∀ x ∈ X. (3.6)

Proof . Consider the set S =
{
g
∣∣ g : X −→ Y, g(0) = 0

}
. Define the generalized metric d on S by

d(g, h) = dψ(g, h) := inf Sψ(g, h), ∀ g, h ∈ S

where Sψ(g, h) =
{
µ ∈ R+ :

∥∥g(x)− h(x)
∥∥ ≤ µψ(x), ∀ x ∈ X

}
,

and inf Sψ(g, h) = ∞, if Sψ(g, h) = ∅. Then (S, d) is complete. For, if
{
gn

}
is a Cauchy sequence in

(
S, d

)
, then for

any ε > 0 there exists a positive integer N such that

d
(
gm(x), gn(x)

)
< ε if m,n ≥ N.

Since

d
(
gm, gn

)
= inf Sϕ(gm, gn)

= inf
{
µ ∈ (0,∞) :

∥∥gm(x)− gn(x)
∥∥ ≤ µϕ(x, 0), ∀ x ∈ X

}
< ε,

there exists λ ∈ (0, ε) such that ∥∥gm(x)− gn(x)
∥∥ ≤ µϕ(x, 0) < εϕ(x, 0) ∀ x ∈ X. (3.7)

Hence
{
gn(x)

}
is a Cauchy sequence in Y for all x ∈ X. Since Y is complete, for every x ∈ X, there exists g(x) ∈ Y

such that
lim
n→∞

gn(x) = g(x) and g(0) = 0.
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Thus, g ∈ S and from (3.7), for all x ∈ X, we have∥∥gn(x)− g(x)
∥∥ ≤ εϕ(x, 0) ∀ n ∈ N

=⇒ d(gn, g) = inf Sϕ(gn, g) ≤ ε ∀ n ∈ N
=⇒ lim

n→∞
gn = g,

showing that (S, d) is complete.

Define the mapping T : S −→ S by

T (g(x)) :=
1

n3
g(nx) ∀ g ∈ S and ∀ x ∈ X.

We observe that for all g, h ∈ S, if µ ∈ Sψ(g, h) and µ < λ, then∥∥g(x)− h(x)
∥∥ ≤ µψ(x) ≤ λψ(x) ∀ x ∈ X

=⇒ λ ∈ Sψ(g, h).

Also, we note that, for all g, h ∈ S and λ ∈ (0,∞),

d(g, h) = inf Sψ(g, h) < λ.

This implies there exists µ ∈ Sψ(g, h), such that µ < λ.

Therefore, λ ∈ Sψ(g, h), by the above observation and hence∥∥g(x)− h(x)
∥∥ ≤ λψ(x) ∀ x ∈ X

=⇒
∥∥∥∥ 1

n3
g(nx)− 1

n3
h(nx)

∥∥∥∥ ≤ 1

n3
λψ(nx) ∀ x ∈ X

=⇒
∥∥∥∥ 1

n3
g(nx)− 1

n3
h(nx)

∥∥∥∥ ≤ λαψ(x) ∀ x ∈ X, by (3.5)

=⇒ d(Tg, Th) ≤ λα, for every λ ∈ (0,∞).

Hence d(Tg, Th) ≤ αd(g, h), ∀ g, h ∈ S and we have thus shown that T is a contraction mapping on S with
Lipschitz’s constant α.

Putting y = 0 in (3.4), we have ∥∥2f(nx)− 2n3f(x)
∥∥ ≤ ϕ(x, 0), ∀ x ∈ X,

=⇒
∥∥∥∥f(x)− 1

n3
f(nx)

∥∥∥∥ ≤ 1

2n3
ψ(nx) ≤ α

2
ψ(x), (3.8)

for all x ∈ X, that is,
d
(
f, Tf

)
≤ α <∞.

Now, using Theorem 2.2, we get the following.

1. There exists a fixed point C of T in S such that

C(x) = lim
k→∞

f(nkx)

n3k
, ∀ x ∈ X.

