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Abstract
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1 Introduction

For the non-negative real numbers a, b and 0 ≤ ν ≤ 1, let

a∇νb = (1− ν)a+ νb, a#νb = a1−νbν and a!νb = ((1− ν)a−1 + νb−1)−1

be the weighted arithmetic, geometric and harmonic means, respectively. When ν = 1
2 , we write a∇b, a♯b and a!b for

brevity, respectively. Then, the Heron and Heinz means are defined, respectively, as follows

Fν(a, b) = (1− ν)(a#b) + ν(a∇b) and Hν(a, b) =
a#νb+ a#1−νb

2
.

For the arithmetic, geometric and harmonic means, we have the simple inequalities

a!νb ≤ a#νb ≤ a∇νb, a, b > 0, 0 ≤ ν ≤ 1.

On the other hand, we have the Heinz inequalities

a#b ≤ Hν(a, b) ≤ a∇b. (1.1)

The Heron means interpolate between the geometric and arithmetic means via the inequality

a#b ≤ Fν(a, b) ≤ a∇b. (1.2)

Now (1.1) and (1.2) invite the question about the relation between Fν(a, b) and Hν(a, b). An interesting reference
about this relation is [2], where the inequality

Hν(a, b) ≤ Fα(ν)(a, b), α(ν) = 1− 4(ν − ν2), 0 ≤ ν ≤ 1
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was proved, with some interesting matrix versions.

Direct numerical experiments show that neitherHν(a, b) ≤ Fν(a, b) nor Fν(a, b) ≤ Hν(a, b) is valid for all 0 ≤ ν ≤ 1.
Our motivation behind this work is the possible comparison between these means. We shall prove that

Fτ (a, b) ≤
(
a∇b

a#b

)2

Hν(a, b), a, b > 0, 0 ≤ ν, τ ≤ 1. (1.3)

Moreover, a reversed version is presented. The factor
(

a∇b
a#b

)2
is called the Kantorovich constant, and has appeared

in recent studies of mean inequalities. Letting K(h) = (h+1)2

4h , we have
(

a∇b
a#b

)2
= K(a/b) = K(b/a) ≥ 1.

Then, we present the matrix version of (1.3) for ( Frobenious ) the Hilbert-Schmidt norm. To state the desired
matrix inequality, we introduce our notations.
For a positive integer n, let Mn denote the algebra of all n × n complex matrices, M+

n denote the cone of positive
semidefinite matrices in Mn and M++

n be the cone of strictly positive definite matrices in Mn. For two Hermitian
matrices A,B ∈ Mn, we write A ≤ B or B ≥ A to mean B −A ∈ M+

n . This is called the Löwener partial ordering on
Hermitian matrices.
The unitarily invariance of the norm ∥.∥ means that ∥UAV ∥ = ∥A∥ for all A ∈ Mn and for all unitary matrices
U, V ∈ Mn. Example of unitarily invariant norm is the Hilbert-Schmidt ( Frobenious ) norm defined by

∥A∥2 =

√√√√ n∑
j=1

s2j (A),

where s1(A) ≥ s2(A) ≥ ........ ≥ sn(A) are the singular values of A, that is, the eigenvalues of the positive semidefinite

matrix |A| = (A∗A)
1
2 , arranged in decreasing order and repeated according to multiplicity.

The matrix means corresponding to the numerical ones are defined as follows, for A,B ∈ M++
n and 0 ≤ ν ≤ 1,

A∇νB = (1− ν)A+ νB,A#νB = A
1
2

(
A− 1

2BA− 1
2

)ν
A

1
2 ,

A!νB =
(
(1− ν)A−1 + νB−1

)−1
, Hν(A,B) =

A#νB +A#1−νB

2

and
Fν(A,B) = (1− ν)(A#B) + ν(A∇B).

