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Abstract

The main purpose of this paper is to consider the best approximation in fuzzy cone normed linear space and study its
related results. We introduce quotient fuzzy cone normed linear space and proved some results of approximation in
such spaces. We also discuss the relation in proximity and Chebyshevity of a given space and its quotient space.

Keywords: fuzzy cone norm, best c-approximation, c-proximal, c-Chebyshev
2020 MSC: 46540, 03E72, 32C25

1 Introduction

After the introduction of fuzzy set by L.A.Zadeh[I6] in 1965, the theory of fuzzy sets has become an area of active
research. Several authors have developed various mathematical structures on this theory. One of the most important
problems in fuzzy functional analysis is to obtain an appropriate concept of fuzzy metric and fuzzy normed spaces. It
was Katsaras[§] who in 1984, first introduced the idea of fuzzy norm on a linear space. Since then many mathematicians
have defined fuzzy metric and fuzzy norm on a linear space from various point of views ([II, [2], [3], [B], [7], [10]). After
that many researchers developed the results of functional analysis in fuzzy setting. S.M. Vaezpour and F. Karimi [I5]
introduced the concept of t-best approximation in fuzzy normed linear spaces in 2008. In 2010, M. Goudarzi and S.
M. Vaezpour [6] also studied best simultaneous approximation in fuzzy normed spaces.

On the other hand, in 2007, Huang and Zhang [I1] re-introduced the concept of K-normed space under the name
of cone metric space. They included the use of interior points of the cone and went further, defining convergent and
Cauchy sequence in such spaces. Using the concept of cone introduced by Huang and Zhang, we [13] introduced the
idea of fuzzy cone normed linear space which generalizes Bag and Samanta type fuzzy norm. In this paper, we consider
the set of all best c-approximations on fuzzy cone normed linear space and obtained several results pertaining to the
set. Idea of quotient fuzzy cone normed linear space is introduced and studied many results on best c-approximation
in such spaces.

2 Preliminaries

Definition 2.1.[11] Let E be a real Banach space and P be a subset of E. P is called a cone if and only if:
(i) P is closed, nonempty and P # {fg}; (the zero element of E)
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(ii)) a,b€ R, a,b>0, x,y € P= ax +by € P;
(i) re Pand —x € P =z =40.
Given a cone P C F, we define a partial ordering < with respect to P by z <y iff y — x € P. We shall write z < y
to indicate that x < y but « # y while x << y will stand for y — x € IntP, where Int P denotes the interior of P.
The cone P is called normal if there is a number M > 0 such that for all z,y € E, with g < = =< y implies
l|z|]| < M]|y||. The least positive number satisfying above is called the normal constant of P.
The cone P is called regular if every increasing sequence which is bounded from above is convergent. That is if {x,,}
is a sequence in E such that

A 1 R S O 7 S
for some y € E, then there is € F such that ||z, — 2| = 0 as n — oco. Equivalently, the cone P is regular if every
decreasing sequence is bounded below is convergent. It is clear that a regular cone is a normal cone.

Definition 2.2.[4] The cone P is called strongly minihedral if every subset of E which is bounded above via the
partial ordering obtained by P, must have a least upper bound. Hence, every subset which is bounded below must
have greatest lower bound.

Throughout the paper, we consider a strongly minihedral cone P and A(\/) denotes the infimum(supremum) respec-
tively.

Definition 2.3.[9] A binary operation : [0, 1] x [0, 1] — [0, 1] is a t-norm if it satisfies the following conditions:
(1) = is associative and commutative;

(2) axl=a VYae€]|0,1];
(3) axb < c*d whenever a < ¢ and b < d for each a,b,c,d € [0, 1].

If % is continuous then it is called continuous t-norm.

