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Abstract

Let A be a unital Banach algebra and X be a unital A-bimodule. In this paper, among other things, we characterize
n-multipliers T : A — X by applying zero products preserving bilinear maps. We also describe n-multipliers from
C*-algebra A into X through the action on zero products.
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1 Introduction and Preliminaries
Let A be a Banach algebra and X be an A-bimodule. A linear map T : A — X is called left n-multiplier [right
n-multiplier] if for all aq, ag, ..., a, € A,

T(alag...an) = T(alag...an_l)an, [T(alag...an) = alT(ag...an)],

and T is called an n-multiplier if it is both left and right n-multiplier.

The concept of n-multiplier was introduced and studied by Laali and Fozouni in [I5]. A 2-multiplier is called
simply a multiplier. One may refer to [I4] and the monograph [16] for the additional fundamental results in the theory
of multipliers.

Clearly, every left (right) multiplier is a left (right) n-multiplier, but the converse is not true in general. The next
example illustrates this fact.

Example 1.1. Let

and define T : A — A by
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Then, T(x)y = T (y) # T(xy) = 0 for all x,y € A, , hence T is not left (right) multiplier, in general, but for all
n > 3 and for every x1,Ta,...,T, € A,

T(x1xo...ty) = T(x122...Tp—1) Ty, = 1T (T2...240).

Therefore, T is an n-multiplier for every n > 3.

Suppose that A is a unital (Banach) algebra with unit e4. An A-bimodule X is called unital if eqx = zey = x,
for all z € X.

The following characterization of n-multiplier presented by the author in [I§].

Theorem 1.2. [I8, Corollary 2.10] Suppose that A is a unital Banach algebra and X is a unital Banach A-bimodule.
Let T: A— X be a continuous linear map such that

a,be A, ab=ey = T(ab)=aT(h). (1.1)
Then T is a right n-multiplier.

The set of idempotents of given Banach algebra A is denoted by Z(A) and let J(A) be the subalgebra of A generated
by idempotents. We say that the Banach algebra A is generated by idempotents, if A = J(A).

Recall that a C*-algebra A is called a W*-algebra (or von-Neumann algebra) if it is a dual space as a Banach space
18], [17].

Let A be a W*-algebra, then the linear span of projections is norm dense in A, hence A = m Moreover, it
turned out in [2] that the group algebra L!'(G) for a compact group G and topologically simple Banach algebras
containing a non-trivial idempotent are generated by idempotents. For more examples of Banach algebra A with the
property that A = J(A), see [2].

Let A be a Banach algebra and X be a Banach space. Then the continuous bilinear mapping ¢ : A x A — X
preserves zero products if

ab=0 = ¢(a,b)=0, a,beA. (1.2)

Definition 1.3. [2] A Banach algebra A has the property (B) if for every continuous bilinear mapping ¢ : AxA — X,
where X is an arbitrary Banach space, the condition ([1.2)) implies that ¢(ab, ¢) = ¢(a,bc), for all a,b,c € A.

It follows from [2, Theorem 2.11] that C*-algebras, group algebras and Banach algebras that generated by idem-
potents have the property (B).

Characterizing (Jordan) homomorphisms, derivations, Jordan derivations on (Banach) algebras and C*-algebras
through the action on zero products have been studied by many authors, see for example [T} [3} (6] 9], [0l 1T, 12} 13}, 19
and the references therein.

In this paper we consider the subsequent conditions on a linear map 7" from a Banach algebra A into an A-bimodule

P

(M1) a,be A, ab=0 = aT(b) =0,

(M2) a,be A, ab=ba=0 = aT(b)+bT(a) =0,
(M3) a,be A, aob=0 = aT(b)+bT(a) =0,
where a o b = ab + ba is a Jordan product in A.

We investigate whether these conditions characterizes n-multipliers on Banach algebras and C*-algebras. We prove
that Theorem is remain valid for C*-algebras if (L.1)) replaced by any of the above conditions.

2 Characterizing n-multipliers on Banach algebras

In this section, we characterizes n-multipliers from unital Banach algebra A into unital A-bimodule X, that satisfy
one of the conditions (M1)-(MS3).
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Theorem 2.1. [7, Theorem 4.1] If ¢ is a bilinear mapping from A x A into a vector space X such that
a,be A, ab=0 = ¢(a,b) =0,

then
8(a,7) = Blaz,ea), and d(z,a) = Pleaza),
for all a € A and x € J(A).

