
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,718 |
تعداد دریافت فایل اصل مقاله | 7,656,152 |
On generalized Jordan $\ast$-derivations with associated Hochschild $\ast$-2-cocycles | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 170، دوره 14، شماره 1، فروردین 2023، صفحه 2155-2167 اصل مقاله (388.64 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.26668.3382 | ||
نویسندگان | ||
Javad Bakhti1؛ Gholamreza Abbaspour Tabadkan* 1؛ Amin Hosseini2 | ||
1School of Mathematics, University of Damghan, Damghan, Iran | ||
2Department of Mathematics, Kashmar Higher Education Institute, Kashmar, Iran | ||
تاریخ دریافت: 29 اسفند 1400، تاریخ پذیرش: 21 خرداد 1401 | ||
چکیده | ||
In this paper, we introduce the notions of generalized $\ast$-derivations, generalized Jordan $\ast$-derivations and Jordan triple $\ast$-derivations with the associated Hochschild $\ast$-2-cocycles and then it is proved that if $\mathcal{R}$ is a prime $\ast$-ring and $f:\mathcal{R} \rightarrow \mathcal{R}$ is a nonzero generalized $\ast$-derivation with an associated Hochschild $\ast$-2-cocycle $\beta$, then $\mathcal{R}$ is commutative. Some other results regarding generalized Jordan $\ast$-derivations are also established. | ||
کلیدواژهها | ||
$\ast$-derivation؛ generalized Jordan $\ast$-derivation؛ Hochschild $\ast$-2-cocycle؛ $\ast$-ring؛ prime (semiprime) ring | ||
مراجع | ||
[1] H.A. Ahmed, Right Γ-n-derivations in prime Γ-near-rings, Int. J. Nonlinnear Anal. Appl. 12 (2021), no. 2, 1653–1658. [18] J. Vukman, On derivations in prime rings and Banach algebras, Proc. Amer. Math. Soc. 116 (1992), no. 4, 877–884. | ||
آمار تعداد مشاهده مقاله: 17,074 تعداد دریافت فایل اصل مقاله: 284 |