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Abstract

In this work, we use the averaging theory of first order to study the periodic solutions of the perturbed fifth-order
autonomous differential equation

x(5) − λ
....
x + (p2 + 1)

...
x − λ(p2 + 1)ẍ+ p2ẋ− λp2x = εF (x, ẋ, ẍ,

...
x ,

....
x ),

where λ, and ε are real parameters, p is rational number different from −1, 0, 1, ε is a small enough and F ∈ C2 is a
nonlinear autonomous function. we present some applications to illustrate our main results.
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1 Introduction and statement of the main results

When studying of the dynamics of differential systems following the analysis of their equilibrium points, we should
study the existence or not of their periodic orbits. Differential equations (DEs) are one of the most important tools in
mathematical modeling. For examples, the phenomena of physics, fluid and heat flow, motion of objects, vibrations,
chemical reactions and nuclear reactions have been modeled by systems of DEs. Many applications of ODEs of
different orders can be found in the mathematical modeling of real-life problems. Second and third order differential
equations can be found in [1, 4, 6, 8, 16, 20], fourth-order DEs often arise in many fields of applied science such as
mechanics, quantum chemistry, electronic and control engineering. Also, beam theory [9], fluid dynamics [2] and [10],
ship dynamics [29] and neural networks [17]. Numerically and analytically numerous approximations to solve such
differential equations of various orders have is studied in the literature. Most solutions of the mathematical models of
these applications must be approximated.

The averaging theory is a classical tool for the study of the dynamics of nonlinear differential systems with periodic
forcing. The averaging theory has a long history that begins with the classical work of Lagrange and Laplace. Details
of the averaging theory can be found in the books of Verhulst [28] and Sanders and Verhulst [23]. The averaging theory
is used to the study of periodic solutions for second and higher order differential equations (see [11, 12, 13, 14, 15]).

In [24], the authors studied the periodic solution of the following fifth-order differential equation

x(5) − e
....
x − d

...
x − cẍ− bẋ− ax = εF (t, x, ẋ, ẍ,

...
x ,

....
x ), (1.1)
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where a = λµδ, b = −(λµ + λδ + µδ), c = λ + µ + δ + λµδ, d = −(1 + λµ + λδ + µδ), e = λ + µ + δ, ε is a small
parameter and F ∈ C2 is 2π− periodic in t. Here, the variable x and the parameters λ, µ, δ and ε are real.

In [25], the authors studied equation (1.1) with F = F (x, ẋ, ẍ,
...
x ,

....
x ) which is autonomous. They studied five

cases.

The objective of this work is to study the periodic solutions for a class of fifth-order autonomous ordinary differential
equations

x(5) − λ
....
x + (p2 + 1)

...
x − λ(p2 + 1)ẍ+ p2ẋ− λp2x = εF (x, ẋ, ẍ,

...
x ,

....
x ), (1.2)

where λ, and ε are real parameters, p is rational number different from −1, 0, 1, and ε is small enough, F ∈ C2 is a
nonlinear autonomous function.

In general to obtain analytically periodic solutions of a differential system is a very difficult task, usually impossible.
Recently the study of the periodic solutions of fifth-order of differential equations has been considered by several authors
(see [5, 7, 19, 21, 26, 27]). Here, using the averaging theory we reduce this difficult problem for the differential equation
(1.2) to find the zeros of a nonlinear system of three or four equations. For more information and details about the
averaging theory see section (2) and the references quoted there.

Now, we present the principal results for the periodic solutions of equation (1.2). For the different value of the
parameter λ, we distinguish the two following cases.

Case 1: λ ̸= 0, p ∈ {−1, 0, 1}.

Case 2: λ = 0, p ∈ {−1, 0, 1}.

For each one of these cases, we will give a theorem which provides sufficient conditions for the existence of periodic
solutions of equation (1.2) and we provide two application of our results.