A standard functional calculus argument applied on (1.3) will imply the following Heron-Heinz inequality for
A,B ∈ M+

n satisfying mI ≤ A,B ≤ MI for some positive numbers m,M ,

Fτ (A,B) ≤ K(M/m)Hν(A,B), 0 ≤ ν, τ ≤ 1. (1.4)

Note that the simple inequality a#b ≤ a∇b means ab ≤ (a+b)2

4 . It is clear that

a!b ≤ Hν(a, b), (1.5)

for 0 ≤ ν ≤ 1. The another aim in this is to obtain a matrix version and a reversed version of (1.5).
If {ei} is an orthonormal basis of H,V : H → H ⊗H is the isometry defined by V ei = ei ⊗ ei and A⊗B is the tensor
product of operators A and B, then Hadamard product A ◦ B regarding {ei} is expressed by A ◦ B = V ∗(A ⊗ B)V.
For A = (aij) and B = (bij), A ◦B = (aijbij) denotes the Hadamard ( Schur,s ) product of A and B.

2 Main results

We will present our main results in three sections.
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2.1 Hilbert-Schmidt (Frobenius) norm

In this section, we first present some numerical inequalities between Heron-Heinz mean and arbitrary means. Then
on the base of them, corresponding matrix inequalities for the Hilbert-Schmidt norm ∥ ∥2 were established. In the
following proof, we will use the observation

a!b ≤ a!νb+ a!1−νb

2
≤ Hν(a, b) ⇒ H−1

ν (a, b) ≤ (a!b)−1. (2.1)

Lemma 2.1. Let a, b > 0 and 0 ≤ ν, τ ≤ 1. Then

Fτ (a, b) ≤ K(a/b)Hν(a, b) and Hν(a, b) ≤ K(a/b)Fτ (a, b). (2.2)

Proof . Notice that, by the arithmetic-geometric mean inequality,

Fτ (a, b) · ab H−1
ν (a, b) ≤ 1

4

(
Fτ (a, b) + ab H−1

ν (a, b)
)2

≤ 1

4

(
a∇b+ ab(a!b)−1

)2
=

1

4
(a∇b+ a∇b)

2
= (a∇b)2.

That is

Fτ (a, b) ≤
(
a∇b

a#b

)2

Hν(a, b),

which proves the first inequality. For the second inequality, notice that Fτ (a, b) ≥ a#b ≥ a!b, hence F−1
τ (a, b) ≤ (a!b)−1.

Therefore,

ab F−1
τ (a, b) ·Hν(a, b) ≤

1

4

(
ab F−1

τ (a, b) +Hν(a, b)
)2

≤ 1

4

(
ab (a!b)−1 + a∇b

)2
= (a∇b)2,

proving the second inequality. □
As mentioned in the introduction, we know that neither Fν(a, b) ≤ Hν(a, b) nor the opposite inequality holds for
all 0 ≤ ν ≤ 1. Thus, the above Lemma provides a significant achievement; where the factor K(a/b) makes both
inequalities valid, even with different parameters ν and τ.

In fact the proof of Lemma 2.1 was based on the fact that both the Heron Fν(a, b) and the Heinz Hν(a, b) mean
lie between the harmonic and arithmetic means. Thus, using the same steps, we deduce the more general result about
any two means σ, τ satisfying ! ≤ σ, τ ≤ ∇.

Proposition 2.2. Let a, b > 0 and let σ, τ be two arbitrary means between the harmonic and arithmetic means. Then

a τb ≤ K(a/b)(a σb) and a σb ≤ K(a/b)(a τb).

The numerical inequalities of Lemma 2.1 can be used to prove the following matrix versions based on the Hilbert-
Schmidt norm ∥ ∥2 , as a complete comparison between the Heron and Heinz means.

