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Abstract

In this paper, we prove that any surface corresponding to linear second-order ODEs as a submanifold is minimal in
all classes of third-order ODEs y′′′ = f(x, y, p, q) as a Riemannian manifold where y′ = p and y′′ = q, if and only if
qyy = 0. Moreover, we will see the linear second-order ODE with general form y′′ = ±y + β(x) is the only case that
is defined a minimal surface and is also totally geodesic.
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1 Introduction

Riemannian geometry is characterized, and research is oriented towards and shaped by concepts for examples
geodesics connections, curvature [12]. Originally, the geometry of submanifolds was only a part of Riemannian geometry
but today it is one of several independent aspects of multi-dimensional generalizations of the classical theory of surfaces.
While Riemannian geometry is the development of Gauss’ idea on intrinsic geometry, the geometry of submanifolds
starts from the idea of the extrinsic geometry of a surface. This theory is devoted to the study of the position and
properties of a submanifold in ambient space, both in their local and global aspects [2, 3, 19].

On the other hand, the general equivalence problem is about studding when two geometrical objects are mapped on
each other by a certain class of diffeomorphisms. Élie Cartan developed the general equivalence problem and provided
a systematic procedure for determining the necessary and sufficient conditions. There are many papers as applications
of Cartan method for third-order ODEs [11, 13, 18] and fourth-order differential operators [4]. The theory of moving
frames is most closely associated with the name of Cartan, that is a powerful and algorithmic tool for studying the
geometric properties of submanifolds and their invariants under the action of a transformation group [16]. Now if
we apply the moving frame method for Riemannian manifold and geometry of submanifolds, we can obtain very
interesting results. Recently, a lot of research has been carried out about the minimal surfaces in a three-dimensional
Riemannian manifold [9, 10, 17].
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The graph of the function u(x, y) is minimal if and only if u satisfies:

(1 + u2
x) uyy − 2uxuyuxy + (1 + u2

y) uxx = 0. (1.1)

The PDE (1.1) which is non-linear but depends linearly on the second derivatives is called quasi-linear. We will not
discuss the general theory of existence of solutions to this equation, but rather describe a couple of special solutions.
Of course, a function u(x, y) with vanishing second derivatives is solution of Equation (1.1). Although these are not
very exciting solutions, the resulting surfaces S being planes, they are important because of the Calabi theorem [3].
According to this theorem, if u be a solution of Equation (1.1), on U = R2 such that ∥∇u∥0 < 1, (hence S is called
spacelike) then u is an affine function that means u is a function with vanishing second derivatives. There is an
analogous theorem (which actually predates Calabi’s) in the case of the Riemannian metric ⟨., .⟩0 = dx2

1 + dx2
2 + dx2

3

and is known as the Bernstein theorem.

It is a classical result that any simply connected minimal surface in Euclidean space R3 admits a one-parameter
family of minimal isometric deformations, called the associate family. Conversely, two minimal isometric immersions of
the same Riemannian surface into R3 are associate. These are easy consequences of the Gauss and Codazzi equations
in R3. More generally, analogous results hold for constant mean curvature (CMC) surfaces in 3-dimensional space
forms.

Benoit Daniel in [9] investigated extensions of these results and related questions for minimal surfaces in the product
manifolds S2 ×R and H2 ×R, where S2 is the 2-sphere of curvature 1 and H2 is the hyperbolic plane of curvature −1.

The systematic study of minimal surfaces in S2×R and H2×R was initiated by H. Rosenberg and W. Meeks [14, 17]
and has been very active since then. The existence of an associate family for simply connected minimal surfaces in
S2 × R and H2 × R was proved in [8].

It has been shown in Bayrakdar et al. [6], the Gaussian curvature of a surface corresponding to a first-order ODE
is given by certain Burgers’ equations and it is possible to obtain two-dimensional spaces of constant curvature from
some integrable PDEs.

The main idea for writing present paper is raised from the papers [5], written by T. Bayrakdar and A. A. Ergin.
They proved that a surface corresponding to a first-order ODE is minimal in three-dimensional Riemannian manifold
which is determined by the first prolongation of y′ = p(x, y), if and only if pyy = 0. Hence any linear first-order ODE
characterizes a minimal surface which is not necessarily totally geodesic. Z. O. Bayrakdar and T. Bayrakdar used the
same idea and got good results [7] .