Theorem 1.1. Assume that p is a rational different from −1, 0, 1, λ ̸= 0 in differential equation (1.2). For all positive
simple zero (r∗0 , Z

∗
0 , U

∗
0 ) solution of the system

Fi(r0, Z0, U0) = 0, i = 1, ..., 3, (1.3)

satisfying

det(
∂(F1,F2,F3)

∂(r0, Z0, U0)
|(r0,Z0,U0)=(r∗0 ,Z

∗
0 ,U

∗
0 )

̸= 0, (1.4)

where

F1(r0, Z0, U0) =
1

2πp2

∫ 2πp2

0
cos θF (A1,A2,A3,A4,A5)dθ,

F2(r0, Z0, U0) =
1

2πp2

∫ 2πp2

0

−pU0 sin θ + r0 cos(pθ)

r0
F (A1,A2,A3,A4,A5)dθ,

F3(r0, Z0, U0) =
1

2πp2

∫ 2πp2

0

pZ0 sin θ − r0 sin(pθ)

r0
F (A1,A2,A3,A4,A5)dθ,

(1.5)

be with p = p1/p2, where p1, p2 are positive integers, and

A1 = −r0 cos θ + λr0 sin θ

(p2 − 1)(λ2 + 1)
+

(U0λ+ Z0p) cos(pθ)− (U0p− Z0λ) sin(pθ)

p(p2 + λ2)(p2 − 1)
,

A2 =
−r0λ cos θ + r0 sin θ

(p2 − 1)(λ2 + 1)
− (U0p− Z0λ) cos(pθ) + (U0λ+ Z0p) sin(pθ)

(p2 + λ2)(p2 − 1)
,

A3 =
r0 cos θ + λr0 sin θ

(p2 − 1)(λ2 + 1)
+

−(U0λ+ Z0p)p cos(pθ) + (U0p− Z0λ)p sin(pθ)

(p2 + λ2)(p2 − 1)
,

A4 =
r0λ cos θ − r0 sin θ

(p2 − 1)(λ2 + 1)
+

(U0p− Z0λ)p
2 cos(pθ) + (U0λ+ Z0p)p

2 sin(pθ)

(p2 + λ2)(p2 − 1)
,

A5 = −r0 cos θ + λr0 sin θ

(p2 − 1)(λ2 + 1)
+

(U0λ+ Z0p)p
3 cos(pθ)− (U0p− Z0λ)p

3 sin(pθ)

(p2 + λ2)(p2 − 1)
,

(1.6)
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there is a periodic solution x (t, ε) of equation (1.2) tending to the periodic solution

x(t) = −r∗0(cos t+ λ sin t)

(p2 − 1)(λ2 + 1)
+

(U∗
0λ+ Z∗

0p) cos(pt)− (U∗
0 p− Z∗

0λ) sin(pt)

p(p2 + λ2)(p2 − 1)
, (1.7)

of x(5) − λ
....
x + (p2 + 1)

...
x − λ(p2 + 1)ẍ+ p2ẋ− λp2x = 0, when ε −→ 0. Note that this solution is periodic of period

2πp2.

Theorem 1.1 will be proved in section 3. An applications of Theorem 1.1 is the following.

Corollary 1.2. If F (x,
.
x,

..
x,

...
x,

....
x ) = ẋ2− ẋ− ...

x then the differential equation (1.2) with p = 2, λ = 3 has two periodic
solutions xi(t, ε) for i = 1, ..., 2 tending to the periodic solutions

x1(t) = − cos t− 3 sin t− 3

4
cos(2t) +

1

4
sin(2t),

x2(t) = cos t+ 3 sin t− 3

4
cos(2t) +

1

4
sin(2t),

of x(5) − 3
....
x + 5

...
x − 15ẍ+ 4ẋ− 12x = 0 when ε → 0.

Corollary 1.2 is proved in Section 4.

Theorem 1.3. Assume that p is a rational different from −1, 0, 1, λ = 0 in differential equation (1.2). For all positive
simple zero (r∗0 , Z

∗
0 , U

∗
0 , V

∗
0 ) solution of the system

Fi(r0, Z0, U0, V
∗
0 ) = 0, i = 1, ..., 4, (1.8)

satisfying

det(
∂(F1,F2,F3,F4)