Definition 2.4.[14] Let X be a linear space over the field K and E be a real Banach space with cone P, x is a
t-norm. A fuzzy subset N.: X x E — [0, 1] is said to be a fuzzy cone norm if
(FCN1)Vt € E with t < 0g, N(z,t)=0:
(FCN2)(V 0 < t, Ne(z,t) =1)iff 2 =0x;
(6x denotes the zero element of X)
(FCN3) V g <t and 0 # ¢ € K, N.(cx,t) = N.(z, L)

e/ 3
(FCN4) Vz,y € X and s,t € E, N.(x+y,s+1t) > Ne(z,s) * Ne(y, t);
(FCN5) Ng(z,t) =1ifs<tVseP;
Then (X, N, %) is said to be a fuzzy cone normed linear space (FCNLS) w.r.t. E.
Definition 2.5.[14] Let (X, N, x) be a fuzzy cone normed linear space with a strongly minihedral cone P. A
sequence {z,} is said to be a-fuzzy convergent and converges to z if for some a € (0, 1),

nl;ngo /\{t = 0p : Ne(zp —2,t) > a} =0g.
If lim /\{t = 0g : No(z, —x,t) > a} = 0 holds Vo € (0, 1), then {z,} is said to be [-fuzzy convergent and converges
’COWQ:OO

Definition 2.6.[14] Let (X, N, ) be a fuzzy cone normed linear space with a strongly minihedral cone P. A
sequence {z,, } is said to be a-fuzzy Cauchy sequence if for some a € (0, 1), nh—>120 /\{t = 0g : Ne(Tpyp—2p,t) > a} =0g
for each p=1,2,3, ...
If nl;ngo /\{t = 0g : Ne(ptp — 2, t) > a} = 0 holds Va € (0,1) and for each p = 1,2,3, ..., then {z,} is said to be
l[-fuzzy Cauchy sequence.

Definition 2.7.[14] Let (X, N.,*) be a fuzzy cone normed linear space with a strongly minihedral cone P and
a € (0,1). Then X is said to be a-fuzzy complete if every a-fuzzy Cauchy sequence is a-fuzzy convergent to some
element in X.

Definition 2.8.[14] Let (X, N, *) be a fuzzy cone normed linear space with a strongly minihedral cone P and
a € (0,1). Then X is said to be I-fuzzy complete if every I-fuzzy Cauchy sequence is I-fuzzy convergent.

Definition 2.9.[14] Let (X, N.,*) be a fuzzy cone normed linear space with a strongly minihedral cone P and
a € (0,1). A subset M of X is said to be I-fuzzy closed, if any sequence {z,,} in M I-fuzzy converges to x implies that
e M.

Remark 2.10.[12] If A is a subset of [0, 1] and supA = S then for € € [0, 8) there exists ag in A such that ag > Sxe.
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3 Main results

Definition 3.1. Let (X, N, *) be a FCNLS and A C X. Then a point 29 € A is said to be a best c-approximate
point of z € X if Va € (0,1),

A\{t = 0p: Ne(z — 20, t) > a} = N\ \{t = 0p: Ne(z — a,t) > o}

a€A
We denote the set of all best c-approximate points by Pa(z).
Define Q4(xo) = {x € X; 9 € Pa(z)}

Definition 3.2. If for each x € X has atleast one(exactly one) best c-approximation in A C X, then A is called a
c-proximal(c-Chebyshev) set.

Example 3.3. Let (X, || ||) be a normed linear space over field K and take E = R?. Then P = {(t1,0):t; >0} C E
is a strongly minihedral normal cone. Define a function N, : X x E — [0, 1] by

—h . ifte Pie, for t = (t;,0)
—{ bl ! : LY
Ne(@,?) { 0. itt ¢ P

If we choose * =min, then (X, N, %) is a fuzzy cone normed linear space.

(i) For all t € E with t < 0, i.e, -t € P. If t € P then t = 0, So N.(z,t) = 0. If t ¢ P, then by the definition,
N(z,t) =0.

(ii) For all ¢ > 0, N.(x,t) = 1. Then

t1 _
el
where ¢t = (£1,0) € P. This implies that ||z|| = 0. Thus, z = 0x.
£
(iil). Ne(Az,t) = t1+t|\l,\x\| = t1+|t/\lu|a:\| = tfl_;'_ll)\)l\ll‘w“ = N.(z, ﬁ) where 0 # A\ € K.

PY
(iv) We have to show that
N.(x 4+ u,s +t) > min{N.(x,s), N.(u,t)} Ve,y € X and s,t € E.

Casel. s+t < 0g.

Case Il. s = 0g,t = 0g.

