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Abstract

In this paper, we study zero-preserving character of a linear operator on the space of complex-polynomials which also
preserve Bernstein-type inequalities for polynomials.
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1 Bernstein’s Inequality
Let P, denote the space of polynomials of degree at most n over the field of complex numbers. If P € P,, then

according to Bernstein’s inequality [3],

max|P(2)] < n max|P(2). (L1)

S

The result is sharp and equality in (1.1)) holds if P(z) = az™, a # 0. In other words, the Bernstein’s inequality gives
us the exact constant C,, in the inequality

|1’I1|aX|T[P](Z)| < C’n‘m‘ax|P(z)\ (1.2)
z|=1 z|=1
d .
for the operator T = e In this case C), = n.
z
This inequality of Bernstein has an analogue [2] for trigonometric polynomials which states that if £(6) = >} a,ei*?
is a trigonometric polynomial of degree n with |¢(6))] < 1 for 0 < 0 < 27 then

[t'(0) <n for 0<6<27. (1.3)

Note that if P(z) is a polynomial of degree n, then t(¢) = P(e') is a trigonometric polynomial with |37t(6)| < 1 for
6 € R, where M = max|,|—1|P(z)|. By applying (1.3) to 7;¢(f), one can get inequality (L.I).
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Bernstein’s inequality for trigonometric polynomials has played a fundamental role in harmonic analysis, approx-
imation theory [9] and in the study of random trigonometric series [7]. It also has found its usage in the theory of
Banach spaces [13] p. 20-21].

Many mathematician’s have studied this problem of characterization of C,, for different operators defined on P,
(for more details see [14], P. 538]). Jain [6], studied the operator T, [P](z) := zP’(z) — aP(z) and proved that if P € P,
and « € C with |a| < n/2, then

‘mlax |2P'(z) — aP(2)] < |n — ‘m‘ax|P(z)|. (1.4)
zl=1 z|=1
That is, for this operator C,, = |n — a|. One can easily observe that Bernstein’s inequality is a special of Jain’s result

and follows by taking a = 0.
Let P € P, with |P(z)| < |Mz"| for |z| < 1, then the inequality (1.1} can be reformulated as:

|P'(2)] < ‘dd (Mz") for |z|=1. (1.5)

z

As an extension of Berntein’s inequality, Malik and Vong [I0] proved that if an nth degree polynomial F(z) has all
zeros in |z| < 1 and P € P, with |P(z)| < |F(z)] for |z| = 1, then for a € C with |a| < n/2

|2P'(z) — aP(2)| < [2F'(2) — aF(2)| for |z > 1. (1.6)

The inequality (1.4) can be obtained from (L.6) by taking F'(z) = Mz", where M = max,|—; |P(2)|.

2 Zero-Preserving Linear Operator on P,

A linear operator T : P,, — P, is said to preserve zeros if, for every P € P, having all its zeros in |z|] < 1, the
polynomial T'[P](z) also has all its zeros in |z| < 1. Rahman and Schmeisser [14] p. 538] called such class of operators
as Bj-operators.

By Gauss-Lucas theorem [I4] p. 71], the ordinary derivative is a B,, operator. The zero-preserving property of the
ordinary derivative and its linearity play lead roles in the proof of inequality given in [I4]. In fact, this inequality
holds for every operator on P,, satisfying these two properties. In this direction, Rahman and Schmeisser [14], p. 538]
proved the following:

Theorem 2.1. Let F(z) be a polynomial of degree n having all its zeros in |z| < 1 and P € P,, such that |P(z)| <
|F'(z)] for |z| = 1, then for any Bj,-operator T, we have

ITPI(2)| < |T[F](2)]  for [z[>1. (2.1)

The inequality is sharp and equality holds if and only if P(z) = ¢ F(z), 6 € R.

In this paper, we first study the zero-preserving character of the operator
Tpno|P)(2) = 2P™(2) — aP™ Y(2), wherem € N with m <n, (2.2)

defined on the space of polynomials P,, and a € C. This operator involve the mth and (m — 1)th derivatives of P(z).
Moreover, P(9)(z) = P(z). In this direction, we first prove the following theorem.

