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Abstract

In this paper, we study zero-preserving character of a linear operator on the space of complex-polynomials which also
preserve Bernstein-type inequalities for polynomials.
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1 Bernstein’s Inequality

Let Pn denote the space of polynomials of degree at most n over the field of complex numbers. If P ∈ Pn, then
according to Bernstein’s inequality [3],

max
|z|=1

|P ′(z)| ≤ n max
|z|=1

|P (z)|. (1.1)

The result is sharp and equality in (1.1) holds if P (z) = azn, a ̸= 0. In other words, the Bernstein’s inequality gives
us the exact constant Cn in the inequality

max
|z|=1

|T [P ](z)| ≤ Cnmax
|z|=1

|P (z)| (1.2)

for the operator T ≡ d

dz
. In this case Cn = n.

This inequality of Bernstein has an analogue [2] for trigonometric polynomials which states that if t(θ) =
∑n

k=−n ake
ikθ

is a trigonometric polynomial of degree n with |t(θ))| ≤ 1 for 0 ≤ θ < 2π then

|t′(θ)| ≤ n for 0 ≤ θ < 2π. (1.3)

Note that if P (z) is a polynomial of degree n, then t(θ) = P (eiθ) is a trigonometric polynomial with
∣∣ 1
M t(θ)

∣∣ ≤ 1 for
θ ∈ R, where M = max|z|=1|P (z)|. By applying (1.3) to 1

M t(θ), one can get inequality (1.1).
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Bernstein’s inequality for trigonometric polynomials has played a fundamental role in harmonic analysis, approx-
imation theory [9] and in the study of random trigonometric series [7]. It also has found its usage in the theory of
Banach spaces [13, p. 20-21].

Many mathematician’s have studied this problem of characterization of Cn for different operators defined on Pn

(for more details see [14, P. 538]). Jain [6], studied the operator Tα[P ](z) := zP ′(z)−αP (z) and proved that if P ∈ Pn

and α ∈ C with |α| ≤ n/2, then

max
|z|=1

|zP ′(z)− αP (z)| ≤ |n− α|max
|z|=1

|P (z)|. (1.4)

That is, for this operator Cn = |n− α| . One can easily observe that Bernstein’s inequality is a special of Jain’s result
and follows by taking α = 0.

Let P ∈ Pn with |P (z)| ≤ |Mzn| for |z| ≤ 1, then the inequality (1.1) can be reformulated as:

|P ′(z)| ≤
∣∣∣∣ ddz (Mzn)

∣∣∣∣ for |z| = 1. (1.5)

As an extension of Berntein’s inequality, Malik and Vong [10] proved that if an nth degree polynomial F (z) has all
zeros in |z| ≤ 1 and P ∈ Pn with |P (z)| ≤ |F (z)| for |z| = 1, then for α ∈ C with |α| ≤ n/2

|zP ′(z)− αP (z)| ≤ |zF ′(z)− αF (z)| for |z| ≥ 1. (1.6)

The inequality (1.4) can be obtained from (1.6) by taking F (z) = Mzn, where M = max|z|=1 |P (z)|.

2 Zero-Preserving Linear Operator on Pn

A linear operator T : Pn → Pn is said to preserve zeros if, for every P ∈ Pn having all its zeros in |z| ≤ 1, the
polynomial T [P ](z) also has all its zeros in |z| ≤ 1. Rahman and Schmeisser [14, p. 538] called such class of operators
as Bn-operators.

By Gauss-Lucas theorem [14, p. 71], the ordinary derivative is a Bn operator. The zero-preserving property of the
ordinary derivative and its linearity play lead roles in the proof of inequality (1.6) given in [14]. In fact, this inequality
holds for every operator on Pn satisfying these two properties. In this direction, Rahman and Schmeisser [14, p. 538]
proved the following:

Theorem 2.1. Let F (z) be a polynomial of degree n having all its zeros in |z| ≤ 1 and P ∈ Pn such that |P (z)| ≤
|F (z)| for |z| = 1, then for any Bn-operator T, we have

|T [P ](z)| ≤ |T [F ](z)| for |z| ≥ 1. (2.1)

The inequality is sharp and equality holds if and only if P (z) = eiθF (z), θ ∈ R.

In this paper, we first study the zero-preserving character of the operator

Tm,α[P ](z) = zP (m)(z)− αP (m−1)(z), wherem ∈ N with m ≤ n, (2.2)

defined on the space of polynomials Pn and α ∈ C. This operator involve the mth and (m− 1)th derivatives of P (z).
Moreover, P (0)(z) = P (z). In this direction, we first prove the following theorem.