Caselll. s+t = 0p,s =0g,t = 0g,s = 0p,t =0g.
CaseIV. s+t = 0g,s < 0g,t = 0p,s = 0g,t < 0g.

In all the above cases, result holds.

Case V.s+t = 0g,s = 0g,t = 0g,s > 0g,t = 0g. Then

s$1+ 11

N. s41) =
(z +u,s+1) PSS [P

where s = (s1,0),t = (t1,0) € P. So

S1 +t1
sttt + l2f + flull

Ne(x 4+ u,s+1t) >

Now if N.(z,s) > N.(u,t), i.e then sq||lu|| — ¢1]|z|| > 0. Thus

S1 > 11
»ositllzll = taul]

S1 +t1 tl
N t) — N, t N
(z+u,s+1) c(u,t) si+t+ e 4wl A+ ull
S1 +t1 tl

sttty [l ] 6+ lu]
sillull = t1]|z]] S
(s1+ 20+ [zl + flull)(Er + [[ul) —
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So, Ne(x+wu, s+t) > N.(u,t). Similarly if N.(u,t) > N.(z,s), then it can be shown that N.(z+u, s+1t) > N.(z, s).
Thus in any cases, N.(z + u, s +t) > min{N.(x, s), N.(u, t)} holds.

(v) It follows from the definition of N., N¢(x,t) = 11if t > sV s € P. Hence (X, N, *) is a fuzzy cone normed
linear space.

Example 3.4. Consider a fuzzy cone normed linear space (X, N, *) as in Example 3.3. Take X = R? and
| (a,b)|| =sup{|al, |b|}, (a,b) € R?. Let A= {(a,0),a € R} and = = (0,1) € R?. Now for a € (0, 1),

A\t =08 N((0,1) = (a,0),t) > a} N\ A\{t=0s; N, J1),1) > al

(a,0)€A (a,0)€A

11
= {(t1,0); —————— > a} for some t; > 0
ANAS e e

= A A0t = =)}

(a,0)€A

= /\{
(a,0)€A

SuP{|a‘> 1}’0)}

= 0)

1—a’
On the other hand, for (u,0) € A with |u| < 1, we have

N\{t = 08 N((0,1) = (u,0),8) > a} = A{t = 0g; Ne((—u,1),t) > a}
t1

N0 )

At 0t > = (=u, D[]}

(1= sup{ful,1},0)

— (o).

> a} where t = (t1,0) € P for some t; > 0

1

l1—«

Thus any points (u,0) € A with |u| < 1 are best c-approximate point of (0,1). It is easy to see that any point
(a,b) € R? has best c-approximate points (u,0) in A satisfying |a — u| < |[b|. Thus A is not c-Chebyshev set but c-
proximal set. If we consider X = R? with ||(a,b)|| = Va® + b2, (a,b) € R% Then (0,0) is the only best c-approximate
point of (0,1) in A. It can be shown that for any points (a,b) € R?, (a,0) is the only best c-approximate point in A.
Thus in this case, A is a ¢-Chebyshev set.

Lemma 3.5. Let (X, N,,*) be a FCNLS and A C X. Then for z,y € X,
(i) Pa(z) +y = Payy(z + ).
(11) P,\A()\a:) = /\1:),4(1})7 0 75 e K.

Proof . (i) Let yo € Payy(z +y). Then

/\{t>—9E, x4y —yo,t) >al= /\ /\{t>—9E, S(x4+y—zt)>a}t

z€A+y
—/\/\{t»&E, o(z—a,t) > a}
acA
where z = Aa for some a € A. i.e,
At = 085 Ne(w = (o —y), 1) > a} = \ \{t = 0g; Ne(z — a,t) > a}.
a€EA

So yo —y € Pa(z). Then yo € Pa(z) +y. Thus Payy(z+y) C Pa(z) +y.
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Conversely, yo € Pa(x) +y. Then yo —y € Pa(z). So

N\{t = 0 Ne(x — (yo — ),t) > a} = \ Mt = 05; Ne(z — a,t) > a}

a€A

—/\/\{t>-9E, r+y—y—at)>a}
a€A

—/\/\{t>0E, (z+y—(y+a)t)>a}
acA

= /\ Nt =0g; Ne(z+y— 2,t) > a}
z€EA+y

where z = a+y. Then yy € Payy(x+y). Thus Pa(x) +y C Payy(xz +y). It follows that Pa(z) +y = Paty(z +y).
(ll) Let Yo € PAA()\JE). Then

