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Abstract

An introduction of a new subclass of bi-univalent functions involving Sakaguchi type functions defined by (p,q)-
Derivative operators using Gegenbauer polynomials have been obtained. Further, the bounds for initial coefficients
|as|, |as| and Fekete Szegod inequality have been estimated.
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1 Introduction and preliminaries

A function of one or more complex variables which is complex-valued is said to be analytic if it is differentiable at
every point of the domain. Every normalized analytic function can be expressed as a series of the form

f(z) =24 > a2’ (1.1)

in the complex variable z, that is convergent in 4l = {z : z € C,|z| < 1}. Let A consists of every such function. A
subclass S of A is defined by S = {f(z) € A : f(z1) = f(22) = 21 = 22} (i.e.,) S consists of all univalent functions.

A function f(z) € A is called bi-univalent in i, if f(z) € S and its inverse function has an analytic continuation to
|lw| < 1. Let 0 = {f € S : f is bi-iunivalent}.

Though Lewin [7] introduced the class of bi-univalent functions, the passion on the bounds for the coefficients of
these classes was upraised by Netanyahu, Clunie, Brannan and many others [1 2], [8, 13} [14] 08 [15] 16, 17, 19} 20].
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This has been a field of fascination for young researchers till date.

If, for §,(z) and f,(z) analytic in &, there exists a Schwarz function w(z) with r(0) = 0 and |tv(2)| < 1 in 4 such
that f,(z) = f,(0(z)), then we say that f,(z) < f,(2).

A subclass consisting of functions satisfying the analytic criterion Re (@ﬁ%) > a was introduced by Sakaguchi

[11] and these functions were named after him as Sakaguchi type functions [9, [10]. Sakaguchi type functions are
Starlike with respect to symmetric points. Frasin [5] generalized Sakaguchi type class which had functions of the form

(1.1) given by Re (%) >a,0<a<1,sy,s € Cwith sy #sp, |5 < 1,Vz € 4l

Definition 1.1. For p,q € (0,1] and q < p, the (p, q)-derivative operator ©, 4(f(z)) [3] is defined as

f(p2) — f(a2)
(r—a)(2)

and D, 4(f(0)) = §(0) provided §'(0) exists. It can be easily deduced that

oo
qu Z pqatz s
t=2

Dyp.q(i(2)) = 270 (1.2)

where [t]yq = %, the (p, q)-bracket of ¢. It is also called a twin-basic number. It is to be noted that D, ,(z!) =
[t]pqz' 1. Also for p = 1, the (p, q)-derivative operator D, 4 reduces to the g-derivative operator Dy.

The inverse series of ([1.2)) is given by

Dypqlg(w)) = W
= 1—[2]pqaew + [3]pq(2a3 — a3)w
—[4]pq(5a3 — Basaz + ag)w® + - - .

2

For non-zero real constant «, a generating function of Gegenbauer polynomials is defined by
Haly, z) = Wa (1.3)

where y € [-1,1] and z € 4. The function ), which is analytic in &, for fixed y, is expanded in a Taylor series form

such as -
= Ciy)+, (1.4)
t=0

where C(y) is Gegenbauer polynomial of degree t. We can see that when oo = 0, £, does not exist. Therefore, the
Gegenbauer polynomial is generated by following function

Doy, 2) = 1 —log(1 — 2z + 22) = 3 Cy)",

for & = 0. The function gets normalized when o > —1/2 [l [12].
The images of the unit disk under 9, (y, z) are shown in figure 1.
The Gegenbauer polynomials are defined by the following recurrence relation

Ci(y) = 312yt + o = 1)1 (y) — (t+2a = 2)C7 5 (y)], (t > 2) (1.5)

with initial coefficients C§'(y) =1 and C{(y) = 2ay.
From the above , we get
CS(y) = 2a(1 + a)y? — a. (1.6)

The special cases of Gegenbauer polynomials:
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Figure 1: Image of 4 under $a(y, 2).

1. For a = 1, we get the Chebyshev Polynomials.

2. For a = 1/2, we get the Legendre Polynomials.

The Graphs of the Gegenbauer polynomials C*(y) are shown in figure 2.
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Figure 2: Graph of C§ (y).

2 Main results

Definition 2.1. A function f € o is said to be in the class S2%(y, o, s1,52), if the following subordination relations

hold (51— 52)2D5,4(f(2))
S1 —S2)% p,q z 5
e F?) < 9a(y, 2), (2.1)
and
(51— 52)wDpa0(W) g (2.2)

g(siw) — g(sow)
where g(w) = f~(w),s1,s2 € C with s; # s3, [s2] < 1.

