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Abstract

In this paper, we proposed and studied a delayed HIV pathogenesis model with saturation incidence, both virus-to-
cell and cell-to-cell transmission. We address the basic reproduction number R0, the characteristic equations, and
local stability of feasible equilibria are established. Where the delay incorporates both virus-to-cell and cell-to-cell
transmission. Moreover, we discuss the existence of Hopf Bifurcation when a delay is used as a bifurcation parameter.
Numerical simulations are performed to satisfy our theoretical results.
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1 Introduction

In past decades, the study of HIV dynamics has been attracted by many researchers. There are many works proposed
on HIV infection from different points of view, such as [2, 8, 10, 4, 5, 13, 15]. Mathematical models are an important
tool to explain the complex processes, make an assumption, and suggest new experiments. The basic Mathematical
model for studying the HIV dynamics in healthy cells, infected cells, and viral load can be written as

dT (t)

dt
= s− d1T (t)− βT (t)V (t),

dI(t)

dt
= βT (t)V (t)− d2I(t),

dV (t)

dt
= Nd2I(t)− d3V (t).

AIDS (Acquired Immunodeficiency Syndrome) which is caused by HIV (Human Immunodeficiency Virus), is a globally
problematic disease. Viruses do not have cell walls, are parasitic, and it needs the host to replicate the virus [6]. When
HIV enters into a body, it targets CD4+ T-cells and destroys the white blood cells of the immune system. There is

∗Corresponding author
Email addresses: vinothsivaruth@gmail.com (Vinoth Sivakumar), jayakumar.thippan68@gmail.com (Jayakumar Thippan),

d.prasanthabharathi@gmail.com (Prasantha Bharathi Dhandapani)

Received: January 2021 Accepted: May 2021

http://dx.doi.org/110.22075/ijnaa.2021.22444.2364


1928 Sivakumar, Thippan, Bharathi Dhandapani

no cure mechanism of HIV-AIDS still now unexplained. M.Y. Li and H. Shu [7] have explained the delay differential
model for the joint effects of target cells and intracellular delay, that is

dT (t)

dt
= s− d1T (t) + aT (t)(1− T (t)

K
)− βT (t)V (t),

dI(t)

dt
= βe−mτT (t)V (t)− d2I(t),

dV (t)

dt
= Nd2I(t)− d3V (t).

The authors [11, 14, 17, 18, 19, 20] discussed the infection equilibrium loses stability and occurs the Hopf bifurcation
when τ passes through the critical value. F. Li and J. Wang [9] proposed the following model leads to understanding
the effect of bifurcation analysis which incorporates virus-to-cell transmission and cell-to-cell transmission as follows,

dT (t)

dt
= s− d1T (t) + aT (t)(1− T (t)

K
)− β1T (t)V (t)− β2T (t)I(t),

dI(t)

dt
= β1e

−mτT (t)V (t)− β2e
−mτT (t)I(t)− d2I(t),

dV (t)

dt
= Nd2I(t)− d3V (t).

Motivated by [3, 9, 16], we modified their models, which considered only the three components: uninfected CD4+ T-
cells, infected CD4+ T-cells, and free virus particle. We have constructed an HIV pathogenesis model with saturation
incidence, virus-to-cell and cell-to-cell transmission as follows,

dT (t)

dt
= s− d1T (t) + aT (t)(1− T (t)

K
)− β1T (t)V (t)

1 + α1V (t)
− β2T (t)I(t)

1 + α2I(t)
, (1.1)

dI(t)

dt
=

β1e
−mτT (t− τ)V (t− τ)

1 + α1V (t− τ)
+

β2e
−mτT (t− τ)I(t− τ)

1 + α2I(t− τ)
− d2I(t),

dV (t)

dt
= Nd2I(t)− d3V (t),

where T, I denote the number of target and infected cells, V is the viral load of the virions. β indicates the infection
rate constant, s indicates the rate at which new T-cells are produced from the source. d1 and d2 are death rates of
target and infected cells respectively. d3 is clearance rate of virions. Where the term e−mτ denotes the number of the
infected cells at time t but die before productively infected t time unit later. It means that the conscription of virus
producing at time t given by the number of cells that were newly infected at time (t - τ) and still alive at time t. β1

is the infection rate by virus-to-cell transmission, β2 is the infection rate by cell-to-cell transmission. The population
density denoted by K. N is considered to be the average number of virus particles produced by infected cells.
In this paper, we shall discuss the existence of equilibria, local stability of the infected steady state. Further, we
introduce the discrete time delay for the proposed model to describe the time between cell-to-virus transmission
and cell-to-cell transmission. In addition, we investigate the existence of Hopf bifurcation analysis for this model.
Numerical simulations are provided to illustrate the obtained results.