A{t = 0 Ne(Ax —yo.t) > a} = \ At = 0 N(Ax — 2,t) > a}

ZEAA
= /\ /\{t = 0p; Ne(Az — Xa,t) > a}
a€A
_/\/\{t>-9E, |)\|) }
a€A
—|)\\/\/\{t>6?E7 o(x—a,t) > a}
acA

where z = \a for some a € A. Thus

/\{t»@E;NC()\(x——) ) > al =) /\ /\{t>9E, (x —a,t) > a}.

acA

This means that

A\t = 0p; Ne((z — ) a} =\ A\ A\{t = 0g; Ne(z — a,t) > a}.

a€A
Then
M ALt = 05 Ne((2 — 7) t)>a} = \ N\{t =05 Ne(z —a,t) > a}
acA
and
A{t =0 Ne((w = ). t) > a} = N\ A\{t = 0p; Ne(z — a,t) > a}.
acA

So X € Py(x). Hence, yo € APa(x). Thus Pxa(Ax) C APa(x).
Conversely, let wy € AP4(x). Then wg = Ayo, where yg € Pa(x). Since yo € Pa(x), we have

/\{t = 0g; No(x — yo,t) > a} = /\ /\{t = 0p; Ne(z — a,t) > a}.

a€A

This means that

A\ {t = 0p; Ne(z — %,t) >ab= N\ N\{t- 9E;Nc(/\x;mvt) > a}.

acA

Thus,
Ax — wy

At = O Ne(5——11) > o} = WA S HE;NC(L;MJ) > al.

acA
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Then,
ALt = 0 NeQw — wo, A1) > a} = \ \{t = 0m; Ne(Az = Aa, |A[t) > a}.
a€A

This means that

A\ {t = 0 Ne(hw —wo, t) > o} = N\ A\{t = 0m; No(Az — Aa, t) > a}

acA

/\ /\{t = 0p; Ne(Ax — z,t) > o}

ZEXA

where z = Aa, for some a € A. So wg € Pya(Azx). Thus AP4(x) C Pya(Ax). It follows that Pya(Ax) = APa(z). O

Definition 3.6. Let (X, N, ) be a fuzzy cone normed linear space. A subset T of X is said to be convex if
Az + (1 — ANy € T whenever z,y € T and 0 < A < 1.

Theorem 3.7. Let (X, N, ) be a FCNLS and A C X is a convex set. If % satisfies a x b > b then for zy € X,
P4(xo) is a convex set.

Proof . Let x,y € Pa(xp). So x,y € A. Then Az + (1 — Ny € A,0 < A < 1, since A is a convex set. Now,

/\{t = 0m; Ne(zo — (Ax + (1= Ny),t) > a} = /\ /\{t = 0g; Ne(xo — a,t) > o} (3.1)

since Az + (1 — A)y € A. By the assumption, No((y — 2)A, £) * No(zo — y,) > Nu(zo — y,¢) and
{t = 0p; Ne(xo —y,t) > a} C{t = 0p; No((y — 2)A, t) * Ne(xo — y,t) > a}.
Then
ALt = 05 Ne(zo —y.1) = a} = \{t = 05 Ne((y — @)\, t) # Ne(zo — y,t) = a}
= /\{t = 0p; Ne(wo — (Az + (1 = N)y),t) > a}
this means that
At = 085 Ne(wo — (A + (1= Ny), 1) = o} 2 \{t = 0m; Ne(z0 — v, 1) > a}. (32)
Since y € Pa(zo),

A\t = 085 Ne(wo — y,1) > o} = N\ A\{t = 0m; Ne(ao — a,t) > o},
a€A

Using (3.2),

/\{t = 0p; Ne(zg — (Az+ (1 — N)y),t) > a} < /\ /\{t = 0p; No(zg — a,t) > a}. (3.3)
acA

Using (3.1]) and (3.3]), imply that

/\{t = 0p; Ne(zo — (A + (1= Ny),t) > a} = /\ /\{t = 0p; No(zo — a,t) > a}.
acA

Thus, Az + (1 — Ny € Pa(xg). So, Pa(xzg) is a convex set. [

Remark 3.8. Let (X, N, *) be a FCNLS and A C X. Then for wo € A, ANQa(wo) = {wo}.

