Int. J. Nonlinear Anal. Appl. 14 (2023) 1, 2031-2039

ISSN: 2008-6822 (electronic)

http://dx.doi.org/10.22075/ijnaa.2022.26617.3367

New refinements for integral form of Jensen's and Holder's inequalities and related results

Gholamreza Zabandan

Department of Mathematics, Kharazmi University, Tehran, Iran

(Communicated by Th.M. Rassias)

Abstract

In this paper we establish two new refinements for integral forms of Jensen's and Holder's inequalites. Several applications are given on special means.

Keywords: Jensen's inequality, Holder's inequality, Integral inequality

2020 MSC: 26D15, 26A51, 26D07

1 Introduction

Let μ be a positive measure on X such that $\mu(X) = 1$. If h is a real-valued function in $L^1(\mu)$, a < f(x) < b for all $x \in X$ and φ is convex on (a, b), then

$$\varphi(\int_{Y} h d\mu) \le \int_{Y} (\varphi \circ f) d\varphi \tag{1.1}$$

The inequality (1.1) is known as Jensen's inequality. Another verstion of Jensen's inequality is the following form

$$\varphi(\frac{\int_a^b p(t)h(t)dt}{\int_a^b p(t)dt}) \le \frac{1}{\int_a^b p(t)dt} \int_a^b p(t)\varphi(h(t))dt \tag{1.2}$$

where p is a non-negative function on [a, b] such that $\int_a^b p(t)dt > 0$, see [1, 9, 14].

Let $\varphi:[a,b]\to\mathbb{R}$ be a convex function, then the inequality

$$\varphi(\frac{a+b}{2}) \le \frac{1}{b-a} \int_{a}^{b} \varphi(x) dx \le \frac{\varphi(a) + \varphi(b)}{2}$$
(1.3)

is known as Hermite-Hadamard inequality (H-H inequality). It is well known that Jensen's, Holder's and H-H inequalities play an important role in non-linear analysis. In recent years there have been many extentions, generalizations and refinements of these inequalities, see [1, 2, 4, 5, 6, 7, 8, 9, 14] and the references therein.

In this paper we establish two refinements of Jensen's, Holder's and H-H inequalities via a partition of [a, b], identity

$$\sum_{k=0}^{m} {m \choose k} (\frac{x-a}{b-a})^k (\frac{b-x}{b-a})^{m-k} = 1$$

 $Email\ address: \verb| zabandan@khu.ac.ir| (Gholamreza Zabandan)$

Received: March 2022 Accepted: June 2022

and Beta integral

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} \qquad (x,y>0)$$

Then we apply these inequalities on special means.

2 Main results

Theorem 2.1. Let h be a real-valued function on [a,b] and $m \le h(x) \le M$ for all $x \in [a,b]$. If φ be a convex function on [m,M] and $h \in L^1[a,b]$, then the following inequalities hold

(i)
$$\varphi(\frac{1}{b-a} \int_a^b h(x) dx) \le \frac{1}{n} \sum_{i=1}^n \varphi(\frac{n}{b-a} \int_{a+\frac{i-(b-a)}{n}(b-a)}^{a+\frac{i}{n}(b-a)} h(x) dx) \le \frac{1}{b-a} \int_a^b (\varphi \circ h)(x) dx$$

(ii)

$$\varphi(\frac{1}{b-a} \int_{a}^{b} h(x)dx) \leq \frac{1}{m+1} \sum_{k=0}^{m} \varphi(\frac{\Gamma(m+2)}{\Gamma(k+1)\Gamma(m-k+1)} \int_{0}^{1} t^{k} (1-t)^{m-k} h(a+t(b-a))dt)$$

$$= \frac{1}{m+1} \sum_{k=0}^{m} \varphi(\frac{\Gamma(m+2)}{\Gamma(k+1)\Gamma(m-k+1)(b-a)^{m+1}} \int_{a}^{b} (x-a)^{k} (b-x)^{m-k} h(x)dx)$$

$$\leq \frac{1}{b-a} \int_{a}^{b} (\varphi \circ h)(x)dx$$

Proof.