∂(r0, Z0, U0, V0)
|(r0,Z0,U0,V0)=(r∗0 ,Z

∗
0 ,U

∗
0 ,V

∗
0 ) ̸= 0, (1.9)

where

F1(r0, Z0, U0, V0) =
1

2πp2

∫ 2πp2

0
cos θ F (B1,B2,B3,B4,B5)dθ,

F2(r0, Z0, U0, V0) =
1

2πp2

∫ 2πp2

0

−pU0 sin θ + r0 cos(pθ)

r0
F (B1,B2,B3,B4,B5)dθ,

F3(r0, Z0, U0, V0) =
1

2πp2

∫ 2πp2

0

pZ0 sin θ − r0 sin(pθ)

r0
F (B1,B2,B3,B4,B5)dθ,

F4(r0, Z0, U0, V0) =
1

2πp2

∫ 2πp2

0
F (B1,B2,B3,B4,B5)dθ,

(1.10)

be with p = p1/p2, where p1, p2 are positive integers, and

B1 =
−r0p

2 cos θ + Z0 cos(pθ)− U0 sin(pθ) + (p2 − 1)V0

p2(p2 − 1)
,

B2 =
r0p sin θ − U0 cos(pθ)− Z0 sin(pθ)

p(p2 − 1)
,

B3 =
r0 cos θ − Z0 cos(pθ) + U0 sin(pθ)

p2 − 1
,

B4 =
−r0 sin θ + U0p cos(pθ) + Z0p sin(pθ)

p2 − 1
,

B5 =
−r0 cos θ + Z0p

2 cos(pθ)− U0p
2 sin(pθ)

p2 − 1
,

(1.11)
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there is a periodic solution x (t, ε) of equation (1.2) tending to the periodic solution

x(t) =
−r∗0p

2 cos t+ Z∗
0 cos(pt)− U∗

0 sin(pt) + (p2 − 1)V ∗
0

p2(p2 − 1)
, (1.12)

of x(5) − λ
....
x + (p2 + 1)

...
x − λ(p2 + 1)ẍ+ p2ẋ− λp2x = 0, when ε −→ 0. Note that this solution is periodic of period

2πp2.

Theorem 1.3 Will be proved in section 5. An application of Theorem 1.3 is given in the following corollary.

Corollary 1.4. If F (x,
.
x,

..
x,

...
x,

....
x ) = x2 − 2ẋ2 − ẋ then the differential equation (1.2) with p =

1

2
, λ = 0 has four

periodic solutions xi(t, ε) for i = 1, ..., 4 tending to the periodic solutions

x1(t) =
10

3
(cos t− cos(

1

2
t) + sin(

1

2
t)), x2(t) =

10

3
(− cos t+ cos(

1

2
t) + sin(

1

2
t)),

x3(t) =
10

3
(− cos t− cos(

1

2
t)− sin(

1

2
t)), x4(t) =

10

3
(cos t+ cos(

1

2
t)− sin(

1

2
t)),

of x(5) +
5

4

...
x +

1

4
ẋ = 0 when ε → 0.

Corollary 1.4 is proved in section 6.

2 Averaging theory

In this section, we recall the basic results from the averaging theory that we need for proving the main results of
this work.

We consider the problem of the bifurcation of T–periodic solutions from differential systems of the form

ẋ = F0(x, t) + εF1(x, t) + ε2F2(x, t, ε), (2.1)

with ε > 0 small enough. The functions F0, F1 : R × Ω → Rn and F2 : R × Ω × (−ε0, ε0) → Rn are C2 functions,
T–periodic in the variable t, and Ω is an open subset of Rn.The principal hypothesis is that the unperturbed system

ẋ = F0(x, t), (2.2)

has a k-dimensional submanifold Z of T -periodic solutions.

Let x(z, t) be the solution of the unperturbed system (2.2) such that x(0, z) = z. The linearization of the system
along the periodic solution x(z, t) is written as

ẏ = DxF0(x(z, t), t)y. (2.3)

We define by Mz(t) as the fundamental matrix of the linear differential system (2.3), and by ξ : Rk ×Rn−k → Rk the
projection of Rn onto its first k coordinates; i.e. ξ(x1, . . . , xn) = (x1, . . . , xk).

The periodic solutions contained in Z for system (2.1) is given in the following result.

Theorem 2.1. Let W ⊂ Rk, be open and bounded and β1: Cl(W ) → Rn−k be a C2 function. We assume that

(i) Z = {zα = (α, β1(α)) , α ∈ Cl(W )} ⊂ Ω and that for each zα ∈ Z the solution x(zα, t) of (2.2) is T–periodic;

(ii) for each zα ∈ Z there is a fundamental matrix Mzα(t) of (2.3) such that the matrix M−1
zα

(0) −M−1
zα

(T ) has in
the upper right corner the k × (n− k) zero matrix, and in the lower right corner a (n− k)× (n− k) matrix ∆α

with det(∆α) ̸= 0.