Proof . Let x € ANQa(wp). Then z € A and z € Qa(wp). So, x € A and A{t > O0g; Ne(x — wo,t) > a} =
Naca Mt = 0g; Ne(z — a,t) > a}. Since x € A, N,cq Nt = 0p; Ne(z — a,t) > a} = 0p. It follows that A{t >
0p; No(z — wo,t) > a} = 0g. Thus, for all t = 0g,a € (0,1), No(z — wo,t) > . Hence, N.(z — wq,t) = 1. It follows
that x — wg = 0x. So we have x = wqy. I
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Corollary 3.9. Let (X, N, *) be a FCNLS and A C X. Then for wg € A, Pa(wo) N Qa(wp) = {wo}. It follows
from Pa(wo) N Qa(we) C ANQa(wy).

Theorem 3.10. Let (X, N, %) be a FCNLS and A C X be a subspace. Then for wg € A, Qa(wo) = wo+Qa(0x).
Proof . Let © € wo + Qa(fx). Then x —wy € Qa(fx). So

/\{t = 0p; Ne(x —wg — 0x,t) > a} = /\ /\{t = 0p; Ne(x —wo — a,t) > a}
a€A

= /\ /\{t = 0g; Ne(x — a/,t) > at,
a'cA
where @' = wy + a. Thus, 2 € Q(wy).
Conversely, let z € Qa(wp). Then
/\{t = 0p; Ne(z — wo, t) > al = /\ /\{t = 0g; Ne(x —a,t) > af
acA

= /\ /\{t = 0p; Ne(x —wo + wo — a,t) > o}
acA

= /\ /\{t = 0p; Ne(x —wo — (a —wo),t) > a}

acA
= /\ /\{t = 0p; Ne(x —wo — a’,t) > at,
a'eA
where ¢’ = a —wy € A (since A is a subspace). Hence, = — wo € Q4(fx). This implies that = € wy + Q 4(0x). Hence
Qa(wo) = wo + Qa(fx). O
Theorem 3.11. Let (X, N, *) be a FCNLS and M C X be a I-fuzzy closed subspace of X. Define N* :
X/M x E — [0,1] by

N _J Vaec(0,1), Acy ANt=0pNe(x—m,t)>a}=<s
N($+M’s)_{ 0, M M s) = (M, 0),

Then N* is a fuzzy cone norm on X/M. We call (X/M, N* %) a quotient fuzzy cone normed linear space.
Proof . (i) N* is well defined. For, x + M =y + M, x — m; = y — ma for some my, my € M. Thus,
/\ /\{t = 0g; Ne(z —m,t) > a} = /\ /\{t = 0p; N.(y —m,t) > a}.
meM meM
Then we have N*(x + M,s) = N*(y+ M, s), for all s > 0.
(ii) N*(z + M, s) =0, for all s < 0 (by the definition of N*).
(iii) N*(z + M,s) =1, for all s = . Then
/\ /\{t = 0p; Ne(x —m,t) > a} <s
meM

for all s = 6g. So

A A\t = 05 Ne(z —m,t) > a} = 05

meM
for all & € (0,1). Then there is a sequence {g,} in M such that

/\{t = 0p; No(z — gn,t) > a} =0g

as n — oo, for all @ € (0,1). Then {g,} is [-fuzzy convergent to x. Thus, x € M, since M is I-fuzzy closed. Hence,
x4+ M=M=0+ M.

Conversely, let x + M =0+ M = M. Then x € M and

/\ /\{t>_0E;Nc($—m,t) Za}:@E <'s

meM
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for all s = 6 and a € (0,1). Thus,
N*(z+M,s)=1 Vs> 0p.