In present paper, we prove that any surface corresponding to linear second-order ODEs y′′ = α(x)y+β(x) where α
and β are two smooth functions in term of x, as a submanifold is minimal in the class of third-order ODEs corresponding
to the third-order equation y′′′ = α(x)y′ + α′(x)y + β′(x). Furthermore, we will show the linear second-order ODE
y′′ = ±y + β(x) is the only case that is defined a minimal surface and is also totally geodesic.

2 Geometry of submanifolds via moving frame method

In this section we consider the method of moving frames to investigation of geometry of submanifolds. For more
details we refer to [19].

AssumeN be a n-dimensional Riemannian manifold equipped with metric g. LetM is am-dimensional submanifold
of N , locally imbedded in N . The submanifold of the orthogonal frame bundle over N , denoted by F (N,M), which
includes of adapted frames {eA}, A = 1, . . . , n of which {ei}, i = 1, . . . ,m are tangent toM and {eα}, α = m+1, . . . , n

are normal to M . We have the matrix equation Ẽ = EK between two adapted frames Ẽ and E where K is the matrix

K =

[
A O

O B

]
,

where A ∈ O(m) and B ∈ O(n−m).

The matrix of 1-forms (ωA
B) is the Levi-Civita connection for N where we have

dωA + ωA
B ∧ ωB = 0, (2.1)

ωA
B + ωB

A = 0. (2.2)
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We can find a connection over M by a restriction ωA
B to ωi

j over M . Namely, when we restrict the equation

dωA = −
∑
B

ωA
B ∧ ωB , (2.3)

to M gives

dωi = −
∑
B

ωi
B ∧ ωB = −

∑
j

ωi
j ∧ ωj , (2.4)

because ωα = 0 for tangent vectors on M . Furthermore ωi
j = −ωj

i , so the matrix (ωi
j) is the uniquely defined Levi-

Civita connection corresponding to the metric on M induced from that on N . Takeing the exterior derivative of
ωα = 0, leads to

0 = dωα = −
∑
A

ωα
A ∧ ωA = −

∑
i

ωα
i ∧ ωi. (2.5)

From Cartan’s lemma it follows that

ωα
i =

∑
j

hα
ij ω

i, (2.6)

for smooth functions hα
ij = hα

ji.

3 Submanifolds in Riemannian manifold

Let (S, g) be a Riemannian manifold and U ⊂ S be an open subset. For each arbitrary p ∈ U , we can define an
orthonormal frame E = (e1, e2, e3, e4) where ei ∈ TpU and its corresponding dual, the coframe ω = {ω1, ω2, ω3, ω4}
where ωi ∈ T ∗

pU and we have ωi(ej) = δij . Therefore the metric tensor is defined by

g =

4∑
i,j=1

δij ωi ⊗ ωj . (3.1)

By applying the exterior derivatives on these 1-forms we obtain the first structural equations

dωi = −
4∑

j=1

θij ∧ ωj , 1 ≤ i ≤ 4, (3.2)

where the skew-symmetric matrix of 1-forms θ = (θij) is called the o(3,R)-valued torsion-free connection. Now

computing the exterior derivative of θij gets the second structural equations as following

Ωi
j = dθij +

4∑
k=1

θik ∧ θkj , (3.3)

where the skew-symmetric matrix Ω = (Ωi
j) is called the Riemannian curvature tensor. We can rewrite the Ωi

j with
respect to coframe ω as follows

Ωi
j =

∑
k<l

Ri
jkl ω

k ∧ ωl. (3.4)

Let (S̃, g̃) be an isometrically immersed submanifold of the surface of (S, g) by inclusion map σ : S̃ −→ S satisfies

σ∗g = g̃ and ω̃4 = 0. Suppose that Ẽ = (ẽ1, ẽ2, ẽ2,n) is an adapted frame on S with corresponding coframe
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ω̃ = (ω̃1, ω̃2, ω̃3, ω̃4), such that (ẽ1, ẽ2, ẽ3) is tangent to S̃ and n is normal to S̃ and E and Ẽ have the same orientation.