Periodic solutions for a class of perturbed fifth-order autonomous differential equations via averaging theory 2483

We consider the function F : Cl(W ) → Rk

F(α) = ξ

(
1

T

∫ T

0

M−1
zα

(t)F1(x(zα, t), t)dt

)
. (2.4)

If there exists a ∈ W with F(a) = 0 and det ((dF/dα) (a)) ̸= 0, then there is a T–periodic solution φ(t, ε) of system
(2.1) such that φ(0, ε) → za as ε → 0.

Theorem 2.1 goes back to [18] and [22], for a shorter proof see [3].

We assume that the system (2.1) has an open set V with Cl(V ) ⊂ Ω such that for each z ∈ Cl(V ). Cl(V ) is a set
formed only by periodic orbits; i.e. it is isochronous for the system (2.1). If k = n, we have the following theorem.

Theorem 2.2. Consider the function F : Cl(V ) → Rn

F(z) =

∫ T

0

M−1
z (z, t)F1(x(z, t), t)dt. (2.5)

If there exists a ∈ V with F(a) = 0 and det ((dF/dz) (a)) ̸= 0, then there exists a T–periodic solution of system (2.1)
such that when ε → 0 we have that x(0, ε) → a.

For a proof, see [3].

3 Proof of Theorem 1.1

If y =
.
x, z =

..
x, u =

...
x, v =

....
x , then equation (1.2) can be written as

.
x = y,

.
y = z,

.
z = u,

.
u = v,

.
v = λp2x− p2y + λ(p2 + 1)z − (p2 + 1)u+ λv + εF (x, ẋ, ẍ,

...
x ,

....
x ),

(3.1)

with ε = 0, system (3.1) has a unique singular point at the origin. The eigenvalues of the linear part of this system
are ±i, ±pi and λ. By the linear inversible transformation

X
Y
Z
U
V

 =


0 −λp2 p2 −λ 1

−λp2 p2 −λ 1 0
0 −λ 1 −λ 1

−λp p −λp p 0
p2 0 p2 + 1 0 1




x
y
z
u
v

 , (3.2)

we obtain the transformation of the system (3.1) as follows

.

X = −Y + εH (X,Y, Z, U, V ) ,
.

Y = X,
.

Z = −pU + εH (X,Y, Z, U, V ) ,
.

U = pZ,
.

V = λV + εH (X,Y, Z, U, V ) ,

(3.3)
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where H(X,Y, Z, U, V ) = F (A,B,C,D, J) with

A =
λ(λ2 + 1)U + p(p2 − 1)V − p(λ2 + p2)X − λp(λ2 + p2)Y + p(λ2 + 1)Z

p(p2 − 1)(λ2 + p2)(λ2 + 1)
,

B =
−p(λ2 + 1)U + λ(p2 − 1)V − λ(λ2 + p2)X + (λ2 + p2)Y + λ(λ2 + 1)Z

(p2 − 1)(λ2 + p2)(λ2 + 1)
,

C =
−λp(λ2 + 1)U + λ2(p2 − 1)V + (λ2 + p2)X + λ(λ2 + p2)Y − p2(λ2 + 1)Z

(p2 − 1)(λ2 + p2)(λ2 + 1)
,

D =
p3(λ2 + 1)U + λ3(p2 − 1)V + λ(λ2 + p2)X − (λ2 + p2)Y − λp2(λ2 + 1)Z

(p2 − 1)(λ2 + p2)(λ2 + 1)
,

J =
λp3(λ2 + 1)U + λ4(p2 − 1)V − (λ2 + p2)X − λ(λ2 + p2)Y + p4(λ2 + 1)Z

(p2 − 1)(λ2 + p2)(λ2 + 1)
.