(iv) We have to show N*(A(x + M),s) = N*(Az + M,s) = N*(z + M,157), 0 # A € K. Since for all a €

0,1), Apem Nt = 0p; Ne(Ax —m,t) > a} =< s, we have A\, A{t = Op; Ne(z — %,ﬁ) > a} = s. Then
A/ ens Nt = 0p; Ne(x — m’, ﬁ) > a} < s, since M is a subspace of X, m’ = %t € M. Then
/\ /\{t = Op; Ne(x —m 1) > o} < ﬁ
m' eM
Hence N*(A(z + M), s) = N*(z + M, r37)-

(v) Now we have to show that

N*((z+ M)+ (y+M)),s+t) > N (x+ M,s)« N (y + M,t),Vs,t € E.

If this is not true, then Jsg,ty € E, such that

N*((x + M)+ (y+ M)),so +to) < N*(x + M, s0) * N*(y + M, to).

Choose aq such that

N*((x 4+ M)+ (y+ M)),s0+ty) < ap < N*(x+ M,s0) * N*(y + M, tg).

Since * is upper semi-continuous, there exist a1,as € (0,1) such that a3 * as > ap and N*(z + M, sg) > a1,
N*(y + M, tg) > ag. Since N*(z + M, s9) > oy,

/\ /\{t = 0p; Ne(z —m,t) > a1} = sg.
meM

Similarly, A,,ca A{t = 0g; Ne(y —m,t) > as} < to. Thus

/\ /\{t = 0p; Ne(x —m,t) > a1} + /\ /\{t = 0g; Ne(y —m,t) > as} = so + to.
meM meM

Then for some my,ms € M,
/\{t = 0p; Ne(x —mq,t) > aq} + /\{t = 0p; Ne(y — ma,t) > as} =< so + to.
Again,
/\{t = 0g; Ne(z+y—(mi+ma),t) > agxas > ap} = /\{t = 0g; Ne(x—mq,t) > a1}+/\{t = 0g; Ne(y—ma,t) > as}.

So, A{t = 0g; Ne(z+y—m,t) > ap} =< so+to, where m = my+mo € M. Then A\, ., ANt = 0p; Ne(z+y—m, t) >
ap} =2 so+tg. So, N*(x +y+ M), so+tg) > ap, which is a contradiction. Hence for all s,t € E,

N*(x+ M)+ (y+ M)),s+t) > N*"(x+ M,s) « N*(y + M,t).

t

Definition 3.12. A sequence {x,,+M} in X/M is said to be convergent to x+M if nlirrgo N*(zp+M—(z+M)),s) =
1 for all s >~ 0F.

Definition 3.13. A sequence {z, + M} in X/M is said to be a Cauchy sequence to if nh_}rrgo N*(zp+M — (zp4p+
M)),s)=1,forall s > 0, p=1,2,3,....

Theorem 3.14. If z,, — z in (X, N, %), then x,, + M — x + M in (X/M, N*, ).
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Proof . Let x, — x in (X, N, *). Thus lim N.(x, —x,t) = 1, for all ¢ > 0. Then there exists a positive integer
n— o0
N, such that N.(x, —x,t) > «, for all t = 0, € (0,1),n > N. Then

N\t = 0p; Ne(@, — 2,t) > o} =0

for all a € (0,1), n > N. Again, N*(z,, + M — (x4 M),s) = {Va € (0,1), A,.caps Nt = 05; Ne(zyy — 2 —m,t) >
a} X s}. Thus for all n > N and « € (0,1),

/\ /\{t = 0p; Ne(zp —x—myt) > a} =0 <s
meM

for all s = 0 (putting m = 0x). Hence N*(z, + M — (x + M),s) = 1 for all s = 0g,n > N. Then

lim N*(z, + M — (z+ M),s) = 1.

n—oo

Thus, {x, + M} converges to x + M. O

Theorem 3.15. Let M be a I-fuzzy closed subspace of X. If (X, N, *) is complete FCNLS, then (X/M, N*, %) is
also complete.