Theorem 2.3. Let A,B ∈ M++
n be such that 0 < mI ≤ A,B ≤ MI and let X ∈ Mn. Then for 0 ≤ ν, τ ≤ 1,∥∥∥∥(1− τ)A

1
2XB

1
2 + τ

AX +XB

2

∥∥∥∥
2

≤ K(M/m)

∥∥∥∥AνXB1−ν +A1−νXBν

2

∥∥∥∥
2

,

and ∥∥∥∥AνXB1−ν +A1−νXBν

2

∥∥∥∥
2

≤ K(M/m)

∥∥∥∥(1− τ)A
1
2XB

1
2 + τ

AX +XB

2

∥∥∥∥
2

.
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Proof . We prove the first inequality, leaving the similar proof of the second inequality to the reader. Since every
positive definite matrix is unitarily diagonalizable, it follows that there are unitary matrices U, V ∈ Mn such that
A = UΓ1U

∗ and B = V Γ2V
∗, where Γ1 = diag(λ1, . . . , λn), Γ2 = diag(µ1, . . . , µn) and λi, µi ≥ 0 are the eigenvalues

of A and B, respectively. Furthermore, let Y = U∗XV = [yij ]. Then standard computations show that

(1− τ) A
1
2XB

1
2 + τ

AX +XB

2
= U

([
(1− τ)λ

1
2
i µ

1
2
j + τ

λi + µj

2

]
◦ Y
)
V ∗,

and

AνXB1−ν +A1−νXBν

2
= U

([
λν
i µ

1−ν
j + λ1−ν

i µν
j

2

]
◦ Y

)
V ∗,

where ◦ is the (Hadamard )Schur,s product operation.

Since the Hilbert-Schmidt norm ∥ ∥2 is a unitarily invariant norm, we have∥∥∥∥(1− τ)A
1
2XB

1
2 + τ

AX +XB

2

∥∥∥∥2
2

=

∥∥∥∥U ([(1− τ)λ
1
2
i µ

1
2
j + τ

λi + µj

2

]
◦ Y
)
V ∗
∥∥∥∥2
2

=

∥∥∥∥ [(1− τ)λ
1
2
i µ

1
2
j + τ

λi + µj

2

]
◦ Y
∥∥∥∥2
2

=

n∑
i,j=1

(
(1− τ)λ

1
2
i µ

1
2
j + τ

λi + µj

2

)2

|yij |2

=

n∑
i,j=1

F 2
τ (λi, µj)|yij |2

≤
n∑

i,j=1

K2(λi/µj)H
2
ν (λi, µj)|yij |2

≤ K2(M/m)

n∑
i,j=1

(
λν
i µ

1−ν
j + λ1−ν

i µν
j

2

)2

|yij |2

= K2(M/m)

∥∥∥∥AνXB1−ν +A1−νXBν

2

∥∥∥∥2
2

.

Note that the fact that 0 < mI ≤ A,B ≤ MI has been used in the above proof in the following way: For such A,B, we
have λi ≤ M and µj ≥ m, or λi

µj
≤ M

m . Now since K = K(t) is an increasing function, we have K(λi/µj) ≤ K(M/m).

□

In [11], it was proved that∥∥∥∥AνXB1−ν +A1−νXBν

2

∥∥∥∥
2

≤
∥∥∥∥(1− α(ν))

√
AX

√
B + α(ν)

AX +XB

2

∥∥∥∥
2

,

for α(ν) = 1− 4(ν − ν2), 0 ≤ ν ≤ 1. The above theorem presents a generalization and a reverse for this inequality, at
the cost of the extra coefficient K(M/m).

Integral inequalities of these means have been also of some interests to several researchers in the literature. For
example, it is proved in [4] that for any unitarily invariant norm ∥| ∥|, one has

∥|A 1
2XB

1
2 ∥| ≤

∥∥∥∥∣∣∣∣∫ 1

0

AtXB1−tdt

∣∣∣∣∥∥∥∥ ≤ 1

2
∥|AX +XB∥|

and ∥∥∥∥∣∣∣∣∫ 1

0

AtXB1−tdt

∣∣∣∣∥∥∥∥ ≤ 1

2

∥∥∥∥∣∣∣∣A 1
2XB

1
2 +

AX +XB

2

∣∣∣∣∥∥∥∥
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for A,B ∈ M++
n and X ∈ Mn. Moreover, it is proved in [2] that∥∥∥∥∣∣∣∣∫ 1