2 Existence of equilibria and local stability analysis

We denote the Banach space of continuous real valued function ϕ : [−τ, 0] → R3, with the norm,

||ϕ|| = sup
−τ≤θ≤0

{|ϕ1(θ)|, |ϕ2(θ)|, |ϕ3(θ)|}.

The initial conditions for the system (1.1) is given as
T (θ) = ϕ1(θ), I(θ) = ϕ2(θ), V (θ) = ϕ3(θ), where ϕi(θ) ≥ 0, θ ∈ [−τ, 0].

This system (1.1) has two nonnegative equilibria exists. An infection free equilibrium E0 = [T0, 0, 0] and infection
equilibrium E1 = [T , I, V ], where

T0 =
K

2a

(
(a− d1) +

√
(a− d1)2 + 4asK−1

)
,



Analysis of a delayed HIV pathogenesis model with saturation incidence 1929

Table 1: Variables and Parameters

Parameters Range of the Parameters Source

s 0− 10 cells mm−3 day−1 [12]
d1 0.007− 0.1 day−1 [20]
a 0.03− 3 day−1 [12]
d2 0.5− 1 day−1 [20]
d3 2.4− 5 day−1 [20]
β1 0.00025− 0.5 virons mm−3 day−1 [19]
β2 0.0001 virons mm−3 day−1 assumed
α1 0.00005− 0.5 virons mm−3 day−1 [11]
α2 0.00002 virons mm−3 day−1 assumed
K 1300 mm−3 [20]
N 10-2500 virons/cell [12]
m 1.2 day−1 [20]

T =
e−mτ [d3d2 −Nα1d2 − d3α2]

d3β2 +Nd2β1
, I =

e−mτ (s+ aT − d1T )K − aT
2

Kδ
, V =

NId2
d3

.

The basic reproductive number is given as,R0 =
T0

T
, which describes the number of newly infected cells formed by

one infected cell throughout its life span. In order to show the locally asymptotically stable for an infection free
equilibrium E0.

Theorem 2.1. If R0 < 1, then infection-free equilibrium E0 is locally asymptotically stable, it is unstable, when
R0 > 1 and R0 = 1, it is a critical case for any time τ ≥ 0.

Proof . Suppose R0 < 1, the linearized system of (1.1) for E0 follows;

J1 =


M0 −β2T0 −β1T0

0 −(d2 − β2e
−mτT0e

−λτ ) β1e
−mτT0e

−λτ

0 Nd2 −d3

 , (2.1)

where, M0 = (a− d1 − 2aT0

K ). Thus, the characteristic equation as E0 is given by

(M0 − λ)
[
λ2 + λ(d2 + d3 − β2e

−mτT0e
−λτ ) + d2d3 − (β1Nd2 + β2d3)e

−mτT0e
−λτ

]
= 0, (2.2)

It is easily shown that (2.2) has a characteristic root, λ = M0. Then, the characteristic roots for the transcendental
polynomial,

λ2 + λa0 + b0 + λc0e
−mτe−λτ + d0e

−mτe−λτ = 0, (2.3)

where a0 = d2 + d3, b0 = d3d2, c0 = −β2e
−mτT0e

−λτ , d0 = −(βNd2 + β2d3)e
−mτT0e

−λτ .
In this case, τ = 0, if R0 < 1, then the roots of (2.3) have negative real parts. By analyzing the Routh-Hurwitz criteria
conditions (a0 + c0) > 0, (b0 + d0) > 0 are satisfied. Suppose (2.3) has pure imaginary roots, λ = iω(ω > 0) for some
τ > 0. We get in the form

−ω2 + b0 = −c0ωsinωτ − d0cosωτ, (2.4)

a0ω = −d0sinωτ − c0ωcosωτ.

