- V. Abramov, R. Kerner, and B. Le Roy, Hypersymmetry: A Z3-graded generalization of supersymmetry, J. Math. Phys. 38 (1997), 1650-1669.
- R. Badora, On approximate ring homomorphisms, J. Math. Anal. Appl. 276 (2002), 589-597.
- R. Badora, On approximate derivations, Math. Inequal. Appl. 9 (2006), 167-173.
- M. Bavand Savadkouhi, M. Eshaghi Gordji, J. M. Rassias, N. Ghobadipour, Approximate ternary Jordan derivations on Banach ternary algebras, J. Math. Phys. 50, 4, Art. No. 042303 (2009), 9 pages, DOI: 10.1063/1.3093269.
- D. G. Bourgin, Approximately isometric and multiplicative transformations on continuous function rings, Duke Math. J. 16 (1949), 385-397.
- A. Cayley, Cambridge Math. Journ. 4 (1845), p. 1.
- L. Cˇadariu, V. Radu, Fixed points and the stability of quadratic functional equations, Analele Universitatii de Vest din Timisoara. 41 (2003), 25-48.
- L. Cˇadariu and V. Radu, Fixed points and the stability of Jensen’s functional equation, J. Inequal. Pure Appl. Math. 4 (2003), Art. ID 4.
- L. Cˇadariu, V. Radu, The fixed points method for the stability of some functional equations, Carpathian Journal of Mathematics 23 (2007),63-72.
- L. Cˇadariu and V. Radu, on the stability of the Cauchy functional equation: a fixed point approach, Grazer Mathematische berichte 346 (2004), 43-52.
- M. Eshaghi Gordji, H. Khodaei, R. Saadati and Gh. Sadeghi, Approximation of additive mappings with m-variables in random normed spaces via fixed point method, (To appear).
- Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), 431-434.
- P. Gˇavrutˇa, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
- D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad 27 (1941), 222-224.
- G. Isac and Th. M. Rassias, On the Hyers-Ulam stability of ψ-additive mappings, J. Approx. Theorey 72 (1993), 131-137.
- B. E. Johnson, Approximately multiplicative maps between Banach algebras, J. London Math. Soc. 37 (1988), no. 2, 294-316.
- Y.-S. Jung, On the generalized Hyers-Ulam stability of module derivations, J. Math. Anal. Appl. 339 (2008), 108-114.
- R. V. Kadison and G. Pedersen, Means and convex conbinations of unitary operators, Math. Scand. 57 (1985), 249-266.
- M. Kapranov, I. M. Gelfand, and A. Zelevinskii, Discriminants, Resultants, and Multidimensional Determinants, Birkhauser, Boston, 1994.
- R. Kerner, Ternary algebraic structures and their applications in physics, preprint.
- T. Miura, G. Hirasawa, and S.-E. Takahasi, A perturbation of ring derivations on Banach algebras, J. Math. Anal. Appl. 319 (2006), 522-530.
- M. S. Moslehian, Almost derivations on C-ternary rings, Bull. Belg. Math. Soc.-Simon Stevin 14 (2007), 135-142.
- J. Nambu, Physical Review D7 (1973), p. 2405.
- C. Park, Isomorphisms between C ∗ -ternary algebras, J. Math. Anal. Appl. 327 (2007), 101-115.
- C. Park and Th. M. Rassias, d-Isometric Linear Mappings in Linear d-normed Banach Modules, J. Korean Math. Soc. 45 (2008), no. 1, 249-271.
- C. Park and J. S. An, Isomorphisms in quasi-Banach algebras, Bull. Korean Math. Soc. 45 (2008), no. 1, 111-118.
- K.-H. Park and Y.-S. Jung, Perturbations of Higher ternary derivations in Banach ternary algebras, Commun. Korean Math. Soc. 23 (2008), no. 3, 387-399.
- K.-H. Park and Y.-S. Jung, The stability of a mixed type functional inequality with the fixed point alternative, Commun. Korean Math. Soc. 19 (2004), no. 2, 253266.
- V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory 4 (2003), 91-96.
- Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
- I.A. Rus, Principles and Applications of Fixed Point Theory, Ed. Dacia, Cluj-Napoca, 1979 (in Romanian).
- S. Rolewicz, Metric Linear Spaces, PWN-Polish Sci. Publ./Reidel, Warszawa/Dordrecht, 1984.
- S. M. Ulam, A Collection of Mathematical Problems, Interscience Publ., New York, 1960.
- GL. Vainerman and R. Kerner, On special classes of n-algebras, J. Math. Phys. 37 (1996), 2553-2565.
|