
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,908 |
تعداد دریافت فایل اصل مقاله | 7,656,366 |
New Lacunary sequence spaces defined by fractional difference operator | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 195، دوره 13، شماره 2، مهر 2022، صفحه 2413-2424 اصل مقاله (406 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2021.22971.2440 | ||
نویسنده | ||
Sunil K. Sharma* | ||
Department of Mathematics, Cluster University of Jammu, Jammu 180001, J& K, India | ||
تاریخ دریافت: 03 فروردین 1400، تاریخ بازنگری: 17 تیر 1400، تاریخ پذیرش: 30 مرداد 1400 | ||
چکیده | ||
In the present paper, we introduce new lacunary strong convergent vector-valued sequence spaces defined by fractional difference operator and Musielak-Orlicz function. We make an effort to study some topological properties and also prove some inclusion relations between these spaces. | ||
کلیدواژهها | ||
Lacunary Sequence؛ Musielak-Orlicz function؛ fractional difference operator | ||
مراجع | ||
[1] P. Baliarsingh, Some new difference sequence spaces of fractional order and their dual spaces, Appl. Math. Comput. 219 (2013), 9737–9742. [2] T. Bilgin, Lacunary strong A-convergence with respect to a modulus, Studia Univ. Babes-Bolyai Math. 48 (2001), 39–46. [3] T. Bilgin, Lacunary strong A-convergence with respect to a sequence of modulus functions, Appl. Math. Comput. 151 (2004), 595–600. [4] J.S. Connor, A topological and functional analytic approach to statistical convergence, Analysis of divergence. Birkh¨auser Boston, 1999. [5] M. Et and R. C¸ olak, On some generalized difference sequence spaces , Soochow J. Math. 21 (1995), 377–386. [6] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241–244. [7] A.R. Freedman, J.J. Sember and M. Raphael, Some Cesaro-type summability spaces, Proc. London Math. Soc. 37 (1978), 508–520. [8] J.A. Fridy, On the statistical convergence, Anal. 5 (1985), 301–303. [9] M. Isık, On statistical convergence of generalized difference sequence spaces, Soochow J. Math. 30 (2004), 197–205. [10] H. Kızmaz, On certain sequence spaces , Cand. Math. Bull. 24 (1981), 169–176. [11] E. Kolk, The statistical convergence in Banach spaces, Acta. Comment. Univ. Tartu 928 (1991), 41–52. [12] J. Lindenstrauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math. 10 (1971), 379–390. [13] I.J. Maddox, Statistical convergence in a locally convex space, Math. Proc. Cambridge Phil. Soc. 104 (1988), 141–145. [14] E. Malkowsky and E. Savas, Some λ-sequence spaces defined by a modulus, Arch. Math. 36 (2000), 219–228. [15] L. Maligranda, Orlicz spaces and interpolation, Seminars in Mathematics 5, Polish Academy of Science, 1989.[16] M. Mursaleen, λ-statistical convergence, Math. Slovaca 50 (2000), 111–115. [17] M. Mursaleen, S. K. Sharma, S. A. Mohiuddine and A. Kili¸cman, New difference sequence spaces defined by Musielak-Orlicz function, Abstr. Appl. Anal. 2014 (2014), 9 pages. [18] M. Mursaleen and S. K. Sharma, Entire sequence spaces defined on locally convex Hausdorff topological space, Iran. J. Sci. Technol. 38 (2014), 105–109. [19] M. Mursaleen, A. Alotaibi and S.K. Sharma, New classes of generalized seminormed difference sequence spaces, Abstr. Appl. Anal. 2014 (2014), 11 pages. [20] M. Mursaleen, A. Alotaibi and S.K. Sharma, Some new lacunary strong convergent vector-valued sequence spaces, Abstr. Appl. Anal. 2014 (2014), 9 pages. [21] J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Mathematics, 1034 (1983). [22] K. Raj, A. K. Sharma and S. K. Sharma, A Sequence space defined by Musielak-Orlicz functions , Int. J. Pure Appl. Math. 67 (2011), 475–484. [23] T. Salat, On statictical convergent sequences of real numbers, Math. Slovaca 30 (1980), 139–150. [24] E. Savas, Strong almost convergence and almost λ-statistical convergence, Hokkaido Math. J. 29 (2000), 531–566. [25] I.J. Schoenberg, The integrability of certain functions and related summability methods, Amer. Math. Month. 66 (1959), 361–375. | ||
آمار تعداد مشاهده مقاله: 44,127 تعداد دریافت فایل اصل مقاله: 281 |