Theorem 2.2. 1 Let P (z) be a polynomial of degree n and has all zeros in |z| ≤ r and α ∈ C with ℜ(α) ≤ n−m+ 1

2
,

then all the zeros of Tm,α[P ](z), given by (2.2), are also in |z| ≤ r.

For the proof of this theorem, we need the following generalized version of Walsh’s Coincidence theorem, due to A.
Aziz [1], for the case when the circular region is a circle.

Lemma 2.3. Let G(z1, z2, ..., zn) be a symmetric n-linear form of total degree m, m ≤ n, in z1, z2, ..., zn and let
C : |z| ≤ r be a circle containing the n points w1, w2, ..., wn. Then in C there exists atleast one point β such that

G(β, β, . . . , β) = G(w1, w2, . . . , wn).
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Proof .[Proof of Theorem 2.2] Let w be any zero of the polynomial Tm,α[P ](z), then

wP (m)(w)− αP (m−1)(w) = 0. (2.3)

This expression is linear and symmetric in the zeros of P (z). By lemma 2.3, w will also satisfy the equation obtained
by replacing P (z) in (2.3) by (z − β)n, where β is a suitable complex number with |β| ≤ r. This implies

n(n− 1) . . .(n−m+ 1)(w − β)n−mw

− α n(n− 1) . . . .(n−m+ 2)(w − β)n−m+1 = 0

or

n(n− 1) . . . (n−m+ 2)(w − β)n−m{(n−m+ 1)w − α(w − β)} = 0 (2.4)

Since ℜ(α) ≤ n−m+1
2 , then ℜ

(
α

n−m+1

)
≤ 1

2 . This implies that∣∣∣∣ α

n−m+ 1

∣∣∣∣ ≤ ∣∣∣∣ α

n−m+ 1
− 1

∣∣∣∣
or

|α| ≤ |α− (n−m+ 1)| (2.5)

The equation (2.4) implies that

(w − β) = 0 or (n−m+ 1)w − α(w − β) = 0.

Equivalently,

w = β or w = αβ
α−(n−m+1) .

This further implies by using (2.5) that,

|w| = |β| or |w| = |α||β|
|α− (n−m+ 1)|

≤ |α||β|
|α|

.

Thus,

⇒ |w| ≤ |β| ≤ r

Hence, it follows that all the zeros of Tm,α[P ](z) also lie in |z| ≤ r. This completes the proof. □

The linearity of Tm,α[P ](z) is not difficult to verify. Hence, the Theorem 2.2 can also be formulated as:

Theorem 2.4. The operator Tm,α[P ](z) given by (2.2) is a Bn-operator on Pn, if ℜ(α) ≤ n−m+1
2 .

Since Tm,α[P ](z) is a Bn-operator on the space of polynomials with a constraint on α, then by applying theorem 2.1
to Tm,α[P ](z) = zP (m)(z)− αP (m−1)(z), we obtain the following extension of the inequality (1.6).

Corollary 2.5. Let F (z) be a polynomial of degree n and has all its zeros in |z| ≤ 1. Further, let P ∈ Pn with

|P (z)| ≤ |F (z)| for |z| = 1.

Then for any α ∈ C with ℜ(α) ≤ n−m+ 1

2
and |z| ≥ 1,

|zP (m)(z)− αP (m−1)(z)| ≤ |zF (m)(z)− αF (m−1)(z)|, m ≤ n. (2.6)

The bound is sharp and inequality (2.1) becomes equality if P (z) = eiθF (z), θ ∈ R.
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The next Corollary follows by taking F (z) = max
|z|=1

|P (z)|zn in Corollary 2.5.

Corollary 2.6. Let P ∈ Pn, then for any α ∈ C with ℜ(α) ≤ n−m+ 1

2
,

max
|z|=1

|zP (m)(z)− αP (m−1)(z)| ≤ n!

(n−m+ 1)!
|α− (n−m+ 1)|max

|z|=1
|P (z)|. (2.7)

The result is sharp and equality in (2.7) holds if P (z) = azn.

Thus, Cn = n!
(n−m+1)! |α− (n−m+ 1)| is the exact constant for the operator Tm,α.

Remark 2.7. For m = 1, the inequalities (2.6) and (2.7) reduces to (1.6) and (1.4) respectively. Moreover, the the
inequalities (2.6) and (2.7) hold for |α| ≤ n/2, while as, the Corollaries 2.5 and 2.6 also show that the range of α for
which these inequalities hold extends from |α| ≤ n/2 to ℜ(α) ≤ n/2.