(i) By the convexity of φ and Jensen's inequality we have

$$\varphi(\frac{1}{b-a} \int_{a}^{b} h(x)dx) = \varphi(\sum_{i=1}^{n} \frac{1}{n} \cdot \frac{n}{b-a} \int_{a+\frac{i}{n}(b-a)}^{a+\frac{i}{n}(b-a)} h(x)dx)
\leq \frac{1}{n} \sum_{i=1}^{n} \varphi(\frac{n}{b-a} \int_{a+\frac{i}{n}(b-a)}^{a+\frac{i}{n}(b-a)} h(x)dx)
\leq \frac{1}{n} \sum_{i=1}^{n} \frac{n}{b-a} \int_{a+\frac{i}{n}(b-a)}^{a+\frac{i}{n}(b-a)} (\varphi \circ h)(x)dx
= \frac{1}{b-a} \int_{a}^{b} (\varphi \circ h)(x)dx$$

(ii) Since φ is convex and $\sum_{k=0}^{m} {m \choose k} (\frac{x-a}{b-a})^k (\frac{b-x}{b-a})^{m-k} = 1$, we have

$$\varphi(\frac{1}{b-a} \int_{a}^{b} h(x)dx) = \varphi(\frac{1}{b-a} \int_{a}^{b} \sum_{k=0}^{m} {m \choose k} (\frac{x-a}{b-a})^{k} (\frac{b-x}{b-a})^{m-k} h(x)dx)$$

$$= \varphi(\sum_{k=0}^{m} {m \choose k} \int_{a}^{b} (\frac{x-a}{b-a})^{k} (\frac{b-x}{b-a})^{m-k} h(x) \frac{dx}{b-a})$$

By change of variable
$$t = \frac{x-a}{b-a}$$
, $dt = \frac{dx}{b-a}$ we obtain
$$= \varphi(\sum_{k=0}^m \binom{m}{k} \int_0^1 t^k (1-t)^{m-k} h(a+t(b-a)) dt)$$

$$= \varphi(\sum_{k=0}^m \binom{m}{k} \int_0^1 t^k (1-t)^{m-k} dt \frac{\int_0^1 t^k (1-t)^{m-k} h(a+t(b-a)) dt}{\int_0^1 t^k (1-t)^{m-k} dt})$$
 Since $\sum_{k=0}^m \binom{m}{k} \int_0^1 t^k (1-t)^{m-k} dt = \sum_{k=0}^m \binom{m}{k} \frac{k!(m-k)!}{(m+1)} = 1$, by the convexity of φ we get
$$\leq \sum_{k=0}^m \binom{m}{k} \int_0^1 t^k (1-t)^{m-k} dt \, \varphi(\frac{\int_0^1 t^k (1-t)^{m-k} h(a+t(b-a)) dt}{\int_0^1 t^k (1-t)^{m-k} dt})$$

$$= \frac{1}{m+1} \sum_{k=0}^m \varphi(\frac{\int_0^1 t^k (1-t)^{m-k} h(a+t(b-a)) dt}{\int_0^1 t^k (1-t)^{m-k} dt})$$

Again by the convenity of φ and inequality 1.2 we deduce that

$$\leq \frac{1}{m+1} \sum_{k=0}^{m} \frac{\int_{0}^{1} t^{k} (1-t)^{m-k} (\varphi \circ h) (a+t(b-a)) dt}{\int_{0}^{1} t^{k} (1-t)^{m-k} dt}$$

$$= \frac{1}{m+1} \sum_{k=0}^{m} \frac{(m+1)!}{k!(m-k)!} \int_{0}^{1} t^{k} (1-t)^{m-k} (\varphi \circ h) (a+t(b-a)) dt$$

$$= \sum_{k=0}^{m} {m \choose k} \int_{0}^{1} t^{k} (1-t)^{m-k} (\varphi \circ h) (a+t(b-a)) dt$$

$$= \int_{0}^{1} \sum_{k=0}^{m} {m \choose k} t^{k} (1-t)^{m-k} (\varphi \circ h) (a+t(b-a)) dt$$

$$= \frac{1}{b-a} \int_{a}^{b} (\varphi \circ h) (x) dx$$

Because
$$\sum_{k=0}^{m} \binom{m}{k} t^k (1-t)^{m-k} = 1. \text{ Since}$$

$$\varphi(\frac{\int_0^1 t^k (1-t)^{m-k} h(a+t(b-a)) dt}{\int_0^1 t^k (1-t)^{m-k} dt}) = \varphi(\frac{\int_0^1 t^k (1-t)^{m-k} h(a+t(b-a)) dt}{B(k+1,m-k+1)})$$

$$= \varphi(\frac{\Gamma(m+2)}{\Gamma(k+1)\Gamma(m-k+1)} \int_0^1 t^k (1-t)^{m-k} h(a+t(b-a)) dt$$

$$= \varphi(\frac{\Gamma(m+2)}{\Gamma(k+1)\Gamma(m-k+1)(b-a)} \int_0^1 (\frac{x-a}{b-a})^k (\frac{b-x}{b-a})^{m-k} dx)$$

$$= \varphi(\frac{\Gamma(m+2)}{\Gamma(k+1)\Gamma(m-k+1)(b-a)^{m+1}} \int_0^1 (x-a)^k (b-x)^{m-k} dx)$$

The proof is complete.