0

AtXB1−tdt

∣∣∣∣∥∥∥∥ ≤
∥∥∥∥∣∣∣∣(1− α)A

1
2XB

1
2 + α

AX +XB

2

∣∣∣∣∥∥∥∥ ,
for 1

2 ≤ α ≤ 1. Then, motivated by these results and the known Pólya inequality [10, Equ. 12]∫ 1

0

atb1−tdt ≤ 1

3

(
2
√
ab+

a+ b

2

)
,

the following integral version was given in [12]∥∥∥∥∫ 1

0

AtXB1−tdt

∥∥∥∥
2

≤ 1

3

∥∥∥∥2A 1
2XB

1
2 +

AX +XB

2

∥∥∥∥
2

.

In our next result, we present two-sided integral versions that obtain our results, for the Hilbert-Schmidt norm,
but again with an extra coefficient.

Theorem 2.4. Let A,B ∈ M++
n be such that 0 < mI ≤ A,B ≤ MI, for some positive numbers m,M and let

X ∈ Mn. Then for 0 ≤ ν, τ ≤ 1,∥∥∥∥∫ 1

0

A1−τXBτdτ

∥∥∥∥
2

≤ K(m/M)

∥∥∥∥(1− ν)A
1
2XB

1
2 + ν

AX +XB

2

∥∥∥∥
2

and ∥∥∥∥(1− ν)A
1
2XB

1
2 + ν

AX +XB

2

∥∥∥∥
2

≤ K(m/M)

∥∥∥∥∫ 1

0

AτXB1−τdτ

∥∥∥∥
2

.

Proof . Following the notations of Theorem 2.3, we have

A1−τXBτ = U
(
[λ1−τ

i µτ
j ] ◦ Y

)
V ∗

and ∫ 1

0

A1−τXBτ dτ = U

([∫ 1

0

λ1−τ
i µτ

j dτ

]
◦ Y
)
V ∗

= U ([L(λi, µj)] ◦ Y )V ∗,

where L(λi, µj) =
λi−µj

log λi−log µj
is the logarithmic mean of λi and µj . Now since λi!µj ≤ L(λi, µj) ≤ λi∇µj , we may

apply Proposition 2.2 to get∥∥∥∥∫ 1

0

A1−τXBτdτ

∥∥∥∥2
2

=

∥∥∥∥U ([∫ 1

0

λ1−τ
i µτ

j dτ

]
◦ Y
)
V ∗
∥∥∥∥2
2

= ∥U ([L(λi, µj)] ◦ Y )V ∗∥22

=

n∑
i,j=1

L2(λi, µj)|yij |2

≤
n∑

i,j=1

K2(λi/µj)F
2
ν (λi, µj)|yij |2

≤ K2(m/M)

∥∥∥∥(1− ν)A
1
2XB

1
2 + ν

AX +XB

2

∥∥∥∥2
2

,

which proves the first inequality. The second inequality follows in a similar way. □

Theorem 2.4 presents a generalization and a reverse of the obtained results in [2], [12] and [7]. Now, we are going
to present a matrix version for the Hilber-Schmidt norm with coefficient X of (1.5).
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Theorem 2.5. Let A,B ∈ M++
n be such that 0 < mI ≤ A,B ≤ MI, for some positive numbers m,M and let

X ∈ Mn. Then for 0 ≤ ν ≤ 1,∥∥∥∥∥
(
A−1X +XB−1

2

)−1∥∥∥∥2
2

≤ K(m/M)

∥∥∥∥AνXB1−ν +A1−νXBν

2

∥∥∥∥∥
2

2

and ∥∥∥∥AνXB1−ν +A1−νXBν

2

∥∥∥∥2
2

≤ K(m/M)

∥∥∥∥(A−1X +XB−1

2

)−1∥∥∥∥2
2

.