If R0 < 1, then (2.4) becomes

ω4 + ω2(c20 − a20 − 2b20) + (b20 + d20) = 0, (2.5)

Let y = ω2 , y2 + y(c20 − a20 − 2b20) + (b20 + d20) = 0,

y =
−(c20 − a20 − 2b20) +

√
(c20 − a20 − 2b20)

2 − 4(b20 + d20)

2
< 0,
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It implies that the root of (2.3) must have a negative real part. Hence the infection free equilibrium E0 is locally
asymptotically stable for any time τ ≥ 0. Here we denote

f(λ) = λ2 + λa0 + b0 + λc0e
−λτ + d0e

−λτ = 0,

If R0 < 1, then
f(0) = (b0 + d0e

−λτ ) < 0 and lim
t→∞

(f(λ)) = +∞. (2.6)

From the continuity of the function f that the equation f(λ) = 0 has at least one positive root. Hence, the characteristic
equation (2.3) has at least one positive real root. So that case E0 is unstable. When, R0 = 1, Eq.(2.3) becomes,

g(λ) = λ2 + λa0 + b0 + λc0e
−λτ + d0e

−λτ = 0, (2.7)

It was known that λ = 0 is a simple root of (2.7). In order to show that any root of (2.7) must have a negative real
part except from τ = 0. Suppose (2.7) has imaginary roots, λ = u± iω for some u ≥ 0, ω ≥ 0 and τ ≥ 0. From (2.4)
becomes,

u2 − ω2 + b0 = −(c0u+ d0)e
−uτ cosωτ − ωc0e

−uτsinωτ, (2.8)

−2ω − a0ω = (c0u+ d0)e
−uτsinωτ − ωc0e

−uτ cosωτ.

Reduce the (2.8) with u ≥ 0, we have

(u2 − ω2 + b0)
2 + (2ω − a0ω)

2 − c20(u
2 + ω2) = e−2uτd20 ≤ d20. (2.9)

From the above analysis, the inequality (2.9) is not true. Hence it shows that any root of (2.7) has a negative real
part except from τ = 0. Therefore, theorem (2.1) is proved. □

3 The Stability of positive equilibrium and Hopf bifurcation

In this section, we shall consider the basic reproduction number R0 > 1 and τ as a parameter to study the existence
of Hopf bifurcation for an infected equilibrium E1.

Theorem 3.1. If τ = 0, then the infected steady state E1 is locally asymptotically stable when R0 > 1.

Proof . Let us consider the Jacobian matrix for an infected equilibrium E1 is

J2 =



M1 − β2I

(1 + α2I)2
− β1T

(1 + α1V )2(
e−mτβ1V e−λτ

(1 + α1V )
+

e−mτβ2Ie
−λτ

(1 + α2I)

)
−
(
d2 −

β2e
−mτTe−λτ

(1 + α2I)2

)
β1e

−mτTe−λτ

(1 + α1V )2

0 Nd2 −d3


, (3.1)

where, M1 = (d1 − a+
2aT

K
+

β1V

(1 + α1V
+

β2I

(1 + α2I)
).

The characteristic equation of the system (3.1) is given by

P (λ) +Q(λ)e−λτ = 0, (3.2)

where,

P (λ) = λ3 + a1λ
2 + a2λ+ a3, Q(λ) = b1λ

2 + b2λ+ b3,



Analysis of a delayed HIV pathogenesis model with saturation incidence 1931

a1 = d2 + d3 +M1,

a2 = d3d2 +M1(d2 + d3),

a3 = M1d2,

b1 =
β2T

(1 + α2V )2
,

b2 = M1

(
β2T

(1 + α2V )2
+

d2β1NT

(1 + α2V )2
+

β1TI

(1 + α2V )3

)
− d3β2I

(1 + α2I)2
,

b3 = M1d3(−
β1T

(1 + α2I)2
− d2β1NT

(1 + α1V )2
+

β2
1TV Nd2

(1 + α1V )3
+

β1β2TINd2

(1 + α1I)(1 + α1V )2
)

+
β1β2TV d3

(1 + α1V )(1 + α2I)2
+

d3β
2
2TI

(1 + α2I)3
.

By the Routh-Hurwitz criteria conditions are satisfied for the characteristic equations (3.2) and it implies that all the
roots of the characteristic equations have the negative real parts. In order to studies the possible bifurcation for the
system. If τ = 0, then the above analysis confirmed that the system is locally asymptotically stable. Suppose the value
of τ is varying and analysis the possible bifurcation. Then if τ is increasing, then infection equilibrium E1 becomes
unstable and the characteristic roots have to cross the imaginary axis.
In order to investigate the existence of purely imaginary roots and results that can be provided as follows, from (3.2),
let us consider λ = iω(ω > 0). In (3.2), all the coefficients P and Q is depending on τ . E. Beretta and Y. Kuang [1]
explained a geometrical criterion and it provides the existence of purely imaginary roots of characteristic polynomials
with delay depend on the coefficients. The below properties need to investigate for all τ ∈ [0,K). □

Proposition 3.2.