As a result, the surface S̃ is equipped with metric tensor

g̃ =

4∑
i=1

ω̃i ⊗ ω̃i. (3.5)

The orthogonal frames Ẽ and E are related by the equation Ẽ = EA, where A ∈ SO(4,R), thus we can write the
associated connection 1-forms as follows

θ̃ = A−1dA+A−1θA. (3.6)

Using (2.4), we can deduce the first structure equations for coframe ω̃ by following formula

dω̃i = −
4∑

j=1

θ̃ij ∧ ω̃j . 1 ≤ i ≤ 4 (3.7)

Take a look at the formula (2.5), we derive the second structure equations

dω̃i = −
∑
j

θ̃ij ∧ ω̃j , i = 1, 2, 3 (3.8)

0 = θ̃41 ∧ ω̃1 + θ̃42 ∧ ω̃2 + θ̃43 ∧ ω̃3, (3.9)

on the S̃. It is necessary to mention the (3.9) concludes by ω̃4 = 0. An immediate consequences of the equation (3.9)
are

θ̃41 = h11ω̃
1 + h12ω̃

2 + h13ω̃
3,

θ̃42 = h21ω̃
1 + h22ω̃

2 + h23ω̃
3,

θ̃43 = h31ω̃
1 + h32ω̃

2 + h33ω̃
3,

(3.10)

where hij = hji. These functions are the coefficients of the second fundamental form

II = θ̃41 ⊗ ω̃1 + θ̃42 ⊗ ω̃2 + θ̃43 ⊗ ω̃3, (3.11)

Now one can evaluate the Ω̃i
j by following formula

Ω̃i
j =

∑
k<l

R̃i
jkl ω̃

k ∧ ω̃l, (3.12)

for metric g̃ on S̃. According to Gauss formula we have

Rijrs − R̃ijrs = hishjr − hirhjs. (3.13)

Also in an orthonormal frame we have∑
k

δikR
k
jrs = Rijrs. (3.14)

We shall define the Weingarten operator A : TM −→ TM , for each X,Y ∈ TpM , by

⟨AX,Y ⟩ = ⟨II(X,Y ),n⟩N , (3.15)

componentwise this means that

A =
∑
i,j

hijω̃
i ⊗ ẽj . (3.16)
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In fact, often we shall not distinguish between A and the second fundamental tensor in the direction of n, that is, the
map ⟨II(, ), n⟩N : TM × TM −→ R. The k-th mean curvatures of the hypersurface in the direction of n are given by

Hk =

(
m

k

)−1

Sk, (3.17)

where S0 = 1 and, for 1 ≤ k ≤ m, Sk is the k-th elementary symmetric function of the eigenvalues of A = (hij). In
particular H1 = H is the mean curvature that

H =
1

3
tr A, (3.18)

and Hm is the Gauss-Kronecker curvature that equals to

Hm = det A, (3.19)

and H2 is strictly related to the scalar curvature of M , [1].

We remind the reader that the surface S̃ is said to be totally geodesic if the second fundamental form identically
vanishes on S̃ and is said to be minimal if H = 0.

4 The class of third-order ODEs as a Riemannian geometry

Geometrically, one can consider the third-order ODE with the following form

d3y

dx3
= f(x, y, y′, y′′), (4.1)

as a submanifold S in the third-order jet bundle J3, which has local coordinates

Υ = {(x, y, p, q, r) ∈ J3 : p = y′, q = y′′, r = y′′′},

and it is denoted by the zero set of the function F (x, y, p, q, r) = r− f(x, y, p, q), that means S = F−1(0) is presented
on J2 as the graph of the function r = f(x, y, p, q).

