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Abstract

In this paper we establish two new refinements for integral forms of Jensen’s and Holder’s inequalites. Several appli-
cations are given on special means.
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1 Introduction

Let o be a positive measure on X such that u(X) = 1. If h is a real-valued function in L*(u),a < f(x) < b for all
x € X and ¢ is convex on (a, b), then

w(/ hdp) < / (po flde (1.1)
X b'e
The inequality (1.1]) is known as Jensen’s inequality. Another verstion of Jensen’s inequality is the following form
( 12 p(t)h(t)dt 1
b =%
[, p(t)dt [, p(t)dt

where p is a non-negative function on [a, b] such that fjp(t)dt > 0, see [1,9,14].

b
o / p(t)p(h(t))dt (1.2)

Let ¢ : [a,b] = R be a convex function, then the inequality

Hx) < o [t < 2020 (1.3)

2 b—a 2

is known as Hermite-Hadamard inequality (H-H inequality). It is well known that Jensen’s, Holder’s and H-H inequal-
ities play an important role in non-linear analysis. In recent years there have been many extentions, generalizations
and refinements of these inequalities, see [1,2,4,5,6,7,8,9,14] and the references therein.

In this paper we establish two refinements of Jensen’s, Holder’s and H-H inequalities via a partition of [a, b], identity
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and Beta integral

B(z,y) :/O 11— 1YLt = i((?i(i))

Then we apply these inequalities on special means.

2 Main results

Theorem 2.1. Let h be a real-valued function on [a, b] and m < h(x) < M for all z € [a,b] . If ¢ be a convex function
on [m, M] and h € L'[a,b], then the following inequalities hold
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Proof .

(i) By the convexity of ¢ and Jensen’s inequality we have
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(ii) Since ¢ is convex and ,;) <k> (m) (b — a) =1, we have
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— d
By change of variable ¢t = r-a , dt = x
b—a b—a

we obtain

— ¢(i (TZ) /01 tF (1 — )™ *h(a 4+ t(b — a))dt)

Y [ ek Jo L= ™ R(a o+ #(b — a))dt
_¢(Z( )/0 th(1 — )"kt R )

Since Z (T]Z) / th(1 —t)mkat = Z (7;) M =1, by the convexity of ¢ we get
0
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Again by the convenity of ¢ and inequality we deduce that
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The proof is complete.
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Corollary 2.2. With the assumption of theorem [2.1] the following inequalities hold
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Proof . By using the theorem (it) we have

n ot (b=a) 1 & nl'(m + 2)
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a+ (b—a)

The rest of assertion is obvious by theorem [2.1] () O

In the following theorem we obtain a new refinements of Hermite-Hadmard inequality.

Theorem 2.3. Let ¢ be a convex function on [a,b]. Then the following inequalites hold
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Proof . By putting h(z) = z in Corollary [2.2| we have
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—na—(i—1)(b— d
na— (i )(b—a) =t, nar dt and Beta integral we get

By change of variable ne
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In the following theorem we establish a new refinements of Holder’s inequality.

1 1
Theorem 2.4. Let p,q > 1 be such that — + — = 1.
p q

If f and g be non-negative functions such that f € LP[a,b] and g € L?[a, b], then

i i
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< ||f||;DHg||q , Where I(t) = (t — a)k(b _ t)m—kfg.

Proof . The inequalities is trivial if either, f = 0 a.e. or g = 0 a.e. So assume that f > 0 a.e. and g > 0 a.e. This
gives that || f|l, > 0 and ||g||; > 0. Since p(x) = 2P (p > 1) is convex on [a,b] (b > a > 0), by theorem (7) we have
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Put b= fg'=9 and dr = L0 Dy then he = =9 gy ang prae = O D 4y
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Multiplying both sides by ( f: gldt)? > 0, we get

n a *( a)
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(b—a)
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By the similar way we obtain

1
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Finally by (2.1) and (2.2)) we deduce that
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The proof of (i) is complete.
For the proof of (ii) by the convexity of ¢(z) = 2P (p > 1) and theorem (i7) we have
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3 Application on means

Theorem 3.1. Let b > a > 0 and m,n € N, then the following inequalities hold

\/* ”ab( )< 1 a%—b#ﬁ< b—a
n(/a—¥b) ~ n(m+1) gamsn _ paarn ~ Inb—Ina

Proof . since p(z) = e® is convex on R, for d > ¢ > 0, m,n € N by using theorem we have
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By easy calculations we see that
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Put e? = b and e® = a, then (3.1)) follows that
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O

Theorem 3.2. Let b>a >0, n € N and p € (1,00), then the following inequalities hold

1
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Proof . By putting h(z) = e in theorem (¢) we have
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Since p(x) = 2P (p > 1) is Convex on [¢,d] (d > ¢ > 0), It follows that
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By easy calculation we see that
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Corollary 3.3. Let b>a >0, m,n € Nand p € (1,00) , then
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Proof . It is clear by theorems and O
Remark 3.4. By putting
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and L ) .
na(bn —an)(bP —aP)?

(Inb —1Ina)(bnw —an)>

and easy calculations we see that X,,(a,b), Y, (a,b) and Z,,,(a,b) are means (see [13]). Infact we have proved that

Z(a,b) =

G(aa b) < Xn(a»b) < Ymn(a’b) < L(a’ b) < an(a’b) < Tp(av b)
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