(a) P (0, τ) +Q(0, τ) ̸= 0,

(b) P (iω, τ) +Q(iω, τ) ̸= 0,

(c) lim sup{|P (λ,τ)
Q(λ,τ) | : |λ| → ∞, Re λ ≥ 0} < 1,

(d) F (ω, τ) = |P (iω, τ)|2 − |Q(iω, τ)|2, has a finite number of zeros.

(e) Each positive root ω(τ) of F (ω, τ) = 0, is continuous and differentiate in τ whenever it exists.

From (a), it gives P (0, τ) +Q(0, τ) = a3(τ) + b3(τ) = 0. Then, (b) describes,

P (iω, τ) +Q(iω, τ) = −iω3 − a1(τ)ω
2 + ia2(τ)ω + a3(τ)− b1(τ)ω

2 + ib2(τ)ω + b3(τ),

= [a3(τ) + b3(τ)− (a1(τ) + b1(τ))ω
2] + iω[b2(τ) + a2(τ)− ω2],

̸= 0,

the above analysis (a) and (b) are satisfied. From (3.2), it is well-known that limλ→∞ |Q(λ,τ)
P (λ,τ) | = 0, which implies (c)

is verified. From (d), F is already defined, then we know that λ = iω(ω > 0) be the pure imaginary root of (3.2).
Separating real and imaginary parts after applying the pure imaginary value λ = iω(ω > 0) in (3.2).

a3(τ)− a1(τ)ω
2 = (b3(τ)− b1(τ)ω

2) cosωτ − b2(τ)ω sinωτ, (3.3)

a2(τ)ω − ω3 = (b3(τ)− b1(τ)ω
2) sinωτ + b2(τ)ω cosωτ,

Squaring and adding both side of (3.3), then it becomes

F (ω, τ) = ω6 + η1(τ)ω
4 + η2(τ)ω

2 + η3(τ) = 0,

where
η1(τ) = a21(τ)− 2a2(τ)− b21(τ), η2(τ) = a22(τ)− 2a1(τ)a3(τ) + 2b1(τ)b3(τ)− b23(τ), η3(τ) = a23(τ)− b23(τ).
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By the above analysis, now it is clear that the property (d) is satisfied. Then by implicit function theorem, (e)
is also satisfied. We have

sinωτ =
ω5b1(τ) + ω3(a1(τ)b2(τ)− b3(τ))− ω2(a2(τ)b1(τ)) + ω(a2(τ)b3(τ)− a3(τ)b2(τ))

(b1(τ)ω2 − b3(τ))2 + b22(τ)ω
2

= g1(τ) (3.4)

cosωτ =
ω4(a1(τ)b1(τ)− b2(τ)) + ω2(a2(τ)b2(τ)− a1(τ)b3(τ)− a3(τ)b1(τ)) + a3(τ)b3(τ)

(b1(τ)ω2 − b3(τ))2 + b22(τ)ω
2

= g2(τ) (3.5)

From the definition of P and Q in (3.2), then using the property (a), (3.3) becomes,

sinωτ = Im
P (iω, τ)

Q(ω, τ)
and cosωτ = Re

P (iω, τ)

Q(iω, τ)
, (3.6)

which yields,|P (iω, τ)|2 = |Q(iω, τ)|2, and τ ̸= I, ω(τ) is not defined then ω(τ) satisfies F (ω, τ) = 0. Further the
polynomial function F can be written in the form of F (ω, τ) = z(ω2, τ), here τ represents the third degree polynomial,
which gives,

z(x, τ) = x3 + η1x
2 + η2x+ η3. (3.7)

It is well known that the number of positive roots (3.7) based on the sign η1. If η1 ≥ 1, then (e) has three positive
roots. Further we assume that η1 > 0 and define θ(τ) ∈ [0, 2π). It follows that the relation between the argument θ
and ωτ in (3.7) for τ > 0 must be

ωτ = θ + 2nπ, n = 0, 1, 2, ... (3.8)

Hence, we define θ(τ) ∈ (−π, π] as

θ(τ) = arcsin(g1(τ)) sign(g2(τ)), and

sn(τ) = τ − θ + 2nπ

ω(τ)
, t ∈ (0, τ), n ∈ N.