From the geometric theory of such equations, it follows that there exists a collection of independent 1-forms as a
coframe

ω1 = dx,

ω2 = dy − p dx,

ω3 = dp− q dx, (4.2)

ω4 = dq − f dx,

on R5 with coordinates (x, y, p, q, r). The third prolongation of a solution curve of differential equation (4.1) is a curve
on S represented by 3-jet of a smooth section σ(x, y, p) = (x, y, p, q, r) of the trivial bundle π : R×R −→ R on which
the contact forms ω2, ω3 and ω4 vanish. Since the local coframe ω = {ω1, ω2, ω3, ω4} is dual to the frame of the vector
fields Ω = {e1, e2, e3, e4} that means ωi(ej) = δij therefore we have

e1 = ∂x + p∂y + q∂p + f∂q, e2 = ∂y, e3 = ∂p, e4 = ∂q. (4.3)

The Riemannian metric

g =

4∑
i,j=1

δij ωi ⊗ ωj , (4.4)

on S is given in coordinates (x, y, p, q) as

ds2 = (1 + p2 + q2 + f2)dx2 − 2pdxdy − 2qdxdp− 2fdxdq + dy2 + dp2 + dq2. (4.5)
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Differentiating the coframe (4.2), we have

dω1 = 0,

dω2 = ω1 ∧ ω3,

dω3 = ω1 ∧ ω4,

dω4 = fy ω1 ∧ ω2 + fp ω1 ∧ ω3 + fq ω1 ∧ ω4.

(4.6)

Now using the (3.2) formula, we can write
dω1

dω2

dω3

dω4

 = −


0 θ12 θ13 θ14

θ21 0 θ23 θ24

θ31 θ32 0 θ34

θ41 θ42 θ43 0

 ∧


ω1

ω2

ω3

ω4

 ,

where Θ = (θij) is a o(4,R)-valued torsion-free connection is a antisymmetric matrix, where

θ12 = −θ21 = −1

2
ω3 − 1

2
fy ω4,

θ13 = −θ31 = −1

2
ω2 − 1

2
(1 + fp) ω

4,

θ14 = −θ41 = −1

2
fy ω2 − 1

2
(1 + fp) ω

3 − fq ω4,

θ23 = −θ32 = −1

2
ω1,

θ24 = −θ42 =
1

2
fy ω1,

θ34 = −θ43 = −1

2
(1− fp) ω

1.

(4.7)

Now according to (3.4), the components of the curvature 2-form are

Ω1
2 = −1

2

[1
2
(−1 + 3f2

y ) ω
1 ∧ ω2 +

1

2
fy(1 + 3fp) ω

1 ∧ ω3 + fyy ω2 ∧ ω4

+ fyp ω3 ∧ ω4 +
(1
2
+ 2fyfq −

fp
2

+ pfyy + fxy + ffyq + qfyp

)
ω1 ∧ ω4

]
,

Ω1
3 =

1

2

[
− 1

2
fy(1 + 3fp) ω

1 ∧ ω2 − (1 + fp +
3

2
f2
p ) ω

1 ∧ ω3

− (2fpfq + pfyp + ffpq +
1

2
fy + fxp) ω

1 ∧ ω4 − fyp ω2 ∧ ω4 − fpp ω3 ∧ ω4
]
,

Ω1
4 = −1

2

(
2fyfq +

1

2
(1− fp) + pfyy + fxy + ffyq + qfyp

)
ω1 ∧ ω2 − 1

2

(
2fpfq + pfyp + ffpq

+ qfpp +
1

2
fy + fxp

)
ω1 ∧ ω3 − 1

2

(3
2
− 1

2
f2
p − 1

2
f2
y + 2f2

q + fp + 2qfpq + 2ffqq + 2pfyq

+ 2fxq

)
ω1 ∧ ω4 − 1

2
fyq ω2 ∧ ω4 − 1

2
fpq ω3 ∧ ω4,

Ω2
3 =

1

2

[1
2
ω2 ∧ ω3 +

1

2
fy ω2 ∧ ω4 − 1

2
(1 + fp) ω

3 ∧ ω4
]
,

Ω2
4 =

1

2

[
− fyy ω1 ∧ ω2 − fyp ω1 ∧ ω3 − fyq ω1 ∧ ω4 +

1

2
fy ω2 ∧ ω3 +

1

2
f2
y ω2 ∧ ω4

−
(
fq −

1

2
fy −

1

2
fyfq

)
ω3 ∧ ω4

]
,

Ω3
4 =

1

2

[
− fyp ω1 ∧ ω2 − fpp ω1 ∧ ω3 − fpq ω1 ∧ ω4 − 1

2
(1 + fp) ω

2 ∧ ω3 +
1

2

(
fy(1 + fp)