Substituting x and y by nkx and nky, respectively in (3.4) and dividing by n3k, we have

1

n3k

∥∥∥f(nk(nx+ y)) + f(nk(nx− y)) + n[f(nk(x+ ny))

+ f(nk(x− ny))]− n(n2 + 1)[f(nk(x+ y)) + f(nk(x− y))]
∥∥∥

≤ 1

n3k
ϕ(nk(x, y)).
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Taking the limits as k → ∞, we get∥∥∥C(nx+ y) + C(nx− y) + n[C(x+ ny) + C(x− ny)]

− n(n2 + 1)[C(x+ y) + C(x− y)]
∥∥∥ ≤ lim

k→∞

ϕ(x, y)

n3k
= 0.

That is,

C(nx+ y) + C(nx− y) + n[C(x+ ny) + C(x− ny)]

− n(n2 + 1)[C(x+ y) + C(x− y)] = 0.

Thus the function C : X −→ Y satisfy the cubic equation (3.1) and hence C is a cubic function.

Also, by inequality (3.8), we obtain∥∥∥T kf(x)− T k+1f(x)
∥∥∥ =

1

n3k

∥∥∥f(nkx)− 1

n3
f(nk+1x)

∥∥∥ ≤ α

2n3k
ψ(nkx)

≤ α

2n3k
(αn3)ψ(nk−1x) . . . by (3.5)

≤ α

2n3k
(αn3)kψ(x) =

αk+1

2
ψ(x)

for all x ∈ X and k ∈ N, that is,

d
(
T kf, T k+1f

)
≤ αk+1 <∞, for all k ∈ N.

2. There exists n0 ∈ N such that the mapping C is the unique fixed point of T in the set E =
{
g ∈ S :

d (Tm0f, g) <∞
}
. Hence we have

d (Tm0f, C) <∞.

Since
d (f, Tm0f) ≤ d (f, Tf) + d

(
Tf, T 2f

)
+ · · ·+ d

(
Tm0−1f, Tm0f

)
<∞,

we have f ∈ E and therefore,
d (f, C) ≤ d (f, Tm0f) + d (Tm0f, C) <∞.

Hence we have ∥∥f(x)− C(x)
∥∥ ≤ µψ(x) for all x ∈ X.

3. d(f, C) ≤ 1
1−αd (f, Tf).

But since d (f, Tf) ≤ α, it follows that

d (f, C) ≤ α

1− α
,

which implies the inequality (3.6).

Thus the theorem is proved. □

Corollary 3.5. Let θ > 0 and 0 ≤ p < 3. If f : X −→ Y be a mapping satisfying∥∥∥f(nx+ y) + f(nx− y) + n[f(x+ ny) + f(x− ny)]− n(n2 + 1)[f(x+ y)

+ f(x− y)]
∥∥∥ ≤ θ

(
∥x∥p + ∥y∥p

)
for all x, y ∈ X, then there exists a unique cubic mapping C : X −→ Y such that∥∥f(x)− C(x)

∥∥ ≤ 1

23−p − 1
θ∥x∥p, ∀ x ∈ X.

Proof . The proof follows from Theorem 3.4 by taking

ϕ(x, y) = θ
(
∥x∥p + ∥y∥p

)
for all x, y ∈ X. We can then choose α = 2−(3−p) to get the desired result. □
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4 Some research problems

Recently, Eshaghi Gordji et al. [7] introduced the notion of orthogonal sets (one may refer to [1]) and gave a
generalization of Banach fixed point theorem in this setting. In [1], the authors proved a generalization of Theorem
2.2 in the setting of orthogonal sets.

For C∗-algebras A and B, let a mapping f : A −→ B be called a cubic ∗–homomorphism if f satisfy (3.1) such
that f(x∗) = f(x)∗ and f(xy) = f(x)f(y) for all x, y ∈ A.

Problem 1. Can the stability and hyperstability problems for the cubic ∗–homomorphism be addressed in orthogo-
nally Lie C∗-algebras using orthogonal fixed point theorems?

In [8], the authors introduced the functional equation

f(x+ y) + 2f
(x
2
+ y

)
+ 2f

(x
2
− y

)
= 2f(x) + 5f(y). (4.1)

The function f(x) = c∥x2∥, c ∈ R is a solution of the functional equation (4.1) in an inner product space if the
inner product of x and y, (x, y) = 0. In light of which they termed the functional equation (4.1) as orthogonally
quadratic equation.

Problem 2. Can we find an orthogonal set on which the functional equation (2.2) is equivalent to the cubic functional
equation (2.3)?
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