Corollary 2.2. With the assumption of theorem 2.1 the following inequalities hold

$$\varphi(\frac{1}{b-a} \int_{a}^{b} h(x)dx) \leq \frac{1}{n} \sum_{i=1}^{n} \varphi(\frac{n}{b-a} \int_{a+\frac{i}{n}(b-a)}^{a+\frac{i}{n}(b-a)} h(x)dx)
\leq \frac{1}{n(m+1)} \sum_{i=1}^{n} \sum_{k=0}^{m} \varphi(\frac{n\Gamma(m+2)}{\Gamma(k+1)\Gamma(m-k+1)(b-a)^{m+1}}
\int_{a+\frac{i}{n}(b-a)}^{a+\frac{i}{n}(b-a)} (nx - na - (i-1)(b-a))^{k} (na + i(b-a) - nx)^{m-k} h(x)dx)
\leq \frac{1}{b-a} \int_{a}^{b} (\varphi \circ h)(x)$$

Proof. By using the theorem 2.1 (ii) we have

$$\varphi(\frac{n}{b-a} \int_{a+\frac{i}{n}(b-a)}^{a+\frac{i}{n}(b-a)} h(x)dx) \leq \frac{1}{m+1} \sum_{k=0}^{m} \varphi(\frac{n\Gamma(m+2)}{(b-a)^{m}\Gamma(k+1)\Gamma(m-k+1)}$$

$$\int_{a+\frac{i}{n}(b-a)}^{a+\frac{i}{n}(b-a)} (nx - na - (i-1)(b-a))^{k} (na + i(b-a) - nx)^{m-k} h(x)dx$$

$$\leq \frac{n}{b-a} \int_{a+\frac{i}{n}(b-a)}^{a+\frac{i}{n}(b-a)} (\varphi \circ h)(x)dx$$

The rest of assertion is obvious by theorem 2.1 (i)

In the following theorem we obtain a new refinements of Hermite-Hadmard inequality.

Theorem 2.3. Let φ be a convex function on [a,b]. Then the following inequalities hold

$$\varphi(\frac{a+b}{2}) \le \frac{1}{n} \sum_{i=1}^{n} \varphi(a + \frac{b-a}{n}(i - \frac{1}{2}))
\le \frac{1}{n(m+1)} \sum_{i=1}^{n} \sum_{k=0}^{m} \varphi(a + \frac{b-a}{n}(i - 1 + \frac{k+1}{m+2}))
\le \frac{1}{b-a} \int_{a}^{b} \varphi(x) dx$$

Proof. By putting h(x) = x in Corollary 2.2 we have

$$\varphi(\frac{1}{b-a} \int_{a}^{b} x dx) \leq \frac{1}{n} \sum_{i=1}^{n} \varphi(\frac{n}{b-a} \int_{a+\frac{i}{n}(b-a)}^{a+\frac{i}{n}(b-a)} x dx)
\leq \frac{1}{n(m+1)} \sum_{i=1}^{n} \sum_{k=0}^{m} \varphi(\frac{n\Gamma(m+2)}{(b-a)^{m+1}\Gamma(k+1)\Gamma(m-k+1)}
\int_{a+\frac{i}{n}(b-a)}^{a+\frac{i}{n}(b-a)} (nx - na - (i-1)(b-a))^{k} (na + i(b-a) - nx)^{m-k} x dx)
\leq \frac{1}{b-a} \int_{a}^{b} \varphi(x) dx$$

By change of variable $\frac{nx-na-(i-1)(b-a)}{b-a}=t$, $\frac{ndx}{b-a}=dt$ and Beta integral we get

$$\begin{split} &\int_{a+}^{a+\frac{i}{n}(b-a)} (nx-na-(i-1)(b-a))^k (na+i(b-a)-nx)^{m-k} x dx \\ &= \frac{(b-a)^{m+1}}{n} \int_0^1 t^k (1-t)^{m-k} (a+\frac{b-a}{n}(i-1)+\frac{b-a}{n}t) dt \\ &= \frac{(b-a)^{m+1}}{n} [(a+\frac{b-a}{n}(i-1)) \int_0^1 t^k (1-t)^{m-k} dt + \frac{b-a}{n} \int_0^1 t^{k+1} (1-t)^{m-k} dt] \\ &= \frac{(b-a)^{m+1}}{n} [(a+\frac{b-a}{n}(i-1)) \frac{k!(m-k)!}{(m+1)!} + \frac{b-a}{n} \frac{(k+1)!(m-k)!}{(m+2)!}] \\ &= \frac{(b-a)^{m+1}}{n} [\frac{k!(m-k)!}{(m+1)!} (a+\frac{b-a}{n}(i-1)+\frac{b-a}{n} \frac{k+1}{m+2})] \\ &= \frac{(b-a)^{m+1}}{n} \cdot \frac{\Gamma(k+1)\Gamma(m-k+1)}{\Gamma(m+2)} (a+\frac{b-a}{n}(i-1+\frac{k+1}{m+2})) \end{split}$$

Hence

$$\varphi(\frac{a+b}{2}) \le \frac{1}{n} \sum_{i=1}^{n} \varphi(a + \frac{b-a}{2}(i - \frac{1}{2}))$$

$$\le \frac{1}{n(m+1)} \sum_{i=1}^{n} \sum_{k=0}^{m} \varphi(a + \frac{b-a}{n}(i - 1 + \frac{k+1}{m+2}))$$

$$\le \frac{1}{b-a} \int_{a}^{b} \varphi(x) dx$$

In the following theorem we establish a new refinements of Holder's inequality.