− 2fq

)
ω2 ∧ ω4 +

1

2
(1 + fp)

2 ω3 ∧ ω4
]
.
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Thus independent components of the Riemann curvature tensor are given below

R1
212 =

1

4

(
1− 3f2

y

)
, R1

213 = −1

4
fy(1 + 3fp),

R1
214 = −1

2

(1
2
+ 2fyfq −

fp
2

+ pfyy + fxy + ffyq + qfyp

)
,

R1
224 = −1

2
fyy, R1

234 = −1

2
fyp,

R1
312 = −1

4
fy(1 + 3fp), R1

313 = −1

2
(1 + fp +

3

2
f2
p ),

R1
314 = −1

2
(2fpfq + pfyp + ffpq +

1

2
fy + fxp), R1

324 = −1

2
fyp, R1

334 = −1

2
fpp,

R1
412 = −1

2

(
2fyfq +

1

2
(1− fp) + pfyy + fxy + ffyq + qfyp

)
,

R1
413 =

1

2

(
2fpfq + pfyp + ffpq + qfpp +

1

2
fy + fxp

)
,

R1
414 = −1

2

(3
2
− 1

2
f2
p − 1

2
f2
y + 2f2

q + fp + 2qfpq + 2ffqq + 2pfyq + 2fxq

)
,

R1
424 = −1

2
fyq, R1

434 = −1

2
fpq,

R2
323 =

1

4
, R2

324 =
1

4
fy, R2

334 = −1

4
(1 + fp),

R2
412 = −1

2
fyy, R2

413 = −1

2
fyp, R2

414 = −1

2
fyq, R2

423 =
1

4
fy, R2

424 =
1

4
f2
y ,

R2
434 = −1

4

(
fq −

1

2
fy −

1

2
fyfq

)
, R3

412 = −1

2
fyp, R3

413 = −1

2
fpp, R3

414 = −1

2
fpq,

R3
423 = −1

4
(1 + fp), R3

424 =
1

4

(
fy(1 + fp)− 2fq

)
, R3

434 =
1

4
(1 + fp)

2.

5 Geometry of submanifolds

Let S̃ is a submanifold in S determined by the smooth section

σ : (x, y, p) −→ (x, y, p, q(x, y, p)), (5.1)

corresponding to the equation y′′ = q(x, y, p) such that dp− qdx vanishes on the first prolongation of an integral curve
of (4.1). In fact, 3-graph of an integral curve of (4.1) is specified by

y′′′ = qx + qyy
′ + qpp

′ = qx + pqy + qqp,

lies on S̃. We can compute the pullbacks of ωi by σ as follow

σ∗ω1 = ω1,

σ∗ω2 = ω2,

σ∗ω3 = ω3,

σ∗ω4 = qy ω2 + qp ω3.

With a simple calculation we find

σ∗(dω4) = (qxy + pqyy + qqyp + qyqp + qyσ
∗(fq)) ω

1 ∧ ω2 + (qxp + qy + pqyp + qqpp

+ q2p + qpσ
∗(fq)) ω

1 ∧ ω3,

d(σ∗ω4) = (qxy + pqyy + qqyp) ω
1 ∧ ω2 + (qy + qxp + pqyp + qqpp) ω

1 ∧ ω3 + qp ω1 ∧ ω4.

The equality σ∗(dω4) = d(σ∗ω4), leads to qp = 0 and qyσ
∗(fq) = 0. Now we can consider two different cases:
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5.1 Case of qy ̸= 0

Since σ∗(fq) = 0, that is, fq = 0 on the submanifold S̃, the induced metric on S̃ is readily found as

σ∗ds2 = ω1 ⊗ ω1 + (1 + q2y) ω
2 ⊗ ω2 + ω3 ⊗ ω3. (5.2)

sur In local coordinates (x, y, p), we can rewrite the metric tensor by g̃ with following form

g̃ = [1 + p2(1 + qy)
2 + q2] dx2 + (1 + q2y) dy

2 + dp2 − 2p(1 + q2y) dxdy − 2q dxdp.