Proof . Since A,B > 0, by the spectral theorem, there exists unitary matrices U, V ∈ Mn such that A = UΓ1U
∗

and B = V Γ2V
∗, where Γ1 = diag(λ1, . . . , λn), Γ2 = diag(µ1, . . . , µn) and λi, µi ≥ 0 are the eigenvalues of A and B,

respectively. To obtain our results, let Y = U−1X(V ∗)−1. Then(
A−1X +XB−1

2

)−1

=

(
(UΓ1U

∗)−1X +X(V Γ2V
∗)−1

2

)−1

=

(
((U∗)−1Γ−1

1 U−1)X +X((V ∗)−1Γ−1
2 V −1)

2

)−1

=

(
(U∗)−1[Γ−1

1 U−1X(V ∗)−1 + U−1X(V ∗)−1Γ−1
2 ]V −1

2

)−1

= V

[(
Γ−1
1 Y + Y Γ−1

2

2

)−1]
U∗

So,∥∥∥∥(A−1X +XB−1

2

)−1∥∥∥∥2
2

=

∥∥∥∥V [(Γ−1
1 Y + Y Γ−1

2

2

)−1]
U∗
∥∥∥∥2
2

=

n∑
i,j=1

((
λ−1
i + µ−1

j

2

)−1)2

|yij |2,

and ∥∥∥∥AνXB1−ν +A1−νXBν

2

∥∥∥∥2
2

=

n∑
i,j=1

(
λν
i µ

1−ν
j + λν

i µ
1−ν
j

2

)2

|yij |2.

By applying Proposition 2.2 and a way similar to Theorem 2.3 , we can get the desired results.

□

Note that by integrating of both sides of the inequalities in Theorem 2.3 and Theorem 2.5, we get

K−1(m/M)

∥∥∥∥(1− τ)A
1
2XB

1
2 + τ

AX +XB

2

∥∥∥∥
2

≤
∫ 1

0

∥∥∥∥AνXB1−ν +A1−νXBν

2

∥∥∥∥
2

dν

≤ K(m/M)

∥∥∥∥(1− τ)A
1
2XB

1
2 + τ

AX +XB

2

∥∥∥∥
2

and

K−1(m/M)

∥∥∥∥(A−1X +XB−1

2

)−1∥∥∥∥2
2

≤
∫ 1

0

∥∥∥∥AνXB1−ν +A1−νXBν

∥∥∥∥2
2

≤ K(m/M)

∥∥∥∥(A−1X +XB−1

2

)−1∥∥∥∥2
2

.
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We conclude this section by presenting a full matrix comparison for means between the harmonic and arithmetic
means. For a, b > 0, let N(a, b) be a mean such that a!b ≤ N(a, b) ≤ a∇b. Now if A,B ∈ M+

n have eigenvalues
{λi} and {µj} respectively, let N(A,B) denote the matrix whose ij−entry is N(λi, µj). Following the same steps of
Theorem 2.4, we have the following.

Theorem 2.6. Let A,B ∈ M+
n be such that 0 < mI ≤ A,B ≤ MI, for some positive numbers m,M and let X ∈ Mn.

Then for 0 ≤ ν, τ ≤ 1,

∥N1(A,B) ◦X∥2 ≤ K(M/m)∥N2(A,B) ◦X∥2
and

∥N2(A,B) ◦X∥2 ≤ K(M/m)∥N1(A,B) ◦X∥2,

for any two means N1 and N2 between the harmonic and arithmetic means.

2.2 Löwener partial ordering

In this section, we present some ordering relations between different matrix means. In the first result, we apply a
standard functional calculus argument that has been used extensively in the literature. We present the result for the
Heron and Heinz means, however it is still valid for any mean between ! and ∇.
Here, we need to state the well-known monotonicity principle for bounded hermitian operators ([8]). If X be a
Hermitian operator with a spectrum Sp(X), then

f(t) ≥ g(t), t ∈ Sp(X) ⇒ f(X) ≥ g(X), (2.3)

provided that f and g are real-valued continuous functions.