Theorem 2.4. Let p, q > 1 be such that $\frac{1}{p} + \frac{1}{q} = 1$.

If f and g be non-negative functions such that $f \in L^p[a,b]$ and $g \in L^q[a,b]$, then

(i)
$$||fg||_1 \le \frac{1}{2}n^{\frac{1}{q}} \left[\sum_{i=1}^n \left(\int_{a+\frac{i}{n}(b-a)}^{a+\frac{i}{n}(b-a)} fgdt \right)^p \right]^{\frac{1}{p}} + \frac{1}{2}n^{\frac{1}{p}} \left[\sum_{i=1}^n \left(\int_{a+\frac{i}{n}(b-a)}^{a+\frac{i}{n}(b-a)} fgdt \right)^q \right]^{\frac{1}{q}} \le ||f||_p ||g||_q$$

$$\begin{split} \text{(ii)} & \|fg\|_1 \leq \frac{(m+1)^{\frac{1}{p}}}{2(b-a)^{m+1}} [\sum_{k=0}^m \binom{m}{k}^q (\int_a^b I(t)dt)^q]^{\frac{1}{q}} + \frac{(m+1)^{\frac{1}{q}}}{2(b-a)^{m+1}} [\sum_{k=0}^m \binom{m}{k}^p (\int_a^b I(t)dt)^p]^{\frac{1}{p}} \\ & \leq \|f\|_p \|g\|_q \text{ , where } I(t) = (t-a)^k (b-t)^{m-k} fg. \end{split}$$

Proof. The inequalities is trivial if either, f=0 a.e. or g=0 a.e. So assume that f>0 a.e. and g>0 a.e. This gives that $\|f\|_p>0$ and $\|g\|_q>0$. Since $\varphi(x)=x^p$ (p>1) is convex on [a,b] (b>a>0), by theorem 2.1 (i) we have

$$\left(\frac{1}{b-a} \int_{a}^{b} h(x)dx\right)^{p} \leq \frac{1}{n} \sum_{i=1}^{n} \left(\frac{n}{b-a} \int_{a+\frac{i-(b-a)}{n}}^{a+\frac{i-(b-a)}{n}} h(x)dx\right)^{p} \leq \frac{1}{b-a} \int_{a}^{b} h^{p}(x)dx$$

$$\Rightarrow \left(\frac{1}{b-a} \int_{a}^{b} h(x)dx\right)^{p} \leq \frac{n^{p-1}}{(b-a)^{p}} \sum_{i=1}^{n} \left(\int_{a+\frac{i-(b-a)}{n}}^{a+\frac{i-(b-a)}{n}} h(x)dx\right)^{p} \leq \frac{1}{b-a} \int_{a}^{b} h^{p}(x)dx$$

Put
$$h = fg^{1-q}$$
 and $dx = \frac{g^p(b-a)}{\int_a^b g^q dt} dt$, then $hdx = \frac{(b-a)fg}{\int_a^b g^q dt} dt$ and $h^p dx = \frac{(b-a)f^p}{\int_a^b g^q dt} dt$. So
$$\frac{(\int_a^b fg dt)^p}{(\int_a^b g^q dt)^p} \le \frac{n^{p-1}}{(b-a)^p} \sum_{i=1}^n \frac{1}{(\int_a^b g^q dt)^p} (\int_{a+\frac{i-1}{n}(b-a)}^{a+\frac{i-1}{n}(b-a)} (b-a)fg dt)^p \le \frac{1}{b-a} \frac{\int_a^b (b-a)f^p dt}{\int_a^b g^q dt}$$

Multiplying both sides by $(\int_a^b g^q dt)^p > 0$, we get

$$(\int_{a}^{b} f g dt)^{p} \leq n^{p-1} \sum_{i=1}^{n} (\int_{a+\frac{i}{n}(b-a)}^{a+\frac{i}{n}(b-a)} f g dt)^{p} \leq (\int_{a}^{b} f^{p} dt) (\int_{a}^{b} g^{q} dt)^{p-1}$$

