
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,885 |
تعداد دریافت فایل اصل مقاله | 7,656,358 |
Robot control interaction with cloud-assisted analysis control | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 143، دوره 13، شماره 2، مهر 2022، صفحه 1789-1794 اصل مقاله (918.57 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.27409.3590 | ||
نویسندگان | ||
Alaa Adeb Abdulraheem* ؛ Aqeel Abdulazeez Mohammed | ||
Department of Electronics and Communications, College of Engineering, University of Baghdad, Baghdad, Iraq | ||
تاریخ دریافت: 28 بهمن 1400، تاریخ بازنگری: 28 اسفند 1400، تاریخ پذیرش: 09 اردیبهشت 1401 | ||
چکیده | ||
Path planning with avoiding obstacles autonomously with a large of computing capabilities in an unknown dynamic environment is a difficult challenge for a mobile robot to solve. This research solves this challenge by combining deep Q-network (DQN) with cloud computing. To begin, a DQN is created and trained to predict the state-action value function of a mobile robot. The information collected from the original RGB image (pixels in the image) taken from the surrounding is fed into the DQN using a cloud computing platform, which reduces the algorithms high computation complexity; Finally, the action chosen policy picks the current optimal mobile robot action. To validate the DQN algorithm, we trained the robot in a dynamic environment with a simple and complex case. The simulation results show that, in a simple case of the environment, the DQN technique can converge to explore a path with fewer steps and higher average reward than in a complicated case and find a collision-free path with an accuracy rate of 89\% in the simple case and when the environment becomes more complex, the accuracy rate is 70 %. | ||
کلیدواژهها | ||
cloud services؛ deep Q- learning؛ Autonomous Navigation of the robot؛ Obstacle avoidance | ||
مراجع | ||
[1] F. Affane, K. Meguenni, and A. Omari, Type-2 fuzzy logic controller optimized by wavelet networks for mobile robot navigation, Indones. J. Electr. Eng. Comput. Sci. 18 (2020), no. 1, 326–334. [2] A. Anwar and A. Raychowdhury, Autonomous navigation via deep reinforcement learning for resource constraint edge nodes using transfer learning, IEEE Access 8 (2020), 26549–26560. [3] S. Canbaz and G. Erdemir, Performance analysis of real-time and general-purpose operating systems for path planning of the multi-robot systems, Int. J. Electr. Comput. Eng. 12 (2022), no. 1, 285. [4] C. Chen, J. Jiang, N. Lv, and S. Li, An intelligent path planning scheme of autonomous vehicles platoon using deep reinforcement learning on network edge, IEEE Access 8 (2020), 99059–99069. [5] M. Etemad, N. Zare, M. Sarvmaili, A. Soares, B. Brandoli Machado, and S. Matwin, Using deep reinforcementlearning methods for autonomous vessels in 2d environments, Canad. Conf. Artif. Intell., Springer, 2020, pp. 220– 231. [6] H. Guo, X. Wu, and N. Li, Action extraction in continuous unconstrained video for cloud-based intelligent service robot, IEEE Access 6 (2018), 33460–33471. [7] L. Jiang, H. Huang, and Z. Ding, Path planning for intelligent robots based on deep q-learning with experience replay and heuristic knowledge, IEEE/CAA J. Autom. Sin. 7 (2019), no. 4, 1179–1189. [8] K. Kamali, I. Bonev, and C. Desrosiers, Real-time motion planning for robotic teleoperation using dynamic-goal deep reinforcement learning, 17th Conf. Comput. Robot Vision (CRV), 2020, pp. 182–189. [9] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, A survey of research on cloud robotics and automation, IEEE Trans. Automa. Sci. Eng. 12 (2015), no. 2, 398–409. [10] J. Lee, A. Ab Ghafar, N. Nordin, F. Saparudin, and N. Katiran, Autonomous multi-function floor cleaning robot with zig zag algorithm, Indonesian J. Electr. Eng. Comput. Sci. 15 (2019), no. 2, 1653–1663. [11] M. Lemos, A. de Souza, R. de Lira, C. de Freitas, and V. da Silva, Robot navigation through the deep q-learning algorithm, Int. J. Adv. Eng. Res. Sci. 8 (2021), 2. [12] A. Mohammed, I. Aris, M. Hassan, and N. Kamsani, New algorithm for autonomous dynamic path planning in real-time intelligent robot car, J. Comput. Theor. Nanosci. 14 (2017), no. 11, 5499–5507. [13] S. Nilwong and G. Capi, Outdoor robot navigation system using game-based dqn and augmented reality, 2020 17th International Conference on Ubiquitous Robots (UR), 2020, pp. 74–80. [14] J. Ou, X. Guo, M. Zhu, and W. Lou, Autonomous quadrotor obstacle avoidance based on dueling double deep recurrent q-learning with monocular vision, Neurocomput. 441 (2021), 300–310. [15] N. Pandey and M. Diwakar, A review on cloud based image processing services, 7th Int. Conf. Comput. Sustain. Glob. Dev. (INDIACom), IEEE, 2020, pp. 108–112. [16] R. Patel, Human robot interaction with cloud assisted voice control and vision system, Ph.D. thesis, The University of Texas at Arlington, 2018. [17] M. Penmetcha and B.-C. Min, A deep reinforcement learning-based dynamic computational offloading method for cloud robotics, IEEE Access 9 (2021), 60265–60279. [18] M. Penmetcha, S. S. Kannan, and B.-C. Min, Smart cloud: Scalable cloud robotic architecture for web-powered multi-robot applications, IEEE Int. Conf. Syst. Man, Cybernet.(SMC), 2020, pp. 2397–2402. [19] M. Saravanan, P. Kumar, and A. Sharma, Iot enabled indoor autonomous mobile robot using cnn and q-learning, IEEE Int. Conf. Ind. 4.0, Artif. Intell. Commun. Technol.(IAICT), IEEE, 2019, pp. 7–13. [20] K. Sharma and R. Doriya, Path planning for robots: An elucidating draft, Int. J. Intell. Robot. Appl. 4 (2020), no. 3, 294–307. [21] R. Suenaga and K. Morioka, Development of a web-based education system for deep reinforcement learningbased autonomous mobile robot navigation in real world, 2020 IEEE/SICE International Symposium on System Integration (SII), 2020, pp. 1040–1045. [22] D. Wang, H. Deng, and Z. Pan, Mrcdrl: Multi-robot coordination with deep reinforcement learning, Neurocomput. 406 (2020), 68–76. [23] Z. Wang, S. Yang, X. Xiang, A. Vasilijevi´c, N. Miˇskovi´c, and b. Na\dj, Cloud-based mission control of usv fleet: Architecture, implementation and experiments, Control Eng. Pract. 106 (2021), 104657. [24] K. Wu, H. Wang, M. Esfahani, and S. Yuan, Learn to navigate autonomously through deep reinforcement learning, IEEE Trans. Ind. Electron. 69 (2022), no. 5, 5342–5352. [25] Y. Yang, L. Juntao, and P. Lingling, Multi-robot path planning based on a deep reinforcement learning dqn algorithm, CAAI Trans. Intell. Technol. 5 (2020), no. 3, 177–183. | ||
آمار تعداد مشاهده مقاله: 44,235 تعداد دریافت فایل اصل مقاله: 293 |