Theorem 2.2. Let f given by (1.1]) be in the class S?9(y, @, s1,s2). Then

|a2| S 2|0‘y‘\/2‘049| (23)

\/|4a2y2L7(2a(1+a)y27a)M2|

and
a2y?

20
las| < ) y‘ +
where
L = [3]pq — [2]pq(s1 + 52) + 5152,
M = [2]pq — S1 — So,
N = [3]yq — 57 — 3 — s1%.
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Proof . Let f € S?9(y, «, s1,s2). Then, there exist analytic functions ¢(z), ¥(w) : 84 — U given by the (2.1]) and (2.2))

such that ( e
s1—$2)20yp (f(2)) .
f(slz) - f(SQZ) - g)a(y7 ¢( ))7
and
(51— s2)wDyq(a(w)) _ T

g(s1w) — g(s2w)
Define the functions ¢(z) and ¥(w) as
#(2) = c1z 4 cz® + 32> + ...,

and
Y(w) = dyw + dow? + dzw® + ...

which are analytic in 4 with ¢(0)=0,1(0) = 0 and |¢(2)| < 1, |¢(w)] < 1, (z,w € L).
It is to be noted that if
|p(2)| = |1z + 22 +c32® + | <1 (z€4)

and
[Y(w)| = |diw + dow? + dgw® +---| <1 (w € )
then
e <1, |di| <1 (i=1,2,3,..).
Since

(51— 52)2Dp,4(f(2))

f(s12) — f(s22) =1+ ([2]pg — 51 —52) a2z + {([Blpg — 51" — 52° — s1%2) a3

- (mpqsl + [2]pqs2 — s1° —s2” — 25152) ag} X 224

(51 — 52)wDp,q(g(w))

ge) o) (Pha s s (B et s ) e

— (2[8]pq — 51° — 52° — [2]pqs1 — [2]pgs2) a3} x w® + -
(51 = )700.0(12) _ (o (1101 4 (0 (hen . O 1212 4
f(s12) — f(s22) [CY (y)er]z + [CY (y)e2 + C2 (y)er]z” +

(s1 — s2)wDp q(g(w))
g(s1w) — g(s2w)
We get following equations

= [CF (y)di]w + [CF (y)da + C5 (y)di]w® + - -

[2]pg — 51 — 52 a2 = CY' (y)en
[8lpg — 51> — 52 — s152] az— [[2]pgs1 + [2]pgs2 — 517 — 52 — 2s152] a3
= Cf(y)e2 + C5 (y)ei
—[[2lpg — 51— s2Jaz = CY'(y)ds
[2[8]pg — 1% = 52” — [2]pgs1 — [2pgs2] a3 — [[Blpg — 51° — 52 — s152] a3
= Cf(y)ds + C5 (y)di.

Adding (2.14) and (2.16), we get the following equation

C1 = 7d1.

Further squaring and adding and , we have
2([2]pg — 51— s2]?a3 = [CF (y)*[c] + di).
Then the addition of and gives
2([3]pg — [2lpg(s1 +52) + s152]a3 = CF (y)(c2 + da) + C5 (y) (e} + d7).

From above equations, we obtain

[2[[3]pq — [2lpa(s1 + 52) + 5152)[CF ()] = 2(12pg — 51 = 52)°C5 ()] a3 = [CT (W)’ (c2 + da).

(2.5)

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)
(2.15)
(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)
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A small computation leads to
|(L2| < 2“3‘?}"\/2‘@“

\/’4a2y2L7(2a(1+a)y27a)M2 |

Next, in order to obtain the bound for |as|, subtracting (2.17) from (2.15) we have

2([3]pg — 1 — 5 — sis2][as — a3] = OF () (c2 — d2) + C5 (y) (7 — di).
Using the equations (2.18]) and (2.19)) in (2.22), we get

as =

CT (9)(c2=da) | (CFW)>(c1+d3)
2N 2M?2 :

Applying the value of C{(y) and taking modulus, we have the desired bound for |as|

20 40 y>?
\a3|_‘ Y + Yy

M2
O

Corollary 2.3. Let f given by (1.1]) be in the class S?9(y, 1,s1,s2). Then
2ly|\/2
|a2| S lyl lyl

\/‘4y2L—(4y2—1)M2|

and
Jas] < ‘N ‘ Tz
where L, M, N are as defined in Theorem 1.2.