Since $\frac{1}{p} + \frac{1}{q} = 1$, it follows that

$$\int_{a}^{b} fgdt \leq n^{\frac{1}{q}} \left[\sum_{i=1}^{n} \left(\int_{a+\frac{i-(b-a)}{n}}^{a+\frac{i-(b-a)}{n}} fgdt \right)^{p} \right]^{\frac{1}{p}} \leq \left(\int_{a}^{b} f^{p}dt \right)^{\frac{1}{p}} \left(\int_{a}^{b} g^{q}dt \right)^{\frac{1}{q}}
\Rightarrow \|fg\|_{1} \leq n^{\frac{1}{q}} \left[\sum_{i=1}^{n} \left(\int_{a+\frac{i-(b-a)}{n}}^{a+\frac{i-(b-a)}{n}} fgdt \right)^{p} \right]^{\frac{1}{p}} \leq \|f\|_{p} \|g\|_{q}$$
(2.1)

By the similar way we obtain

$$||fg||_{1} \le n^{\frac{1}{p}} \left[\sum_{i=1}^{n} \left(\int_{a+\frac{i-1}{n}(b-a)}^{a+\frac{i-1}{n}(b-a)} fgdt \right)^{q} \right]^{\frac{1}{q}} \le ||f||_{p} ||g||_{q}$$
 (2.2)

Finally by (2.1) and (2.2) we deduce that

$$||fg||_1 \leq \frac{1}{2} n^{\frac{1}{q}} \left[\sum_{i=1}^n \left(\int_{a+\frac{i}{n}(b-a)}^{a+\frac{i}{n}(b-a)} fgdt \right)^p \right]^{\frac{1}{p}} + \frac{1}{2} n^{\frac{1}{p}} \left[\sum_{i=1}^n \left(\int_{a+\frac{i}{n}(b-a)}^{a+\frac{i}{n}(b-a)} fgdt \right)^q \right]^{\frac{1}{q}} \leq ||f||_p ||g||_q$$

The proof of (i) is complete.

For the proof of (ii) by the convexity of $\varphi(x) = x^p \ (p > 1)$ and theorem 2.1 (ii) we have

$$\left(\frac{1}{b-a} \int_{a}^{b} h(x)dx\right)^{p} \le \frac{1}{m+1} \sum_{k=0}^{m} \frac{\Gamma^{p}(m+2)}{(b-a)^{p(m+1)} \Gamma^{p}(k+1) \Gamma^{p}(m-k+1)}$$
$$\left(\int_{a}^{b} (x-a)^{k} (b-x)^{m-k} h(x)dx\right)^{p} \le \frac{1}{b-a} \int_{a}^{b} h^{p}(x)dx$$

By the similar way and putting $h = fg^{1-q}$ and $dx = \frac{g^p(b-a)}{\int_a^b g^q dt} dt$ we get

$$\frac{\left(\int_{a}^{b} fgdt\right)^{p}}{\left(\int_{a}^{b} g^{q}dt\right)^{p}} \leq \frac{(m+1)^{p-1}}{(b-a)^{p(m+1)}} \sum_{k=0}^{m} \frac{1}{\left(\int_{a}^{b} g^{q}dt\right)^{p}} \binom{m}{k}^{p} \left(\int_{a}^{b} (t-a)^{k} (b-t)^{m-k} fgdt\right)^{p} \leq \frac{\int_{a}^{b} f^{p}dt}{\int_{a}^{b} g^{q}dt}
\Rightarrow \left(\int_{a}^{b} fgdt\right)^{p} \leq \frac{(m+1)^{p-1}}{(b-a)^{p(m+1)}} \sum_{k=0}^{m} \binom{m}{k}^{p} \left(\int_{a}^{b} (t-a)^{k} (b-t)^{m-k} fgdt\right)^{p} \leq \left(\int_{a}^{b} f^{p}dt\right) \left(\int_{a}^{b} g^{q}dt\right)^{p-1}
\Rightarrow \|fg\|_{1} \leq \frac{(m+1)^{\frac{1}{q}}}{(b-a)^{m+1}} \left[\sum_{k=0}^{m} \binom{m}{k}^{p} \left(\int_{a}^{b} (t-a)^{k} (b-t)^{m-k} fgdt\right)^{p}\right]^{\frac{1}{p}} \leq \|p\|_{p} \|g\|_{q} \tag{2.3}$$

By the same way we obtain

$$||fg||_{1} \leq \frac{(m+1)^{\frac{1}{p}}}{(b-a)^{m+1}} \left[\sum_{k=0}^{m} {m \choose k}^{q} \left(\int_{a}^{b} (t-a)^{k} (b-t)^{m-k} fg dt \right)^{q} \right]^{\frac{1}{q}} \leq ||f||_{p} ||g||_{q}$$
 (2.4)

Finally by (2.3) and (2.4) we get (ii)