The linear part of the system (3.3) at the origin is in the real Jordan normal from and that the change of variables
(3.2) is defined when p is a rational different from −1, 0, 1, because the determinant of the matrix of the change is
p(p2 − 1)2(λ2 + 1)(λ2 + p2). We switch now from the cartesian variables (X,Y, Z, U, V ) to the cylindrical variables
(r, θ, Z, U, V ) of R5, with X = r cos θ, Y = r sin θ, and we find

ṙ = ε cos θG(r, θ, Z, U, V ),

θ̇ = 1− ε

r
sin θG(r, θ, Z, U, V ),

Ż = −pU + εG(r, θ, Z, U, V ),

U̇ = pZ,

V̇ = λV + εG(r, θ, Z, U, V ),

(3.4)

where G(r, θ, Z, U, V ) = F (a, b, c, d, j) with

a =
λ(λ2 + 1)U + p(p2 − 1)V − p(λ2 + p2)r cos θ − λp(λ2 + p2)r sin θ + p(λ2 + 1)Z

p(p2 − 1)(λ2 + p2)(λ2 + 1)
,

b =
−p(λ2 + 1)U + λ(p2 − 1)V − λ(λ2 + p2)r cos θ + (λ2 + p2)r sin θ + λ(λ2 + 1)Z

(p2 − 1)(λ2 + p2)(λ2 + 1)
,

c =
−λp(λ2 + 1)U + λ2(p2 − 1)V + (λ2 + p2)r cos θ + λ(λ2 + p2)r sin θ − p2(λ2 + 1)Z

(p2 − 1)(λ2 + p2)(λ2 + 1)
,

d =
p3(λ2 + 1)U + λ3(p2 − 1)V + λ(λ2 + p2)r cos θ − (λ2 + p2)r sin θ − λp2(λ2 + 1)Z

(p2 − 1)(λ2 + p2)(λ2 + 1)
,

j =
λp3(λ2 + 1)U + λ4(p2 − 1)V − (λ2 + p2)r cos θ − λ(λ2 + p2)r sin θ + p4(λ2 + 1)Z

(p2 − 1)(λ2 + p2)(λ2 + 1)
.
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Dividing by θ̇, the system (3.4) becomes

dr

dθ
= ε cos θG+O(ε2),

dZ

dθ
= −pU + ε(1− pU

r
sin θ)G+O(ε2),

dU

dθ
= pZ + ε

pZ

r
sin θG+O(ε2),

dV

dθ
= λV + ε(1 +

λV

r
sin θ)G+O(ε2),

(3.5)

where G = G(r, θ, Z, U, V ).

The system 3.5 can be written as system (2.1) with

x =



r

Z

U

V


, t = θ, F0 (θ, x) =



0

−pU

pZ

λV


,

F1 (θ, x) =



cos θG

(1− pU

r
sin θ)G

pZ sin θ

r
G

(1 +
λV

r
sin θ)G


.

We will now apply the Theorem 2.1 to system (3.5). System (3.5) with ε = 0 has the 2πp2 -periodic solutions

r (θ)

Z (θ)

U (θ)

V (θ)


=



r0

Z0 cos(pθ)− U0 sin(pθ)

U0 cos(pθ) + Z0 sin(pθ)

0


, (3.6)

for (r0, Z0, U0, V0) ∈ R with r0 > 0 and p = p1/p2, where p1, p2 are positive integers.

By the statement of Theorem 2.1, We have that k = 3 and n = 4. We take

W = {(r0, Z, U) : 0 < r20 + Z2 + U2 < R2} ⊂ R3,

with R > 0, α = (r0, Z0, U0) and β : W → R, β(r0, Z0, U0) = 0. The set Z is

Z = {zα = (r0, Z0, U0, 0), (r0, Z0, U0) ∈ W}.

For eache zα ∈ Z, the solution x(θ, zα) is 2πp2 periodic. The fundamental matrix Mzα
(θ) of the linear system (3.5)

with ε = 0 related to the 2πp2-periodic solution zα = (r0, Z0, U0, 0) such that Mzα(0) is the identity of R4, we obtain

M(θ) = Mzα(θ) =


1 0 0 0
0 cos(pθ) − sin(pθ) 0
0 sin(pθ) cos(pθ) 0
0 0 0 eλθ

 .
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The matrix

M−1(0)−M−1(2πn) =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1− e−2πnλ

 , (3.7)

satisfy the assumptions of statement (ii) of Theorem 2.1, for λ ̸= 0, we can apply it to system (3.5).