Proof . Let {x, + M} is a Cauchy sequence in X/M. Then there exists €, > 0 such that €, — 0 and

N*(xp + M — (11 + M)),s) > 1—¢€, Vs > 0p. (3.4)

Fix y1 € M, then N*(z1 +y1 — 22+ M)),s) > 1 —¢; Vs = 0g. By Remark 2.10, there exists 5 € (0, 1), such that
ﬂzN*(ZL'l +y17$2+M)),8)*1761

and

/\ /\{t>9E;Nc(x1 +y1 —x2—m,t) > Bt <s Vs> 0g.
meM

Then

N\ N\t =08 Ne(z1 +y1 — 22 —m,t) > N* (@1 + g1 — 22+ M)),s) k1 —eg > 1—e1 51—} < s
meM

for all s > 0. Then there exists yo € M, such that
/\{t>—0E;NC(x1 +y —xo—yo,t) >1—€x1—€1} <s

for all s = 0. Again for yo € M, we have N*(z3 + y2 — x3 + M)), s) > 1 — ey for all s > 0 from (3.4]). Similarly, we
get
Mt =0 Ne(zo+y2 — 23 —y3,t) > 1 —eax 1l —e} <5

for all s > 0. Proceeding in similar way, we get

/\{t - GE;Nc(xn + Yn — (mn—&-l + yn+1)at) >1—e,x1— en} =s

for all s = 0. Then
/\{t - 0EaNc(xn + Yn — (xn-‘rl + yn-‘rl)at) Z 1-— €p * 1- en} - oE

Thus for each t > 05, No(@n + yn — (Tpt1 + Ynt1),t) = 1 — €, % 1 — €,. This implies that

lim Ne(Zp 4 Yn — (Tng1 + Yns1),t) = 1

n—oQ

and {z,, + yn} is a Cauchy sequence in (X, N,).

Since (X, N, *) is complete, there exists © € X such that {z, + y,} converges to x. Since y,, € M, for each n,
Tp +Yn + M = x, + M. Again, z, +y, — v asn — oo. Then z, +y, + M — =+ M as n — oco. Hence
Tpn+ M — z+ M as n — oo. It follows that (X/M, N*, %) is complete.
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Theorem 3.16. Let M be a c-proximal subspace of (X, N, *) and W D M be a subspace of X and k € X. If
wo € Pw(k) then wy + M € PW/M(]C + M)

Proof . Since wy € Py (k),

/\{t = 0p; No(k —wo,t) > a} = /\ /\{t = 0p; No(k —w,t) > a}. (3.5)

weWw
If wo + M & Pyyar(k+ M), then there exists w € W such that by the definition of N*,

N\t = 02 N*(k —wo+ M,t) > a} = \{t = 0ms N*(k—w' + M, t) >a} = N N\{t =05 Ne(k —w' —m,t) > a}.

meM
(3.6)
Again, by the definition of N*
/\{t = 0p; N*(k—wo + M,t) > a} = /\ /\{t = 0p; No(k —wo —m,t) > a}
meM
=< A\t = 055 No(k — wo, t) > o} (3.7)
for m = 0x. Now,
/\ /\{t = 0 No(k —w —m,t) > a} < /\{t = 0p; N*(k —wo + M,t) > o} using (3.6)
meM
preceq \{t = 6; No(k —wo, ) > o} using @7
= /\ /\{t = 0p; N.(k —w,t) > a} using (3.5)
weW
Thus,
AN Nt =0 No(k—w' —m,t) > a} < N\ A\{t = 0p; No(k —w,t) > a}. (3.8)
meM weWw
Since M C W,
N Nt = 0 N(k—w —m,t) >a} = N\ At =0 Ne(k —w —w,t) > a} (3.9)
meM weWw
= N\ At = 08 Ne(k —w,t) > o} (3.10)
weW

because w +w € W. Using (13.8) and (3.9)), we get

N\ Nt = 0 Ne(k —w,t) > a} <\ \{t > 0g; Ne(k —w,t) > a}

weW wew
which is a contradiction. Hence wg + M € Py p(k + M). O

Corollary 3.17. Let M be a c-proximal subspace of (X, N.,*) and W 2O M be a subspace of X. If W is a
c-proximal subspace then W/M is ¢-proximal subspace of X/M.

Theorem 3.18. Let M be a c-proximal subspace of (X, N, *) and W D M be a subspace of X and k € X. If
wo + M € Py p(k+ M) and mg € Ppr(k — wo), then wo +mo € Pw (k).