Proposition 2.2. Suppose that T': A — X is a linear mapping such that the condition (M1) holds. Then T'(za) =
2T (a) for all a € A and x € J(A).

Proof . Define a bilinear mapping ¢ : A x A — X by
¢(a,b) = aT(b) —abT(es), a,be A
Then ¢(a,b) = 0, whenever ab = 0. Applying Theorem we obtain
pT(a) = paT(ea) = d(p,a) = ¢(ea,pa) = eaT(pa) —paT(ea), a€ A, pecI(A).

Therefore T'(pa) = pT'(a) for each a € A and p € Z(A). Now from definition of J(A) it follows that T(xa) = 2T(a) for
alla € Aand z € J(4). O

As a consequence of Proposition [2:2] we have the next result.

Corollary 2.3. Let T : A — X be a [continuous] linear mapping such that the condition (M1) holds. If A = J(A)
[A =J(A)], then T is a right n-multiplier.

We say that w € A is a left (right) separating point of A-bimodule X if the condition wax = 0 [zw = 0] for all
2 € X implies that x = 0. An ideal I of A is called left (right) separating set if every w € I is a left (right) separating
point of X.

Theorem 2.4. Let T : A — X be a linear map satisfying (M1). If X has a right separating set I C J(A), then T is
a right n-multiplier.

Proof . Tt follows from Proposition that T'(wab) = wT(ab) and
T(wab) = T((wa)b) = waT(b), a,be A, wel

Thus, w(T'(ab) — aT(b)) = 0 for all a,b € A and every w € I. Since I is a right separating set of X, T'(ab) = aT'(b) for
all a,b € A. Consequently, T is a right multiplier and hence it is a right n-multiplier. [J

Theorem 2.5. [5, Lemma 2.2] If ¢ is a bilinear mapping from A x A into a vector space X such that
a,be A, ab=ba=0 = ¢(a,b) =0,

then
¢(a,z) + ¢(x,a) = plaw,ea) + ¢(ea, za),
for all a € A and = € J(A).

Our first main theorem is the following.

Theorem 2.6. Suppose that 7' is a linear mapping from A into X such that the condition (M2) holds. Then
T(xza) = «T(a) for all a € A and every z € J(A).
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Proof . Define a bilinear mapping ¢ : A x A — X by
o(a,b) = aT(b) + bT (a) — abT(ea) — baT(ea),
for all a,b € A. Then ab = ba = 0 implies that ¢(a,b) = 0. Hence by Theorem

d(a,p) + ¢(p,a) = ¢(ap,ea) + ¢(ea, pa),

for all @ € A and each p € Z(A). Define ¢ : A — X via ¢(a) = T(a) — aT(e4). Since p(eg — p) =

have ¥ (p) = 0. Indeed,
pT(ea —p)+ (ea—p)T(p) =0,
which implies that pT'(e4) = T'(p) = pT(p), for every p € Z(A). Now by we obtain

Y(ap) + ¢ (pa) = ¢(ap, ea) + ¢(ea, pa)
= ¢(a,p) + ¢(p; a)
=2a(T(p) — pT(ea)) + 2p(T(a) — aT(ea))
= 2py(a).

Therefore
2pi(a) = P(ap) + ¥(pa).
Replacing a by ap and pa in 7 respectively, we get
2pyp(ap) = (ap) + ¢ (pap),
and
2pyp(pa) = ¢ (pap) + ¢ (pa).
Multiplying the relation by p from the left hand side, gives
py(ap) = pv(pap).
Similarly, from we arrive at
py(pa) = py(pap).
Replacing a by a — ap in , we get
2pyp(a — ap) = y(pa — pap).
It follows from and that
p¥(a) = py(ap), and p(pa) = ¥(pap).
By and ,
pY(pa) = ¥(pa) = P(pap).
Multiplying the relation by p from the left hand side, we obtain
2pyp(a) = py(ap) + py(pa).