Now, by taking ξ : R4 −→ R3 is ξ(r, Z, U, V ) = (r, Z, U), we calculate F(α) given by (2.4), we obtain

F(α) = F(r0, Z0, U0) =



1

2πp2

∫ 2πp2

0
cos θF (A1,A2,A3,A4,A5)dθ

1

2πp2

∫ 2πp2

0

−pU0 sin θ + r0 cos(pθ)

r0
F (A1,A2,A3,A4,A5)dθ

1

2πp2

∫ 2πp2

0

pZ0 sin θ − r0 sin(pθ)

r0
F (A1,A2,A3,A4,A5)dθ


=


F1(r0, Z0, U0)

F2(r0, Z0, U0)

F3(r0, Z0, U0)

 ,

where A1, A2, A3, A4 and A5 are given in the Theorem 1.1. Then, by Theorem 2.1 we have that for every simple zero
(r∗0 , Z

∗
0 , U

∗
0 ) ∈ W of the function F(r0, Z0, U0) we have a periodic solution (r, Z, U, V )(θ, ε) of system (3.5) such that

(r, Z, U, V )(0, ε) −→ (r∗0 , Z
∗
0 , U

∗
0 , 0) as ε −→ 0.

By going back to the changes of coordinates, we obtain a periodic solution (r, θ, Z, U, V )(t, ε) of system (3.4) such that

(r, θ, Z, U, V )(0, ε) −→ (r∗0 , 0, Z
∗
0 , U

∗
0 , 0) as ε −→ 0.

There exists a periodic solution (X,Y, Z, U, V )(t, ε) of system (3.3) such that

(X,Y, Z, U, V )(0, ε) −→ (r∗0 , 0, Z
∗
0 , U

∗
0 , 0) as ε −→ 0. (3.8)

At last, we have a periodic solution x(t, ε) of equation (1.2) such that

x(t, ε) −→ −r∗0(cos t+ λ sin t)

(p2 − 1)(λ2 + 1)
+

(U∗
0λ+ Z∗

0p) cos(pt)− (U∗
0 p− Z∗

0λ) sin(pt)

p(p2 + λ2)(p2 − 1)
,

of equation x(5) − λ
....
x + (p2 + 1)

...
x − λ(p2 + 1)ẍ+ p2ẋ− λp2x = 0, when ε −→ 0. Theorem 1.1 is proved.

4 Proof of Corollary 1.2

Consider the function
F (x, ẋ, ẍ,

...
x ,

....
x ) = ẋ2 − ẋ− ...

x ,

which corresponds to the case p = 2 and λ = 3. The functions Fi=Fi(r0, Z0, U0) for i = 1, ..., 3 of Theorem 1.1 are

F1 =
r

2340
(3U0 − 11Z0),

F2 = − 1

13
U0 +

3

26
Z0 −

11

1170
U2
0 +

1

450
r0 −

1

390
U0Z0,

F3 =
3

26
U0 +

1

13
Z0 +

1

390
Z2
0 +

1

600
r20 +

11

1170
U0Z0,

System F1 = F2 = F3 = 0 has the tow solutions

(r∗0 , Z
∗
0 , U

∗
0 ) = (30, 0, 0,−9

2
,−33

2
),

(r∗0 , Z
∗
0 , U

∗
0 ) = (−30, 0, 0,−9

2
,−33

2
).

Since the Jacobian

det(
∂(F1,F2,F3)

∂(r0, Z0, U0)
|(r0,Z0,U0)=(r∗0 ,Z

∗
0 ,U

∗
0 )

= − 1

312
̸= 0,

by Theorem 1.1 equation (1.2) has the tow periodic solution of the statement of the corollary 1.2.
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5 Proof of Theorem 1.3

If λ = 0, and p is rational number different from −1, 0, 1, equation

x(5) + (p2 + 1)
...
x + p2ẋ = εF (x, ẋ, ẍ,

...
x ,

....
x ), (5.1)

can be written as 

.
x = y,

.
y = z,

.
z = u,

.
u = v,

.
v = −p2y − (p2 + 1)u+ εF (x, ẋ, ẍ,

...
x ,

....
x ),

(5.2)

with ε = 0, system (5.2) has a unique singular point at the origin. The eigenvalues of the linear part of this system
are ±i, ±pi and 0. By the change of variable

X
Y
Z
U
V

 =


0 0 p2 0 1
0 p2 0 1 0
0 0 1 0 1
0 p 0 p 0
p2 0 p2 + 1 0 1




x
y
z
u
v

 , (5.3)

we obtain the transformation of the system (5.2) as follows

.