3 Application on means

Theorem 3.1. Let b > a > 0 and $m, n \in \mathbb{N}$, then the following inequalities hold

$$\sqrt{ab} \le \frac{\sqrt[2^n]{ab}(a-b)}{n(\sqrt[n]{a}-\sqrt[n]{b})} \le \frac{1}{n(m+1)} \cdot \frac{a^{\frac{m+1}{n(m+2)}} - b^{\frac{m+1}{n(m+2)}}}{a^{\frac{1}{n(m+2)}} - b^{\frac{1}{n(m+2)}}} \le \frac{b-a}{\ln b - \ln a}$$

Proof. since $\varphi(x) = e^x$ is convex on \mathbb{R} , for d > c > 0, $m, n \in \mathbb{N}$ by using theorem 2.3 we have

$$e^{\frac{c+d}{2}} \le \frac{1}{n} \sum_{i=1}^{n} e^{c + \frac{d-c}{n}(i - \frac{1}{2})}$$

$$\le \frac{1}{n(m+1)} \sum_{i=1}^{n} \sum_{k=0}^{m} e^{c + \frac{d-c}{n}(i - 1 + \frac{k+1}{m+2})} \le \frac{1}{d-c} \int_{c}^{d} e^{x} dx \qquad (3.1)$$

By easy calculations we see that

$$\sum_{i=1}^n e^{c + \frac{d-c}{n}(i - \frac{1}{2})} = e^{c - \frac{d-c}{2n}} \sum_{i=1}^n e^{\frac{d-c}{n}i} = e^{\frac{c+d}{2n}} (\frac{e^c - e^d}{e^{\frac{c}{n}} - e^{\frac{d}{n}}})$$

and

$$\begin{split} \sum_{i=1}^{n} \sum_{k=0}^{m} e^{c + \frac{d-c}{n}(i-1 + \frac{k+1}{m+2})} &= e^{c - \frac{d-c}{n} + \frac{d-c}{n(m+2)}} \sum_{i=1}^{n} e^{\frac{d-c}{n}i} \sum_{k=0}^{m} e^{\frac{d-c}{n(m+2)}k} \\ &= e^{\frac{c+d}{n(m+2)}} \cdot \frac{e^{c} - e^{d}}{e^{\frac{c}{n}} - e^{\frac{d}{n}}} \cdot \frac{e^{\frac{c(m+1)}{n(m+2)}} - e^{\frac{d(m+1)}{n(m+2)}}}{e^{\frac{c}{n(m+2)}} - e^{\frac{d(m+1)}{n(m+2)}}} \end{split}$$

Put $e^d = b$ and $e^c = a$, then (3.1) follows that

$$\sqrt{ab} \le \frac{\sqrt[2^n]{ab}(a-b)}{n(\sqrt[n]{a} - \sqrt[n]{b})} \le \frac{1}{n(m+1)} \cdot \frac{a^{\frac{m+1}{n(m+2)}} - b^{\frac{m+1}{n(m+2)}}}{a^{\frac{1}{n(m+2)}} - b^{\frac{1}{n(m+2)}}} \le \frac{b-a}{\ln b - \ln a}$$

Theorem 3.2. Let b > a > 0, $n \in \mathbb{N}$ and $p \in (1, \infty)$, then the following inequalities hold

$$\frac{b-a}{\ln b - \ln a} \leq \frac{n^{\frac{1}{q}} (b^{\frac{1}{n}} - a^{\frac{1}{n}}) (b^p - a^p)^{\frac{1}{p}}}{(\ln b - \ln a) (b^{\frac{p}{n}} - a^{\frac{p}{n}})^{\frac{1}{p}}} \leq \frac{(b^p - a^p)^{\frac{1}{p}}}{p^{\frac{1}{p}} (\ln b - \ln a)^{\frac{1}{p}}}$$

where $\frac{1}{p} + \frac{1}{q} = 1$.

Proof. By putting $h(x) = e^x$ in theorem 2.1 (i) we have

$$\begin{split} &\varphi(\frac{1}{d-c}\int_c^d e^x dx) \leq \frac{1}{n}\sum_{i=1}^n \varphi(\frac{n}{d-c}\int_{c+\frac{i-1}{n}(d-c)}^{a+\frac{i}{n}(d-c)} e^x dx) \leq \frac{1}{d-c}\int_c^d \varphi(e^x) dx \\ &\Rightarrow \varphi(\frac{e^d-e^c}{d-c}) \leq \frac{1}{n}\sum_{i=1}^n \varphi(\frac{n}{d-c}(e^{c+\frac{i}{n}(d-c)}-e^{c+\frac{i-1}{n}(d-c)})) \leq \frac{1}{d-c}\int_c^d \varphi(e^x) dx \end{split}$$