Theorem 2.7. Let A,B ∈ M++
n be such that 0 < mI ≤ A,B ≤ MI, for some positive numbers m,M and let

0 ≤ ν, τ ≤ 1. Then

Fτ (A,B) ≤ max{K(M/m),K(m/M)}Hν(A,B),

Hν(A,B) ≤ max{K(M/m),K(m/M)}Fτ (A,B). (2.4)

Proof . We prove the first inequality. Let a = 1 in the first inequality of Lemma 2.1 to get

(1− τ)
√
b+ τ

1 + b

2
≤ K(b)

bν + b1−ν

2
. (2.5)

Notice that if b ∈
[
m
M , M

m

]
, then K(b) ≤ K(M/m), since K is decreasing when 0 < h < 1 and increasing when h > 1.

Therefore, (2.5) implies

(1− τ)
√
b+ τ

1 + b

2
≤ K(M/m)

bν + b1−ν

2
. (2.6)

Now when mI ≤ A,B ≤ MI, we have m
M I ≤ A− 1

2BA− 1
2 ≤ M

m I, and Sp(X) ⊂
[
m
M , M

m

]
, where X = A− 1

2BA− 1
2 .

Therefore, letting

f(b) = (1− τ)
√
b+ τ

1 + b

2

and

g(b) = K(M/m)
bν + b1−ν

2
,

by 2.3, we have f(X) ≤ g(X). That is,

(1− τ)X
1
2 + τ

I +X

2
≤ K(M/m)

Xν +X1−ν

2
.

Conjugating both sides of this inequality with A
1
2 implies the desired inequality. The second inequality proves similarly.

□
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2.3 Refinements of mixed mean inequalities

Sagae and Tanabe ([9]) gave a mixed arithmetic-geometric mean inequality for two invertible positive operators.
Mond and Pecaric ([6]) presented a mixed arithmetic-geometric and geometric-Harmonic mean inequality for two
invertible positive operators in following form: For two invertible positive operators A and B, we have

A♯(A∇B) ≥ A∇(A♯B),

A♯(A!B) ≤ A!(A♯B).

In this section, we give refinements of above inequalities.

If f : [a, b] → R is a convex function, then

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(t)dt ≤ f(a) + f(b)

2
.

The above inequality is known as the Hermite-Hadamard integral inequality for convex functions see [5]. It is a
interesting issue to know that whether for a convex function f on an interval I there exist numbers l and L such that

f

(
a+ b

2

)
≤ l(λ) ≤ 1

b− a

∫ b

a

f(t)dt ≤ L(λ) ≤ f(a) + f(b)

2
.

A. El Farissi in ([3]) gave a positive reply to this question. If f : [a, b] → R is a convex function, then for 0 ≤ λ ≤ 1

f

(
a+ b

2

)
≤ l ≤ 1

b− a

∫ b

a

f(t)dt ≤ L ≤ f(a) + f(b)

2
, (2.7)

where

l(λ) = λf

(
λb+ (2− λ)a

2

)
+ (1− λ)f

(
(1 + λ)b+ (1− λ)a

2

)
and

L(λ) =
1

2
(f(λb+ (1− λ)a) + λf(a) + (1− λ)f(b)).

Remark 2.8. The case λ = 1
2 in (2.7) is simplified to the following case

f

(
a+ b

2

)
≤ 1

2

[
f

(
3a+ b

4

)
+ f

(
a+ 3b

4

)]
≤ 1

b− a

∫ b

a

f(t)dt

≤ 1

2

[
f

(
a+ b

2

)
+

f(a) + f(b)

2

]
≤ f(a) + f(b)

2
. (2.8)

Now, we ready to give the following theorems:

Theorem 2.9. Let A and B be two invertible positive operators. Then

A♯(A∇B) ≥ 1

2

[
A♯

(
3A

2
∇B

2

)
+A♯

(
A

2
∇3B

2

)]
≥ 1

3

[
4A∇(A♯B)− (A♯B)(A∇(A♯B))−1A

]
≥ 1

2

[
A♯(A∇B) +A∇(A♯B)

]
≥ A∇(A♯B). (2.9)
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and

A♯(A!B) ≤ 2

[(
A♯

(
2

3
A!2B

))−1

+

(
A♯

(
2A!