Then ±iω(τ0) are a purely imaginary roots (3.2), if and only if τ0 is zero of function Sn for some n ∈ N .

Theorem 3.3. Assume that the function Sn has a positive root τ0 ∈ (0, τ) for some n ∈ N . Then a pair of simple
conjugate purely imaginary roots λ = ±iω0 exists at τ = τ0 which cross the imaginary axis from left to right if Sn < 0,
where

sign

{
dR(λ)

dτ
|λ=iω0(τ0)

}
= sign

{
dSn(τ)

dτ
|τ=τ0

}
.

Proof .

sign

{
dR(λ)

dτ
|λ=iω0(τ0)

}
= sign

{
∂F

∂w
(ω0, τ0)

}{
dSn(τ)

dτ
|τ=τ0

}
.

In fact ∂F
∂w (ω0, τ0) > 0, then differentiate (3.2) with respect to τ , which yield.

R

[
dλ

dτ

]−1

|τ=τ0 =
1

ω0
sign

{
2ω6

0 + ω4(a21 − 2a2 − b22) + b23 − a23
(b3 − b1ω2

0)
2 + b22ω

2
0

}
.

In this case (a21−2a2− b22+ b23−a23) > 0, (b23−a23) > 0 and η1 > 0, η2 > 0 respectively. By our analysis, it is clear that

R
dλ

dτ
|ω=ω0, τ=τ0 > 0. (3.9)

It has implied that the transversality condition holds. Hence, Hopf bifurcation occurs at ω = ω0, τ = τ0. The proof is
completed. □
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4 Numerical simulations

In this section, we investigate the dynamic behaviour of (1.1) through numerical simulations. The parameter values
are s = 5mm−3 day−1, d1 = 0.01 day−1, d2 = 0.5 day−1, α1 = 0.00002 day−1 mm −3, α2 = 0.00001 day −1 mm −3, d3
= 5 day−1, N = 1200, m = 1.2 day−1, β1 = 0.0001 day−1,β2 = 0.0002 day−1 , K = 1300. The three cases to discuss
the dynamics of the system (1.1) as follows,
Case (1): When τ = 0, there is no time delay for the system (1.1). It is easily shown that in Fig. (1), the system is
locally asymptotically stable.
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Figure 1: The solution T, I and V of the system (1.1) is convergence to E1 when τ = 0.

Case.(2): When τ > 0, the time delay exists, such that the equilibrium E1 is asymptotically stable for 0 ≤ τ < τ0.
If the system (1.1) become unstable for τ hold on in some neighborhood of τ0, then a Hopf bifurcation occurring
for τ = τ0. In this case, by increasing the value of the delay as τ = 0.5, Fig. (2) shows that the existence of Hopf
bifurcation.
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Figure 2: Equilibrium E1 of the system (1.1) occurs the Hopf bifurcation when τ = 0.5.

Case.(3): In this case, the time delay increasing the value of the delay as τ = 2.5 and Fig. (3) shows that the infection
equilibrium asymptotically stable again.
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Figure 3: Equilibrium E1 of the system (1.1) is locally asymptotically stable when τ = 2.5.

According to the numerical simulation, Fig.(4) demonstrates the behavior of the phase plot for increasing the value
of τ . Biologically, a small biological maturation period τ implies showing the affected of the dynamical system (1.1).
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(a) (b (c)

(d) (e (f)

Figure 4: The behaviour of phase plots for the system (1.1) between the value of τ = 0.2 to τ = 2.5, τ = 0.2(a),τ = 0.8(b),τ = 1.2(c),τ =
1.8(d),τ = 2.2(e) and τ = 2.5(f).

5 Conclusion

In this paper, we studied the delayed model of HIV pathogenesis with saturation incidence, virus -to-cell and cell-to-
cell transmission. We established the basic reproduction number R0 and if R0 < 1, the infection free equilibrium E0

is locally asymptotically stable. If R0 > 1, E0 is unstable and E1 exists. Further, the intracellular delay describing
the time between viral into a target cell and direct cell into cell. In our analysis, we know that the local stability
of infection free equilibrium is independent of the size of the delay, as well as the size of the delay can influence the
infected equilibrium directing to a Hopf bifurcation. Moreover, sufficient conditions are established for the infection
free and positive infection equilibrium. From our analysis, when the time delay τ is too long, the periodic solution
disappears from the infected equilibrium, the system (1.1) is reverted to the stable.
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