From ({2.8)), (2.9) and , we arrive at
py(a) = pi(pa) = ¢P(pa),

for all a € A and every idempotent p € A. This means that
p(T(a) — aT(eA)) =T(pa) — paT(ea).

Zivari-Kazempour

(2.1)

(€A _p)p = 07 we

(2.8)

(2.9)

(2.10)

Consequently, T'(pa) = pT'(a) for all a € A and each p € Z(A). Now from definition of J(A) we get T(xa) = 2T (a) for

all a € A and x € J(A). This finishes the proof. O
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Corollary 2.7. Let T : A — X be a [continuous] linear mapping such that the condition (M2) holds. If A = J(A)
[A=3J(A)], then T is a right n-multiplier.

Similar to the proof of Theorem [2.4] we have the next result.

Theorem 2.8. Suppose that T': A — X is a linear map satisfying (M2). If X has a right separating set I C J(A),
then T is a right n-multiplier.

Theorem 2.9. [4, Theorem 2.1] If ¢ is a bilinear mapping from A x A into a vector space X such that
a,be A, aob=0 = ¢(a,b) =0,

then 1
¢(a? .’,U) = §<¢(a’xa 6A) + d)(xa, eA))a

for all @ € A and = € J(A).

Theorem 2.10. Let T': A — X be a linear mapping such that the condition (M3) holds. Then T'(za) = 2T (a) for
all a € A and every z € J(A).

Proof . By applying Theorem to the bilinear mapping ¢ : A x A — X defined by
¢(a,b) = aT(b) +bT(a) — (a0 b)T(ea), a,be A,

we obtain

2¢(a,p) = d(ap,ea) + Pp(pa,en), (2.11)

for all @ € A and each p € Z(A). Define ¢ : A — X via¢(a) = T(a) —aT(ea). As po(es —p) = 0, we have p(p) = 0.
Thus, from (2.11]) we get

Y(ap) + Y (pa) = d(ap,ea) + d(pa,ea)
= 2¢(a,p)
=2a(T(p) — pT(ea)) + 2p(T(a) — aT(ea))
= 2py(a).

Now the rest of proof is similar to the proof of Theorem [2.6] O

3 Characterizing n-multipliers on C*-algebras

In this section, by using zero products preserving bilinear maps, we prove that each linear mapping 7" from unital
C*-algebra A into unital Banach A-bimodule X which satisfies one of the conditions (M1)-(M3) is an n-multiplier.

Theorem 3.1. Let A be a unital C*-algebra and let T': A — X be a continuous linear map satisfying (M1). Then
T is a right n-multiplier.

Proof . Let us define a continuous bilinear mapping ¢ : A x A — X by ¢(a,b)aT(b). Then ¢(a,b) = 0 whenever
ab = 0. Hence by [2, Theorem 2.11],

abT(c) = ¢(ab,c) = ¢(a,bc) = aT(be),

for all a,b,c € A. Taking a = e, we get T'(be) = bT(c) for all b,c € A. Therefore T is a right multiplier and hence it
is a right n-multiplier. [J

The following remark generalize [I, Lemma 2.1] for every commutative C*-algebras.
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Remark 3.2. Let A be a commutative C*-algebra and ¢ : A x A — X be a continuous bilinear mapping. Then
by [3l Theorem 2.1], if ¢ preserving zero products, then there is a continuous linear mapping f : A — X such that
¢(a,b) = f(ab), for all a,b € A. Thus,

¢(a,b) = f(ab) = f(ba) = ¢(b,a), a,be A,

On the other hand, ¢ is symmetric.
From Theorem we get the next result.

Corollary 3.3. Let A be a commutative unital C*-algebra. If T': A — X is a continuous linear mapping such that
the condition (M1) holds, then aT'(b) = bT'(a) for all a,b € A.

Next we show that Theorem is true if condition (M1) replaced by (M2). First we prove it for W*-algebras.
Note that every W*-algebra is unital [§].

Theorem 3.4. Let A be a W*-algebra and let T': A — X is a continuous linear mapping such that the condition
(M2) holds. Then T is a right n-multiplier.