2

3
B

))−1]−1

≤ 3

[
4(A!(A♯B))−1 − (A♯B)−1(A!(A♯B))A−1

]−1

≤ 2

[(
A♯(A!B)

)−1

+

(
A!(A♯B)

)−1]−1

≤ A!(A♯B). (2.10)

Proof . Considering inequalities (2.8) with the convex function f(t) = −t
1
2 , t > 0, it follows that(

a+ b

2

) 1
2

≥ 1

2

[( 3a
2 + b

2

2

) 1
2

+

( a
2 + 3b

2

2

) 1
2
]

≥ 1

3

[
4

(
a

1
2 + b

1
2

2

)
− (ab)

1
2

(
a

1
2 + b

1
2

2

)−1]
≥ 1

2

[(
a+ b

2

) 1
2

+
a

1
2 + b

1
2

2

]
≥ a

1
2 + b

1
2

2
(2.11)

Insertting a = 1 in (2.11), it follows that(
1 + b

2

) 1
2

≥ 1

2

[( 3
2 + b

2

2

) 1
2

+

( 1
2 + 3b

2

2

) 1
2
]

≥ 1

3

[
4

(
1 + b

1
2

2

)
− (b)

1
2

(
1 + b

1
2

2

)−1]
≥ 1

2

[(
1 + b

2

) 1
2

+
1 + b

1
2

2

]
≥ 1 + b

1
2

2
.

Since A− 1
2BA− 1

2 ≥ 0, monotonicity principle (2.3) for operator functions yeilds inequality

(
I +A− 1

2BA− 1
2

2

) 1
2

≥ 1

2

[( 3
2I +

A− 1
2 BA− 1

2

2

2

) 1
2

+

( 1
2I +

3A− 1
2 BA− 1

2

2

2

) 1
2
]

≥ 1

3

[
4

(
I + (A− 1

2BA− 1
2 )

1
2

2

)
−
(
A− 1

2BA− 1
2

) 1
2

( I +

(
A− 1

2BA− 1
2

) 1
2

2

)−1]
≥ 1

2

[(
I +A− 1

2BA− 1
2

2

) 1
2

+
I + (A− 1

2BA− 1
2 )

1
2

2

]

≥
I +

(
A− 1

2BA− 1
2

) 1
2

2
.

Moreover, multiplying both sides of the previous series of inequalities by A
1
2 , we have (2.9), as claimed.

Replacing A and B by A−1 and B−1 in inequality (2.9), respectively, and then taking inverse of both sides (2.9), we
yeild (2.10). □
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If f : [a, b] →→ R is a integrable function, then a simple computation shows that (2.8) is equivalent to the following
inequalities:

f

(
a+ b

2

)
≤ 1

2

[
f

(
3a+ b

4

)
+ f

(
a+ 3b

4

)]
≤
∫ 1

0

f((1− t)a+ tb)dt

≤ 1

2

[
f

(
a+ b

2

)
+

f(a) + f(b)

2

]
≤ f(a) + f(b)

2
. (2.12)

Theorem 2.10. Let A and B be two invertible positive operators. Then

A♯(A∇B) ≥ 1

2

[
A♯

(
3A

2
∇B

2

)
+A♯

(
A

2
∇3B

2

)]
≥
∫ 1

0

A♯(A∇tB)dt

≥ 1

2

[
A∇(A♯B) +A∇(A♯B)

]
≥ A∇(A♯B). (2.13)

Proof . Considering inequalities (2.12) with the convex function f(t) = −t
1
2 , t > 0, it follows that

(
a+ b

2

) 1
2

≥ 1

2

[( 3a
2 + b

2

2

) 1
2

+

( a
2 + 3b

2

2

) 1
2
]

≥
∫ 1

0

((1− t)a+ tb)
1
2 dt

≥ 1

2

[(
a+ b

2

) 1
2

+
a

1
2 + b

1
2

2

]
≥ a

1
2 + b

1
2

2
.

Using a method as in Theorem (2.9), we can obtain (2.13). □
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