X = −Y + εG (t,X, Y, Z, U, V ) ,

.

Y = X,

.

Z = −pU + εG (t,X, Y, Z, U, V ) ,

.

U = pZ,

.

V = εG (t,X, Y, Z, U, V ) ,

(5.4)

where
F (A,B,C,D, J) = G (X,Y, Z, U, V ) ,

with

A =
(p2 − 1)V − p2X + Z

p2(p2 − 1)
, B =

−U + pY

(p2 − 1)p
, C =

X − Z

p2 − 1
, D =

pU − Y

p2 − 1
,

J =
−X + p2Z

p2 − 1
,

The linear part of the system (5.4) at the origin is in the real Jordan normal from and that the change of variables
(5.3) is defined when p is a rational different from −1, 0, 1, because the determinant of the matrix of the change is
p3(p2 − 1)2. We switch now from the Cartesian variables (X,Y, Z, U, V ) to the cylindrical coordinates (r, θ, Z, U, V ) of
R5, with X = r cos θ, Y = r sin θ, and we find

ṙ = ε cos θH(r, θ, Z, U, V ),

θ̇ = 1− ε
sin θ

r
H(r, θ, Z, U, V ),

Ż = −pU + εH(r, θ, Z, U, V ),

U̇ = pZ,

V̇ = εH(r, θ, Z, U, V ),

(5.5)
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where H(r, θ, Z, U, V ) = F (a, b, c, d, j) with

a =
(p2 − 1)V − p2r cos θ + Z

p2(p2 − 1)
, b =

−U + pr sin θ

(p2 − 1)p
, c =

r cos θ − Z

(p2 − 1)
, d =

pU − r sin θ

(p2 − 1)
,

j =
−r cos θ + p2Z

p2 − 1
,

Dividing by θ̇, the system (5.5) becomes

dr

dθ
= ε cos θH +O(ε2),

dZ

dθ
= −pU + ε

r − pU sin θ

r
H +O(ε2),

dU

dθ
= pZ + ε

pZ sin θ

r
H +O(ε2),

dV

dθ
= εH +O(ε2),

(5.6)

where H = H(r, θ, Z, U, V ).

We will now apply Theorem 2.2 to the system (5.6). System (5.6) can be written as system (2.1) taking

x =


r
Z
U
V

 , t = θ, F0 (θ, x) =


0

−pU
pZ
0

 ,

F1 (θ, x) =


cosθH

r − pU sin θ

r
H

pZ sin θ

r
H

H

 .

System (5.6) with ε = 0 has the 2πp2 -periodic solutions
r (θ)
Z (θ)
U (θ)
V (θ)

 =


r0

Z0 cos(pθ)− U0 sin(pθ)
U0 cos(pθ) + Z0 sin(pθ)

V0

 , (5.7)

for (r0, Z0, U0, V0) ∈ R with r0 > 0 and p = p1/p2, where p1, p2 are positive integers. To look for the periodic
solutions of our equation (5.1) we must calculate the zeros α = (r0, Z0, U0, V0) of the system F(α) = 0, Where F(α)
is given (2.5). The fundamental matrix M(θ) of the system (5.6) with ε = 0 along any periodic solution is

M(θ) = Mzα(θ) =


1 0 0 0
0 cos(pθ) − sin(pθ) 0
0 sin(pθ) cos(pθ) 0
0 0 0 1

 .

We calculate the function F(α) given by (2.5), we have obtained that the system F(α) = 0 can be written as
F1 (r, Z, U, V,W )
F2 (r, Z, U, V,W )
F3 (r, Z, U, V,W )
F4 (r, Z, U, V,W )

 =


0
0
0
0

 , (5.8)
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where

F1(r, Z, U, V ) =
1

2πp2

∫ 2πp2

0
cos θ F (B1,B2,B3,B4,B5)dθ,

F2(r, Z, U, V ) =
1

2πp2

∫ 2πp2

0

−pU0 sin θ + r0 cos(pθ)

r0
F (B1,B2,B3,B4,B5)dθ,

F3(r, Z, U, V ) =
1

2πp2

∫ 2πp2

0

pZ0 sin θ − r0 sin(pθ)

r0
F (B1,B2,B3,B4,B5)dθ,

F4(r, Z, U, V ) =
1

2πp2

∫ 2πp2

0
F (B1,B2,B3,B4,B5)dθ,

with B1, B2, B3, B4, and B5 as in the statement of Theorem 1.3.