Since $\varphi(x) = x^p \ (p > 1)$ is Convex on $[c, d] \ (d > c > 0)$, It follows that

$$\left(\frac{e^d - e^c}{d - c}\right)^p \le \frac{n^{p-1}}{(d - c)^p} \sum_{i=1}^n \left(e^{c + \frac{i}{n}(d - c)} - e^{c + \frac{i-1}{n}(d - c)}\right)^p \le \frac{e^{pd} - e^{pc}}{p(d - c)}$$

Put $e^d = b$ and $e^c = a$ then we get

$$\left(\frac{b-a}{\ln b - \ln a}\right)^p \le \frac{n^{p-1}}{(\ln b - \ln a)^p} \sum_{i=1}^n \left(a^{1-\frac{i}{n}} b^{\frac{i}{n}} - a^{1-\frac{i-1}{n}} b^{\frac{i-1}{n}}\right)^p \le \frac{b^p - a^p}{p(\ln b - \ln a)} \tag{3.2}$$

By easy calculation we see that

$$\begin{split} &\sum_{i=1}^{n}(a^{1-\frac{i}{n}}b^{\frac{i}{n}}-a^{1-\frac{i-1}{n}}b^{\frac{i-1}{n}})^{p}=\sum_{i=1}^{n}[(\frac{b}{a})^{\frac{i-\frac{1}{2}}{n}}(a^{1-\frac{1}{2n}}b^{\frac{1}{2n}}-a^{1+\frac{1}{2n}}b^{-\frac{1}{2n}})]^{p}\\ &=[a^{1-\frac{1}{2n}}b^{\frac{1}{2n}}-a^{1+\frac{1}{2n}}b^{-\frac{1}{2n}}]^{p}\sum_{i=1}^{n}(\frac{b}{a})^{\frac{p(i-\frac{1}{2})}{n}}\\ &=[a^{1-\frac{1}{2n}}b^{\frac{1}{2n}}-a^{1+\frac{1}{2n}}b^{-\frac{1}{2n}}]^{p}(\frac{b}{a})^{-\frac{p}{2n}}\sum_{i=1}^{n}(\frac{b}{a})^{\frac{pi}{n}}\\ &=[a^{1-\frac{1}{2n}}b^{\frac{1}{2n}}-a^{1+\frac{1}{2n}}b^{-\frac{1}{2n}}]^{p}(\frac{b}{a})^{-\frac{p}{2n}}\frac{1-(\frac{b}{a})^{p}}{1-(\frac{b}{a})^{\frac{p}{n}}}\cdot(\frac{b}{a})^{\frac{p}{n}}\\ &=[a^{1-\frac{1}{2n}}b^{\frac{1}{2n}}-a^{1+\frac{1}{2n}}b^{-\frac{1}{2n}}]^{p}b^{\frac{p}{2n}}\cdot a^{p(\frac{1}{2n}-1)}(\frac{a^{p}-b^{p}}{a^{\frac{p}{n}}-b^{\frac{p}{n}}})\\ &=(b^{\frac{1}{n}}-a^{\frac{1}{n}})^{p}(\frac{a^{p}-b^{p}}{a^{\frac{p}{n}}-b^{\frac{p}{n}}}) \end{split}$$

Hence (3.2) becomes

$$\begin{split} &(\frac{b-a}{\ln b - \ln a})^p \leq \frac{n^{p-1}(b^{\frac{1}{n}} - a^{\frac{1}{n}})^p(b^p - a^p)}{(\ln b - \ln a)^p(b^{\frac{p}{n}} - a^{\frac{p}{n}})} \leq \frac{b^p - a^p}{p(\ln b - \ln a)} \\ &\Rightarrow \frac{b-a}{\ln b - \ln a} \leq \frac{n^{\frac{1}{q}}(b^{\frac{1}{n}} - a^{\frac{1}{n}})(b^p - a^p)^{\frac{1}{p}}}{(\ln b - \ln a)(b^{\frac{p}{n}} - a^{\frac{p}{n}})^{\frac{1}{p}}} \leq \frac{(b^p - a^p)^{\frac{1}{p}}}{p^{\frac{1}{p}}(\ln b - \ln a)^{\frac{1}{p}}} \end{split}$$

