
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,802 |
تعداد دریافت فایل اصل مقاله | 7,656,333 |
New classes of certain analytic functions | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 167، دوره 13، شماره 2، مهر 2022، صفحه 2087-2094 اصل مقاله (368.68 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.26687.3388 | ||
نویسندگان | ||
H. Ozlem Guney1؛ Mugur Acu2؛ Shigeyoshi Owa* 3 | ||
1Dicle University, Faculty of Science, Department of Mathematics, Diyarbakir, Turkiye | ||
2Lucian Blaga University of Sibiu, Faculty of Science, Department of Mathematics and Informatics, Street: Dr. I. Ratiu 5-7, 550012 Sibiu, Romania | ||
3Honorary Professor "1 Decembrie 1918" University of Alba Iulia, Alba Iulia, Romania | ||
تاریخ دریافت: 03 فروردین 1401، تاریخ بازنگری: 08 خرداد 1401، تاریخ پذیرش: 20 خرداد 1401 | ||
چکیده | ||
Considering a function $f(z)$ which is the extremal function for $p-$valently starlike of order $\alpha$ in the open unit disk, two new classes $S_p^*(m,\alpha)$ and $K_p(m,\alpha)$ are introduced. The object of the present paper is to discuss some interesting problems of functions $f(z)$ concerned with $S_p^*(m,\alpha)$ and $K_p(m,\alpha).$ | ||
کلیدواژهها | ||
Appell's symbol؛ Analytic function؛ p-valently starlike of order $alpha؛ $ p-valently convex of order $alpha$ | ||
مراجع | ||
[1] H.F. Al-Janaby and F. Ghanim, A subclass of Noor-type harmonic p-valent functions based on hypergeometric functions, Kragujevac J. Math. 45 (2021), 499—519. [2] M.K. Aouf, A.M. Lashin and T. Bulboac˘a, Starlikeness and convexity of the product of certain multivalent functions with higher-order derivatives, Math. Slovaca 71 (2021), no. 2, 331–340. [3] B.C. Carlson, Special functions of applied mathematics, Academic Press, 1977. [4] P.L. Duren, Univalent functions, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1983. [5] A.H. El-Qadeem and I.S. Elshazly, Hadamard product properties for certain subclasses of p-valent meromorphic functions, Axioms 11 (2022), 172. [6] F. Ghanim and M. Darus, Some results of p-valent meromorphic functions defined by a linear operator, Far East J. Math. Sci. 44 (2010), 155-–165. [7] F. Ghanim and M. Darus, Subclasses of meromorphically multivalent functions, Acta Univ. Apulensis Math. Inf. 23 (2010), 201–212. [8] A.W. Goodmann, Univalent functions, Vol.1, Mariner Pub. Company, 1983. [9] Q. Khan, J. Dziok, M. Raza and M. Arif, Sufficient conditions for p-valent functions, Math. Slovaca 71 (2021), no. 5, 1089–1102. [10] G.I. Oros, Gh. Oros and S. Owa, Differential subordinations on p-valent functions of missing coefficients, Int. J. Appl. Math. 22 (2009), no. 6, 1021–1030. [11] G.I. Oros, Gh. Oros and S. Owa, Applications of certain p-valently analytic functions, Math. 10 (2022), 910. [12] T. Hayami and S. Owa, Applications of Hankel determinant for p−valently starlike and convex functions of order α, Far East J. Appl. Math. Sci. 46 (2010), 1–23. [13] A.T. Yousef, Z. Salleh and T. Al-Hawary, On a class of p-valent functions involving generalized differential operator, Afr. Mat. 32 (2021), no. 1, 275-–287. | ||
آمار تعداد مشاهده مقاله: 43,780 تعداد دریافت فایل اصل مقاله: 330 |