Proof . Since wo + M € Py p(k+ M),

Nt =02 N*(k—wo+ M,t) >at = N\ A{t=0sN*(k—w+Mt)>a}
w+MEW/M

= /\ /\{t»@E;N*(k—w—i—M,t) > al.

weWw
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Using the definition of N*,

/\ /\{t%@E, (k —wo —m,t) > a} = /\ /\ Nt = 0p; N.(k —w—m,t) > a}

meM weW meM

N At =0 N(k—w' 1) > a}. (3.11)

w eW

Since W is a subspace and M C W,w +m = w e W. Again, mgy € Pp(k — wp) implies that

/\{t = 0p; No(k —wog —mo,t) > a} = /\ /\{t = 0p; Ne(k —wo —m,t) > a}

meM

/\ /\{t =0 Ne(k—w',t) > a} (using (3-11)).

w' eW
This means that

At = 055 Ne(k — (wo +mo),t) > at = N\ A\{t>=0p: No(k —w',t) > a}.

w' €W

Hence, wy + mg € Py (k). O

Example 3.19. Consider a fuzzy cone normed linear space (X, N, *) as in Example 3.3. Take X = R? and
|(a,b)|| =sup{lal,|b|}, (a,b) € R%. Then M = {(m,0),m € R} is c-proximal subspace of R? and take W = M. Then
(1,0) € Pw((0,1)). Now for « € (0,1),

A Als= 05N ((0,1) —w' +M,s) > a}

w' eW/M
= /\ /\{s>0E;N*((O,1)—(w,O)—i—M,s)Za} since M =W
(w,0)eW/M
= A Al=0sN((—w,1)+M,s) > a}
(w,0)eW/M
= /\ /\ /\{t = 0p; No((—w, 1) — (m,0),t) > o} by the definition of N*

(w,0)eEW/M (m,0)e M

= /\ /\ /\{t = 0p; Ne((—w —m,1),t) > a}

(w,0)eEW/M (m,0)e M

ty
= t1,0); > «a} where t = (t1,0) € P for some t; >0
A ANAN s Ty (11,0 '
EW/M (m,0)eM

= A A NGOt = T l(w—m D)}

(w,0)0eW/M (m,0)e M

= AN\ (G glee-mlo

(w,0)eW/M (m,0)e M

= N G

(w,0)eW/M (m,0)e M

= (—2—0).

A
g
=

S

— sup{|uw + m|,1},0)}

1—a’
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Again,
N\{s = 0 N*((0,1) = (1,0) + M,s) > o} = \{s = 0p; N*((-1,1) + M, s) > a}
= /\ /\{t = 0p; N.((—1,1) — (m,0),t) > a} by the definition of N*
(m,0)eM

= A A= 0sN((-1-m,1),t) > a}

(m,0)eM

= A AG0sh = -1 m )

(m,0)eM

- /\{1_

(m,0)eM

= (2 0.

—sup{|1+ml, 1},0)}

11—«

Thus (1,0) + M = M € Pyp((0,1) + M). Also (2,0) + M € Pyp((0,1) + M) but (2,0) ¢ Pw((0,1)). Now
consider Pps((0,1) — (2,0)) = Pp((—2,1)). Then from Example 3.4, for any m € R satisfying | — 2 — m| < 1,
(m,0) € Pp((—2,1)). Since [m+ 2| <1, (2,0) + (m,0) = (m+2,0) € Py ((0,1)) .

Corollary 3.20. Let M be a c-proximal subspace of (X, N, x) and W D M be a subspace of X. If W/M is
c-proximal in X /M, then W is c-proximal in X.

Theorem 3.21. Let W and M be a subspace of FCNLS (X, N, *). If M is c-proximal in X and W is ¢-Chebyshev
in X, then W/M is c-Chebyshev in X/M.

Proof . Suppose W/M is not ¢-Chebyshev in X/M. Then k + M,k € X has two distinct best c-approximation such
as w+ M and w' + M in W/M, i.e, w+ M € Py pi(k+ M) and w +M e Py n(k+ M). Thus w—w is not in M.
Since M is c-proximal in X, there exists a best c-approximation m and m tok—w and k —w from M respectively,
ie, m e Py(k—w) and m’ € PM(k w ) By the Theorem 3.16, w +m € Py (k) and w' +m’ € Py (k). Since
W is c-Chebyshev in X, w+m = w 4+ m'. Thus w —w = m' —m € M, which is a contradiction. Hence W/M is
¢-Chebyshev in X/M. D
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