3 Polynomials with Constraints

Let P0
n denotes the set of polynomials of degree at n and having no zero in |z| < 1. It was proved by P.D. Lax [8]

that if P ∈ P0
n then

max
|z|=1

|P ′(z)| ≤ n

2
max
|z|=1

|P (z)|.

This inequality strengthens the Bernstien’s inequality for polynomials not vanishing in |z| < 1. It was earlier conjectured
by P. Erdös.

The exact constant Cn in Corollary 2.6 can also be strengthened for P ∈ P0
n by using the following result of

Rahman and Schmeisser [14, p. 539].

Lemma 3.1. Let P ∈ P0
n and φn(z) = zn, then for any Bn-operator T,

|T [P ](z)| ≤ (|T [1](z)|+ |T [φn](z)|)
2

max
|z|=1

|P (z)| for |z| ≥ 1.

If we take T = Tm,α in Lemma 3.1, then

Tm,α[φn](z) =
n!

(n−m+ 1)!
((n−m+ 1)− α)zn−m+1

and
Tm,α[1](z) = −δm1α, .

where δm1 denotes Kronecker delta.

Thus, we have the following Erdös-Lax type inequality for Tm,α.

Theorem 3.2. Let P ∈ P0
n, then for every α ∈ C with ℜ(α) ≤ n−m+ 1

2
,

max
|z|=1

|zP (m)(z)− αP (m−1)(z)| ≤ Cm
n max

|z|=1
|P (z)|,

where

Cm
n = δm1|α|+

n!

(n−m+ 1)!

|α− (n−m+ 1)|
2

. (3.1)

The inequality is sharp and P (z) = azn + b is an extremal polynomial, |a| = |b| ≠ 0.

A polynomial f(z) of degree n is said to be self-inversive if f(z) = σq(z), where q(z) = znf(1/z) and |σ| = 1. The
Theorem 3.2 also holds if P (z) is a self-inversive polynomials. The following lemma due to Rahman and Schmeisser
[14, p. 539] is needed for the proof.
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Lemma 3.3. Let P ∈ Pn, Q(z) = znP (1/z) and φn(z) = zn, then for any Bn-operator T

|T [P ](z)|+ |T [Q](z)| ≤ (|T [1](z)|+ |T [φn](z)|) max
|z|=1

|P (z)| |z| ≥ 1

Theorem 3.4. Let P (z) be a self-inversive polynomial of degree n, then for every α ∈ C with ℜ(α) ≤ n−m+ 1

2
,

max
|z|=1

|zP (m)(z)− αP (m−1)(z)| ≤ Cm
n max

|z|=1
|P (z)|, (3.2)

where Cm
n is given by (3.1). The inequality (3.2) is sharp and P (z) = azn + ā is an extremal polynomial, a ∈ C \ {0}.

Proof . Let Q(z) = znP (1/z) then P (z) = σQ(z) for some unit modulus complex number σ. This implies that∣∣∣zP (m)(z)− αP (m−1)(z)
∣∣∣ = ∣∣∣zQ(m)(z)− αQ(m−1)(z)

∣∣∣ ∀z ∈ C. (3.3)

Moreover, from Lemma 3.3 with T = Tm,α, we have∣∣∣zP (m)(z)− αP (m−1)(z)
∣∣∣+ ∣∣∣zQ(m)(z)− αQ(m−1)(z)

∣∣∣ (3.4)

≤
(
δm1|α|+

n!

(n−m+ 1)!
|α− (n−m+ 1)|

)
max
|z|=1

|P (z)|.

The inequality (3.2) follows by combining inequalities (3.3) and (3.4). This completes the proof. □

4 Concluding Remarks and Open problems

1. If one refers to proof of Theorem 2.1, we can conclude that the linearity and zero-preserving property of Bn-
operator plays a fundamental role in the proof. There are operators on Pn which have zero-preserving property like
Nagy’s generalized derivative (see [4, 16]) but are not linear. A natural question one can ask here is that, whether
theorem 2.1, holds for operators which are not linear but does preserve location of zeros, or does there exist non-linear
zero-preserving operators on Pn which satisfy the conclusion of Theorem 2.1.

2. For m = 1, the operator Tm,α takes the form of Simirnov operator (see [5, 15]). In [15, Chapter V], Simirnov
proved that his operator preserves inequalities between polynomials. According to his result, for m = 1, the Corollary
2.5 holds for all α’s with α/n ∈ Ω̄|z| where Ω|z| denotes the image of the disc {t : |t| ≤ |z|} under the mapping
ϕ(t) = t

1+t . In this regard, the extension of Tm,α in Simirnov’s settings is a plausible question to ask.
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