For each point in a coordinate neighborhood (Ũ ;x, y, p) of T S̃, the tangent space T S̃ is spanned by the vector fields
ê1 = σ∗∂x, ê2 = σ∗∂y and ê3 = σ∗∂p,

ê1 = ∂x + qx∂q, ê2 = ∂y + qy∂q, ê3 = ∂p. (5.3)

Now we can rewrite the vector fields ê1, ê2 and ê3 in terms of e1, e2, e3, e4 with following form

ê1 = e1 − pe2 − qe3 + (qx − f)e4, ê2 = e2 + qye4, ê3 = e3. (5.4)

To find unit normal vector field to S̃, we can consider the cross product of X,Y, Z ∈ TS at a given point of a four-
dimensional Riemannian manifold. The cross product on S is defined in terms of the Riemannian metric (4.5) and
the volume form by

g(X × Y × Z,W ) := volg(X,Y, Z,W ), ∀ W ∈ TS, (5.5)

where the positive definite matrix (gij) is defined by

(gij) =


1 + p2 + q2 + f2 −p −q −f

−p 1 0 0
−q 0 1 0
−f 0 0 1

 .

Let X =

4∑
i=1

xi ei, Y =

4∑
i=1

yi ei and Z =

4∑
i=1

zi ei in TS, using [15] we can define the cross product ,

X × Y × Z =

∣∣∣∣∣∣∣∣
e1 e2 e3 e4
x1 x2 x3 x4

y1 y2 y3 y4
z1 z2 z3 z4

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣
x2 x3 x4

y2 y3 y4
z2 z3 z4

∣∣∣∣∣∣ e1 +
∣∣∣∣∣∣
x1 x3 x4

y1 y3 y4
z1 z3 z4

∣∣∣∣∣∣ e2 +
∣∣∣∣∣∣
x1 x2 x4

y1 y2 y4
z1 z2 z4

∣∣∣∣∣∣ e3 +
∣∣∣∣∣∣
x1 x2 x3

y1 y2 y3
z1 z2 z3

∣∣∣∣∣∣ e4.
(5.6)

According to (5.6), we can compute
ê1 × ê2 × ê3 = qye2 − e4,

and therefore we obtain the unit normal vector field on S̃ as follow

n =
1√

1 + q2y

(−qye2 + e4) . (5.7)

Thus the adapted orthogonal frame Ẽ = (ẽ1, ẽ2, ẽ3,n) on S̃ is

ẽ1 = e1, ẽ2 =
1√

1 + q2y

(e2 + qye4) , ẽ3 = e3, n =
1√

1 + q2y

(−qye2 + e4) , (5.8)
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that frame Ω̃ = (ω̃1, ω̃2, ω̃3, ω̃4) on S̃ is

ω̃1 = ω1, ω̃2 =
1√

1 + q2y

(
ω2 + qyω

4
)
, ω̃3 = ω3, ω̃4 =

1√
1 + q2y

(
−qyω

2 + ω4
)
. (5.9)

Now since we have σ∗ω4 = qy ω2 on the submanifold S̃, we will have ω̃4 = 0 on it. Therefore the Riemannian metric

(5.2) can be rewritten based on the members of coframe Ω̃ as follows

g̃ = ω̃1 ⊗ ω̃1 + ω̃2 ⊗ ω̃2 + ω̃3 ⊗ ω̃3, (5.10)

on the submanifold S̃, here ω̃2 is equal to
√
1 + q2y ω2.

We have the relation Ẽ = EA between the frames E = (e1, e2, e3, e4) and Ẽ = (ẽ1, ẽ2, ẽ3,n) where A ∈ SO(4,R),
with following representation

A =


1 0 0 0
0 cos(ε) 0 − sin(ε)
0 0 1 0
0 sin(ε) 0 cos(ε)

 , (5.11)

is defined by putting qy = tan(ε) for the sufficiently small values of ε. Using the formula (3.6), the connection matrix