Corollary 3.3. Let b > a > 0, $m, n \in \mathbb{N}$ and $p \in (1, \infty)$, then

$$\begin{split} \sqrt{ab} & \leq \frac{\sqrt[2n]{ab}(a-b)}{n(\sqrt[n]{a}-\sqrt[n]{b})} \leq \frac{a^{\frac{m+1}{n(m+2)}} - b^{\frac{m+1}{n(m+2)}}}{a^{\frac{1}{n(m+2)}} - b^{\frac{1}{n(m+2)}}} \\ & \leq \frac{b-a}{\ln b - \ln a} \\ & \leq \frac{n^{\frac{1}{q}}(b^{\frac{1}{n}} - a^{\frac{1}{n}})(b^p - a^p)^{\frac{1}{p}}}{(\ln b - \ln a)(b^{\frac{p}{n}} - a^{\frac{p}{n}})^{\frac{1}{p}}} \\ & \leq (\frac{b-a}{p(\ln b - \ln a)})^{\frac{1}{p}} \end{split}$$

and with means notations

$$G(a,b) \le \frac{\sqrt[2n]{ab}(a-b)}{n(\sqrt[n]{a}-\sqrt[n]{b})} \le \frac{a^{\frac{m+1}{n(m+2)}} - b^{\frac{m+1}{n(m+2)}}}{n(m+1)(a^{\frac{1}{n(m+2)}} - b^{\frac{1}{n(m+2)}})}$$
$$\le L(a,b) \le \frac{n^{\frac{1}{q}}(b^{\frac{1}{n}} - a^{\frac{1}{n}})(b^p - a^p)^{\frac{1}{p}}}{(\ln b - \ln a)(b^{\frac{p}{n}} - a^{\frac{p}{n}})} \le T_p(a,b)$$

where

$$T_p(a,b) = \left(\frac{b-a}{p(\ln b - \ln a)}\right)^{\frac{1}{p}}$$

Proof . It is clear by theorems 3.1 and 3.2. \square

Remark 3.4. By putting

$$X_n(a,b) = \frac{\sqrt[2n]{ab}(a-b)}{n(\sqrt[n]{a} - \sqrt[n]{a})}, Y_{mn}(a,b) = \frac{a^{\frac{m+1}{n(m+2)}} - b^{\frac{m+1}{n(m+2)}}}{a^{\frac{1}{n(m+2)}} - b^{\frac{1}{n(m+2)}}}$$

and

$$Z(a,b) = \frac{n^{\frac{1}{q}}(b^{\frac{1}{n}} - a^{\frac{1}{n}})(b^p - a^p)^{\frac{1}{p}}}{(\ln b - \ln a)(b^{\frac{p}{n}} - a^{\frac{p}{n}})^{\frac{1}{p}}}$$

and easy calculations we see that $X_n(a,b)$, $Y_{mn}(a,b)$ and $Z_{mp}(a,b)$ are means (see [13]). Infact we have proved that

$$G(a,b) \le X_n(a,b) \le Y_{mn}(a,b) \le L(a,b) \le Z_{pn}(a,b) \le T_p(a,b)$$

References

- [1] M. Adil Khan, J. Khan and J. Pecaric, Generalization of Jensen's and Jensen-Steffensen's inequalities by generalized majoration theorem, J. Math. Inequal. 11 no. 4, 1049–1074.
- [2] M. Adil Khan, D. Pecaric and J. Pecaric, New refinement of the Jensen inequality associated to certain functions with application, J. Inequal. Appl. 2020 (2020) 76.
- [3] F. Bruk, The geometric, logarithmic and arithmetic mean inequality, Amer. Math. Month. 94 (1987), no. 6, 527-528
- [4] S.S. Dragomir, A new refinement of Jensen's inequalities in linear Spaces with applications. Math. Comput. Model. **52** (2010), 1497–1505
- [5] S.S. Dragomir, Refining Jensens's integral inequality for Division of measurable space, J. Math. Exten. 12 (2018), no. 2, 87–106.
- [6] S.S. Dragomir, M. A. Khan and A. Abathun, Refinement of Jensen integral inequality, Open Math. 14 (2016), no. 1, 221–228
- [7] M. Hassani and M. Eghbali, More on Hermite-Hadamard inequality, Int. J. Nonlinear Anal. Appl. 12 (2021), no. 2, 2153–2159.
- [8] I. Iscan, New refinement for integral and sum forms of Holder inequality, J. Inequal. App. 2019 (2019), Article ID 304.
- [9] M. Sababheh, Improved Jensen's inequality, Math. Inequal. Appl. 20 (2017), no. 2, 389–403.
- [10] J. Sandor, On certain inequalities for means III, Arch. Math. (Basel) 76 (2001), no. 1, 34–40
- [11] J. Sandor, On refinements of certain inequalities for means, Arch. Math. (Brno) 31 (1995), no. 4, 274–282
- [12] M.Z. Sarikaya and H. Budac, On generalized Hermite-Hadamard inequality for generalized convex function, Int. J. Nonlinear Anal. App. 8 (2017), 209–222.
- [13] G. Zabandan, Several integral inequalities and their applications on means, Int. J. Nonlinear Anal. App. 12 (2021), no. 2, 379–390.
- [14] G. Zabandan and A. Kilicman, A new version of Jensen's inequality and related results, J. Inequal. Appl. 2012 (2012), 238.