Proof . By Theorem [2.6] T'(pb) = pT'(b) for all b € A and p € Z(A). Let A,, denote the set of self-adjoint elements
of A and let € Ag,. Then by Lemma 1.7.5 and Proposition 1.3.1 of [I7], = is the limit of a sequence of linear
combinations of projections in A, i.e., self-adjoint idempotents. Thus,

n
=1 A
€ 171Ln ; kPk;

and hence for all b € A,

T(xb) = HmT(Y  Aeprb) =lim > \eT(pib) = lim Y~ \ppiT(b) = 2T'(b).

Now let a € A be arbitrary. Then a = x + iy for x,y € Ay, and thus we get

T(ab) = T ((z + iy)b)
= 2T(b) 4+ iyT(b) = aT(b).

Consequently, T'(ab) = aT'(b) for all a,b € A and hence T is a right n-multiplier. O

It is well-known that on the second dual space A** of a Banach algebra A there are two multiplications, called the
first and second Arens products which make A** into a Banach algebra [8]. If these products coincide on A**, then A
is said to be Arens regular. It is shown [§] that every C*-algebra A is Arens regular.

For each Banach A-bimodule X, the second dual X** turns into a Banach A**-bimodule where A** equipped with
the first Arens product. The module actions are defined by

¢ u=w"—limlima;-z;, v-®=w"—limlimz;-a;, &A™, ve X"
i g i i

where {a;};cr and {z;};cr are nets in A and X that converge, in w*-topologies, to ® and u, respectively. One may
refer to the monograph of Dales [§] for a full account of Arens product and w*-continuity of the above structures.

Since the second dual of each C*-algebra is a W*-algebra [8], hence by extending the continuous linear map
T:A— X to the second adjoint T%* : A** — X** and applying Theorem we get the following result.

Corollary 3.5. Let A be a unital C*-algebra and let T': A — X be a continuous linear mapping such that the
condition (M2) holds. Then T is a right n-multiplier.

It should be note that the condition (M3) implies (M2) and therefore Theorem and Corollary still works
with condition (M2) replaced by (M3).



Characterizing n-multipliers on Banach algebras through zero products 1077

a={[s o] swech.

We make X = C an A-bimodule by defining

Example 3.6. Let

aA=0, Ada=MXz, AeC, ac A

z
0
T(b)a for all a,b € A. This example leads us to define the following concept.

Define T : A — X by T([ 16) ) = w. Then neither T is a left multiplier nor right multiplier. However, T (ab) =

Definition 3.7. A linear operator T' from Banach algebra A into an A-bimodule X is called left anti n-multiplier
[right anti n-multiplier] if for all aq, as, ..., a, € A.

T(a1az...an) = apnT(a109...an-1), [T(aras...a,) = T(as...an)a1],

and T is called anti n-multiplier if it is both left and right anti n-multiplier.

Next we show that every anti n-multiplier from C*-algebra A into an A-bimodule X is exact an n-multiplier. The
idea of the proof can be found in [3].

Theorem 3.8. Let A be a C*-algebra and X be an A-bimodule. Suppose that T': A — X is a continuous right anti
n-multiplier. Then T is a left n-multiplier.

Proof . By assumption
T(a1as...a,) = T(as...an)ay,

for all a1,as,...,a, € A. If A is unital, then by taking as = ... = a,, = e4, we conclude that T(a) = T(es)a for all
a € A. Therefore
T(araz...an) = T(ea)aras...an, = T(aras...an-1)apn, a1,a02,...,a, € A.

Hence T is a left n-multiplier. For nonunital case we extending 7' : A — X to the second adjoint 77** : A** — X**
and based on the Arens regularity of A, the w*-w*-continuity of T** and the separate weak continuity of the module
operations on X**, we get

T**(ayaz...an) = T (ag...an)as,

for all ay,aq,...,a, € A**. Setting & = T**(ea++) € X**. Then it follows from the above equality with ay = ... = a, =
€ A** that
T**(a) = &a,

for all a € A**. In particular, we have

T(a) =¢&a, a€A. (3.1)

Note that £a € X for all a € A. Of course, it suffices to prove it for each positive element a € A. Suppose that a € A
be a positive element and let b € A with a = b%. According to (3.1]),

€a =& =T () € X.

Consequently, from (3.1)) it follows that T is a left n-multiplier. O
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