θ̃ is equal to

θ̃ =


0 cos(ε) θ1

2+sin(ε) θ1
4 θ1

3 − sin(ε) θ1
2+cos(ε) θ1

4

− cos(ε) θ1
2−sin(ε) θ1

4 0 cos(ε) θ2
3−sin(ε) θ3

4 −dε+θ2
4

−θ1
3 − cos(ε) θ2

3+sin(ε) θ3
4 0 sin(ε) θ2

3+cos(ε) θ3
4

sin(ε) θ1
2−cos(ε) θ1

4 dε−θ2
4 − sin(ε) θ2

3−cos(ε) θ3
4 0

 ,

where the 1-forms θji s are defined in (4.7). Since qy = tan(ε), thus

dε =
(qxy + pqyy)ω̃

1 + qyy(1 + q2y)
− 1

2 ω̃2

1 + q2y
, (5.12)

and by putting sin(ε) = qy(1 + q2y)
− 1

2 and cos(ε) = (1 + q2y)
− 1

2 , we can rewrite the arrays of the matrice θ̃ as follow

θ̃12 = −1

2

[
fy sin(ε) cos(ε) ω̃

2 + (cos(ε) + (1 + fp) sin(ε)) ω̃
3
]
,

θ̃13 = −1

2

[
(cos(ε) + (1 + fp) sin(ε)) ω̃

2
]
,

θ̃14 = −1

2

[
fy cos(2ε) ω̃

2 + (sin(ε)− (1 + fp) cos(ε)) ω̃
3
]
,

θ̃23 = −1

2

[
cos(ε)− (1− fp) sin(ε)

]
ω̃1,

θ̃24 = −dε+
1

2
fy ω̃1,

θ̃34 = −1

2

[
sin(ε) + (1− fp) cos(ε)

]
ω̃1.

(5.13)
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Looking at (3.10), the coefficients of the second fundamental form are determined by

h11 = 0,

h12 = h21 =
1− q2y
1 + q2y

(qx + pqy)y,

h13 = h31 = − 1

2
√
1 + q2y

,

h22 = − qyy

(1 + q2y)
3
2

,

h23 = h32 = 0,

h33 = 0,

here A = (hij). Now Using the formula (3.11), the second fundamental form is

II = −

(
1− q2y
1 + q2y

)
(qx + pqy)y ω̃1 ⊗ ω̃2 −

qy − (qx + pqy)p√
1 + q2y

 ω̃1 ⊗ ω̃3 − qyy
(1 + q2y)

3/2
ω̃2 ⊗ ω̃2

(5.14)

Then using (3.19) and (3.18), we have

Ke =
qyy

4(1 + q2y)
5
2

, (5.15)

H = − qyy

3(1 + q2y)
3
2

. (5.16)

Using above findings we can summarize following theorems:

Theorem 5.1. A submanifold S̃ ⊂ S which is determined by the section (5.1) is minimal if and only if

qyy = 0. (5.17)

In this case, the Gauss-Kronecker curvature of a minimal surface equals to zero.

Theorem 5.2. Let S̃ be a submanifold corresponding to linear second-order differential equation

y′′ = α(x)y + β(x) (5.18)

where α and β are two smooth functions in term of x, then S̃ determines a minimal surface in four-dimensional
manifold corresponding to the following third-order equation

y′′′ = α(x)y′ + α′(x)y + β′(x), (5.19)

Theorem 5.3. A submanifold S̃ ⊂ S, which is defined by the section

(x, y, p) 7→ (x, y, p, α(x)y + β(x)),

is totally geodesic if and only if α(x) = ±1.

5.2 Case of qy = 0

In this case, we want to consider the submanifold determined with σ∗ω4 = 0, on the submanifold S̃. Since
σ∗ω4 = qy ω2, this case concludes to qy = 0. Thus the matrix (5.11) reduces to the identity and then we have θ̃ = θ.



Geometry of submanifolds of all classes of third-order ODEs as a Riemannian manifold 1293

According to above discussion ω4 equals to zero on the submanifold S̃.

θ12 = −θ21 = −1

2
ω3,

θ13 = −θ31 = −1

2
ω2,

θ14 = −θ41 = −1

2
fy ω2 − 1

2
(1 + fp) ω

3,

θ23 = −θ32 = −1

2
ω1,

θ24 = −θ42 =
1

2
fy ω1,

θ34 = −θ43 = −1

2
(1− fp) ω

1,

(5.20)

Therefore

θ̃12 =
1

2

[
fy ω̃2 + (1 + fp) ω̃

3
]
,

θ̃13 =
1

2
(1 + fp) ω̃

2,

θ̃14 =
1

2

[
fy ω̃2 + ω̃3

]
,

θ̃23 = −1

2
(1− fp)ω̃

1,

θ̃24 = −1

2
fy ω̃1,

θ̃34 = −1

2
ω̃1.