If determinant (1.9) is nonzero, the zeros (r∗, Z∗, U∗, V ∗) of system (5.8) with respect to the variable r, Z, U, and
V , providing periodic orbits of system (5.6) with ε > 0 small enough if they are simple. By going back to the changes
of coordinates, for all simple zero (r∗, Z∗, U∗, V ∗) of system (5.8), we exist a 2πp2-periodic solution x(t) of equation
(5.1) for ε > 0 small enough such that

x(t, ε) −→ −r∗0p
2 cos t+ Z∗

0 cos(pt)− U∗
0 sin(pt) + (p2 − 1)V ∗

0

p2(p2 − 1)
, (5.9)

of x(5) + (p2 + 1)
...
x + p2ẋ = 0, when ε −→ 0. Theorem 1.3 is proved.

6 Proof of Corollary 1.4

Consider the function
F (x, ẋ, ẍ,

...
x ,

....
x ) = x2 − 2ẋ2 − ẋ,

which corresponds to the case p =
1

2
and λ = 0. The functions Fi=Fi(r0, Z0, U0, V0) for i = 1, ..., 4 of Theorem 1.3 are

F1 = −32

3
U2
0 +

16

3
r0Z0 +

32

3
Z2
0 ,

F2 =
32U2

0Z0 − 64V0Z0r0 − 5U0r0
3r

,

F3 =
−64U0V0r0 − 32U0Z

2
0 + 5Z0r0

3r
,

F4 =
64

9
U2
0 + 16V 2

0 +
64

9
Z2
0 − 8

9
r20,

System F1 = F2 = F3 = F4 = 0 has the four solutions

(r∗0 , Z
∗
0 , U

∗
0 , V

∗
0 ) = (

5

2
,
5

8
,
5

8
, 0),

(r∗0 , Z
∗
0 , U

∗
0 , V

∗
0 ) = (−5

2
,−5

8
,
5

8
, 0),

(r∗0 , Z
∗
0 , U

∗
0 , V

∗
0 ) = (−5

2
,
5

8
,−5

8
, 0),

(r∗0 , Z
∗
0 , U

∗
0 , V

∗
0 ) = (

5

2
,−5

8
,−5

8
, 0).

Since the Jacobian (1.9) for theses four solutions (r∗0 , Z
∗
0 , U

∗
0 , V

∗
0 ) is

−640000

243
,

respectively, we obtain using Theorem 1.3, the four solutions given in statement of the corollary 1.4
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...
u ), Appl. Math. Comput. 219 (2012) , 827–836.

[14] J.Llibre and A. Makhlouf, On the limit cycles for a class of fourth-order differential equations, J. Phys. Math.
Gen. 45 (2012) , 55214.

[15] J.Llibre and A. Makhlouf, Limit cycles for a class of fourth-order autonomous differential equations, Electronic
J. Differ. Equ. 2012 (2012) , 1–17.

[16] J. Llibre and E. Perez-Chavela, Limit cycles for a class of second order differential equations, Phys. Lett. A 375
(2011), 1080—1083.

[17] A. Malek and R.S. Beidokhti, Numerical solution for high order differential equations using a hybrid neural
network-optimization method, Appl. Math. Comput. 183 (2006), 260.

[18] I.G. Malkin, Some Problems of the theory of nonlinear oscillations, Gosudarstv. Izdat. Tehn-Teor. Lit. Moscow,
(in Russian), 1956.

[19] M.S. Mechee and F.A. Fawzi, Generalized Runge-Kutta integrators for solving fifth-order ordinary differential
equations, Ital. J. Pure Appl. Math. 45 (2021), 600–610.

[20] G. Moatimid, F. Elsabaa, M. Zekry, Approximate solutions of coupled nonlinear oscillations: Stability analysis,
J. Appl. Comput. Mech. 7 (2021), no. 2, 382–395.

[21] S.N. Odda, Existence solution for 5th order differential equations under some conditions, Appl. Math. 1 (2010),
no. 4, 279–282.
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