
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,783 |
تعداد دریافت فایل اصل مقاله | 7,656,218 |
Fully automated human finger vein binary pattern extraction-based double optimization stages of unsupervised learning approach | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 187، دوره 13، شماره 2، مهر 2022، صفحه 2311-2323 اصل مقاله (1.12 M) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.27527.3638 | ||
نویسندگان | ||
Ali Salah Hameed* ؛ Adil Al-Azzawi | ||
Department of Computer Science, College of Science, University of Diyala, Baquba, Iraq | ||
تاریخ دریافت: 11 اسفند 1400، تاریخ بازنگری: 21 فروردین 1401، تاریخ پذیرش: 27 اردیبهشت 1401 | ||
چکیده | ||
Today, finger vein identification is gaining popularity as a potential biometric identification framework solution. Machine learning-based unsupervised supervised, and deep learning algorithms have had a significant influence on finger vein detection and recognition at the moment. Deep learning, on the other hand, necessitates a large number of training datasets that must be manually produced and labelled. In this research, we offer a completely automated unsupervised learning strategy for training dataset creation. Our method is intended to extract and build a decent binary mask training dataset completely automatically. In this technique, two optimization steps are devised and employed. The initial stage of optimization is to create a completely automated unsupervised image clustering based on finger vein image localization. In the second optimization, the retrieved finger vein lines are optimized. Lastly, the proposed system has a pattern extraction accuracy of 99.6\%, which is much higher than other common unsupervised learning methods like k-means and Fuzzy C-Means (FCM). | ||
کلیدواژهها | ||
Clustering Algorithms؛ Unsupervised Learning؛ K-mean؛ FCM؛ Finger Vein Identification | ||
مراجع | ||
[1] A. Al-Azzawi, T.X. Han, D. Al-Jumeily, J. Hind and A. Mahdi, A robust spatially invariant model for latent fingerprint authentication approach, 10th Int. Conf. Dev. Syst. Engin. (DeSE), IEEE, 2017, pp. 94–99. [2] M.K. Chung, Gaussian kernel smoothing, arXiv preprint arXiv:2007.09539, (2012). [3] R.C. Gonzalez and R.E. Woods, Digital image processing, Pearson, 2016. [4] B. Huang, Y. Dai, R. Li, D. Tang and W. Li, Finger-vein authentication based on wide line detector and pattern normalization, 20th Int. Conf. Pattern Recognit. (ICPR), Istanbul, Turkey, 2010, pp. 1269–1272. [5] A. Kumar and Y. Zhou, Human identification using finger images, IEEE Trans. Image Process. 21 (2011), 2228– 2244. [6] J.-W. Liu and L. Guo, Selection of initial parameters of K-means clustering algorithm for MRI brain image segmentation, IEEE Int. Conf. Machine Learn. Cyber. 1 (2015), 123–127. [7] Z. Liu and S. Song, An embedded real-time finger-vein recognition system for mobile devices, IEEE Trans. consumer Electron. 58 (2012), no. 2, 522–527. [8] M.R. Mahmood and A.M. Abdulazeez, A comparative study of a new hand recognition model based on line of features and other techniques, Int. Conf. Reliable Inf. Commun. Technol., Springer, Cham. 2017, pp. 420–432. [9] N. Miura, A. Nagasaka and T. Miyatake, Extraction of finger-vein patterns using maximum curvature points inimage profiles, IEICE Trans. Inf. Syst. 90 (2007), no. 8, 1185–1194. [10] W. Song, T. Kim, H.C. Kim, J.H. Choi, H.J. Kong and S.R. Lee, A finger-vein verification system using mean curvature, Pattern Recognit. Lett. 32 (2011), no. 11, 1541–1547. [11] J.A. Unar, W.C. Seng and A. Abbasi, A review of biometric technology along with trends and prospects, Pattern Recog. 47 (2014), no. 8, 2673–2688. [12] Wikipedia, Normalization (image processing), https://en.wikipedia.org/wiki/Normalization (image processing), nd. [13] J. Yang and J. Wang, Finger-vein image restoration considering skin layer structure, Proc. Int. Conf. Hand-Based Biometrics, Hong Kong, China, 2011, pp. 1–5. [14] L. Yang, G. Yang, Y. Yin and X. Xi, Finger vein recognition with anatomy structure analysis, IEEE Trans. 28 (2018), no. 8, 1892–1905. [15] Y. Yin, L. Liu and X. Sun, SDUMLA-HMT: a multimodal biometric database, Chinese Conf. Biometric Recog., Springer, Berlin, Heidelberg, 2011, pp. 260–268. [16] C.-B. Yu, D.-M. Zhang, H.-B. Li and F. Zhang, Finger-vein image enhancement based on muti-threshold fuzzy algorithm, Proc. Int. Cong. Image Signal Process., Tianjin, China, 2009, pp. 1–3. [17] R. Yusoff and A.R. Ramli, Hardware efficient vein enhancement and feature extraction method, Sci. Technol. Res. Inst. Defrence 14 (2017). [18] D.Q. Zeebaree, H. Haron, A.M. Abdulazeez and S.R.M. Zeebaree, Combination of K-means clustering with genetic algorithm: a review, Int. J. Appl. Eng. Res. 12 (2017), no. 24, 14238–14245. [19] J. Zhang and J. Yang, Finger-vein image enhancement based on combination of gray-level grouping and circular gabor filter, Proc. Int. Conf. Inf. Engin. Comput. Sci., Wuhan, China, 2009, pp. 1–4. | ||
آمار تعداد مشاهده مقاله: 43,915 تعداد دریافت فایل اصل مقاله: 320 |