(5.21)

That means h11 = h22 = h33 = h23 = 0 and h12 = 1
2fy, h13 = 1

2 , and therefore H = Ke = 0 and the second
fundamental form is

II =
1

2
(qx + pqy)y ω̃1 ⊗ ω̃2 +

1

2
ω̃1 ⊗ ω̃3, (5.22)

Theorem 5.4. A submanifold S̃ of S which is determined by the section (5.1) is a minimal but not totally geodesic.
Its Gauss-Kronecker curvature equals to zero.
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[1] L. J. Aĺıas, P. Mastrolia and M. Rigoli, Maximum principles and geometric applications, Springer Monographs in
Mathematics, Springer, Switzerland, 2016.

[2] T. Aminov, The geometry of submanifolds, Gordon and Breach Science Publishers, The Netherlands, 2001.

[3] H. Anciaux, Minimal submanifolds in pseudo-Riemannian geometry, World Scientific Publishing, 2010.

[4] R. Bakhshandeh-Chamazkoti, The geometry of fourth-order differential operator, Int. J. Geom. Meth. Modern
Phys. 12 (2015), 155005.

[5] T. Bayrakdar and A.A. Ergin, Minimal surfaces in three-dimensional Riemannian manifold associated with a
second-order ODE, Mediterr. J. Math. 15 (2018), 183.

[6] Z.O. Bayrakdar and T. Bayrakdar, Burgers’ equations in the Riemannian geometry associated with first-order
differential equations, Adv. Math. Phys. 2018 (2018), 7590847.

[7] Z.O. Bayrakdar and T. Bayrakdar, A geometric description for simple and damped harmonic oscillators, Turk.
J. Math. 43 (2019), 2540–2548 .



1294 Bakhshandeh-Chamazkoti, Behzadi, Bakhshandeh-Chamazkoti, Rafie-Rad

[8] B. Daniel, Isometric immersions into Sn × R and Hn × R and applications to minimal surfaces, Trans. Amer.
Math. Soc. 361 (2009), no. 12, 6255–6282.

[9] B. Daniel, Minimal isometric immersions into S2 × R and H2 × R, Indiana Univ. Math. J. 64 (2015), no. 5,
1425–1445.

[10] F. Dillen, J. Fastenakels and J. Van der Veken, Surfaces in S2×R with a canonical principal direction, Ann. Glob.
Anal. Geom. 35 (2009), 381–396.

[11] M. Godlinski and P. Nurowski, Third-order ODEs and four-dimensional split signature Einstein metrics, J. Geom.
Phys. 56 (2006), 344–357.

[12] J. Jost, Riemannian geometry and geometric analysis, Springer, 2008.

[13] A. Medvedev, Geometry of third order ODE systems, Arch. Math. 46 (2010), no. 5, 351–361.

[14] W.H. Meeks and H. Rosenberg. The theory of minimal surfaces in M ×R, Comment. Math. Helv. 80 (2005), no.
4, 811–858.

[15] T. Mert and B. Karliga, Constant angle spacelike surface in de Sitter space S3
1 , Bol. Soc. Paran. Mat. (3s.) 35

(2017), 79–93.

[16] P.J. Olver, Moving frames, J. Symbol. Comput. 36 (2003), 501–512.

[17] H. Rosenberg, Minimal surfaces in M2 × R, Illinois J. Math. 46 (2002), no. 4, 1177–1195.

[18] H. Sato and A.Y. Yoshikawa, Third order ordinary differential equations and Legendre connections, J. Math. Soc.
Japan 50 (1998), no. 4, 993–1013.

[19] T.J. Willmore, Riemannian Geometry, Oxford University Press, 1997.


	Introduction
	Geometry of submanifolds via moving frame method
	Submanifolds in Riemannian manifold
	The class of third-order ODEs as a Riemannian geometry
	Geometry of submanifolds
	Case of qy=0
	Case of qy=0