Corollary 2.4. Let f given by (1.1)) be in the class S?9(y,1/2,s1,s2). Then
2 P
|a2| < \y|v [yl

\/‘QyzL—(3y2—1)M2’

and )
Y

lasl < |5 + 25

where L, M, N are as defined in Theorem 1.2.
Corollary 2.5. Let f given by (1.1)) be in the class S, (y, o, s1,52). Then
2|ay|\/2|c
‘a2| < lay| lay]

\/‘4a2y2L17(2a(1+a)y27a)M12 ’

and

2ay y2
o < |2+ 2
M2

where

L1 =3 —2(s1 + s2) + 5152,
Ml =2 S1 — S,

Ny =3—5s2 52 —5p5,.

Corollary 2.6. Let f given by (1.1)) be in the class S,(y, o, 1, —1). Then

‘a2| < |o¢y|v2|o<y\
N \/‘2a2y2—(2a(1+a)y2—a)’

and
las| <oyl + a®y”.

2201

(2.22)

(2.23)
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Corollary 2.7. Let f given by (1.1]) be in the class S,(y, o, 1,0). Then
2|ay|y/2|a

\/|4a2y27(2a(1+a)y27o¢) ’

and
las| < |ay| + 4a?y®.

2.1 Fekete-Szeg6 Problem for the Functions in the Class 829 (y, o, s1,s2)

In this section, for functions belonging to the class S?%(y, «, s1,52), we have estimated the bounds for the linear
functional.

Theorem 2.8. Let f given by (1.1)) be in the class S?9(y, 1,s1,s2). Then

g, if 0<y—1]< B,
|las —7a§| < .
|4 (1—9)| ; D
\2a2y2L—éOZJ(1+a)’Yy2—a)M2|’ if =1z |N|

where L,M,N are as defined in Theorem 1.2 and D = L — %.

Proof . From (2.22)), for v € R, we have

ag —ya3 = (1 — y)a3 + (L2=2)Ci W) (2.24)

By using (2.21)) in (2.24)), we have

az —yaz = (1 —7) 2(0?(2;);1222(_021&0(;)(;3)1»12 + (Crd;z)vC? =
= CT W)€y, y) + ax)ez + (E(7,9) — a5 )de]
where
§try) = 2[03(@;13)5?51(\%];;(1/)'
Taking modulus, we have
Ral, o if 0< I < s
|az — ya3| <
Aoyt (v, y)l; if 1En ol = g

O

Corollary 2.9. Let f € o given by (1.1) belongs to the class S?9(y, 1,s1,s2). Then

B if 0<ly=1<|RH,
i) 229
4 1— .
4|2y2ILf(£yzjil)M2‘ yif |’Y*1\Z %|

where L,M,N are as defined in Theorem 1.2 and Dy = L — %.

Corollary 2.10. Let § € o given by (1.1) belongs to the class S?9(y,1/2,s1,s2). Then

# 0122
laz —~a3| < (2.26)
lv* (1) i 11> | D
PTGy 1) if |y 1] > |3

where L,M,N are as defined in Theorem 1.2 and Dy = L — %
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Corollary 2.11. Let § € o given by (1.1)) be in the class S, (y, o, s1,s2). Then

N if 0<ly—1< |2,
lag —ya3| < » o)
[4a”y® (1—7)| . D
2029211 — (2a(lta)y®—a) M1 2| gaf y—1]> ’Vf )

where

Li =3—2(s1 +s2) + 5150,
M1 =2 S1 — S,

Ny =3 —s? —s3—s10,

2a(1+a)y?—a) M, ?
D3 = L, — & Zlgyaa) L,

Corollary 2.12. Let § € o given by (1.1)) be in the class S, (y, o, 1, —1). Then

|yl it 0<|y—1 <5,
laz —ya3| < (2.28)
j0°y*(1-)| - D
s ey M N e - ol
where
D4 —9_ (2a(1+a)y2—o¢) )

aZy?

Corollary 2.13. Let § € o given by (1.1)) be in the class Sy (y, a,1,0). Then

oy if 0< -1 < |5,
|az — yaj| < - (2:29)
[4a”y” (1—7)| ; D
‘2a2y2_(21(1+g)y2_a)|a1f ly =11 > |75|

where D5 =1 — %.
3 Conclusion

We have calculated the bounds for |az| and |as| and Fekete-Szegd inequality for the Sakaguchi-Type function
defined by (p, q)-Derivative operator using Gegenbauer polynomials defined by us in this paper.
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