— 1
Theorem 2.2. 1 Let P(z) be a polynomial of degree n and has all zeros in |z| < r and a € C with («a) < %,

then all the zeros of T}, o[P](2), given by (2.2), are also in |z| < r.

For the proof of this theorem, we need the following generalized version of Walsh’s Coincidence theorem, due to A.
Aziz [1], for the case when the circular region is a circle.

Lemma 2.3. Let G(z1, 29, ..., 2,) be a symmetric n-linear form of total degree m, m < n, in z, 29, ..., 2, and let
C : |z| <r be a circle containing the n points wy, ws, ..., w,. Then in C there exists atleast one point 5 such that

G(ﬁaﬁa76) = G(wlan;“-awn)'
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Proof .[Proof of Theorem Let w be any zero of the polynomial T, [P](z), then
wP™ (w) — aP™ Y (w) = 0. (2.3)

This expression is linear and symmetric in the zeros of P(z). By lemma w will also satisfy the equation obtained
by replacing P(z) in (2.3)) by (z — 8)", where § is a suitable complex number with |3| < r. This implies

nn—1)....n—m+1)(w—B)"""w
—anmn—1)....n —m+2)(w—B)""" =0

or
nn—1)...n—m+2)(w—-8)"{(n—m+1w—-—a(lw—0F)}=0 (2.4)

Since R(ar) < =241 then R (ﬁmﬂ) < 1. This implies that

o o
< -1
n—m—i—l‘_ n—m-+1 ‘
or
o] <la—(n—m+1)] (2.5)

The equation (2.4) implies that

(w—=pF)=0o0r (n—m+ 1w —a(w—pF)=0.

Equivalently,
w = 6 or w = #ﬁrnﬁ»l)
This further implies by using (2.5 that,
R L — L
la—(n-—m+1)| = |af

Thus,
= |w| < B <r

Hence, it follows that all the zeros of T}, o[P](z) also lie in |z| < r. This completes the proof. I
The linearity of T, o [P](z) is not difficult to verify. Hence, the Theorem can also be formulated as:

Theorem 2.4. The operator T, [P](z) given by (2.2) is a B,-operator on Py, if R(a) < 2=2t1,

Since T, o[P](2) is a By-operator on the space of polynomials with a constraint on c«, then by applying theorem
to Trn.o[P)(2) = 2P(™)(2) — aP™~1(2), we obtain the following extension of the inequality (T.6).

Corollary 2.5. Let F(z) be a polynomial of degree n and has all its zeros in |z| < 1. Further, let P € P,, with
PG) < IFG) for |2 =1.

n—m+1

Then for any « € C with R(«a) < 5

and |z| > 1,
|zP™) (2) — aP™ D (2)| < |2F™(2) — aF™ D (2)], m <n. (2.6)

The bound is sharp and inequality (2.1)) becomes equality if P(z) = e F(z), 6 € R.
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The next Corollary follows by taking F(z) = ‘m‘g)ﬂP(z)\z” in Corollary

— 1
Corollary 2.6. Let P € Py, then for any a € C with R(«a) < %,
|
PO (z) —aP™ V()| < ————|a—(n—m+1 P(2)l. 2.7
max]eP")(2) = PV ()] < o hsla = (n = m Dl ) (2.7

The result is sharp and equality in (2.7)) holds if P(z) = az".

Thus, C,, = (n+!+1)1‘0‘ — (n—m+1)| is the exact constant for the operator T}, .

Remark 2.7. For m = 1, the inequalities (2.6) and (2.7) reduces to (1.6) and (1.4)) respectively. Moreover, the the
inequalities (2.6) and (2.7)) hold for |&| < n/2, while as, the Corollaries and also show that the range of « for

which these inequalities hold extends from |a| < n/2 to R(a) < n/2.

3 Polynomials with Constraints

Let P2 denotes the set of polynomials of degree at n and having no zero in |z| < 1. It was proved by P.D. Lax [§]
that if P € PY then

max| P'(2)| <

|3

|rn|a>§|P(z)|.

This inequality strengthens the Bernstien’s inequality for polynomials not vanishing in |z| < 1. It was earlier conjectured
by P. Erdos.

The exact constant C, in Corollary can also be strengthened for P € PY by using the following result of
Rahman and Schmeisser [14] p. 539].
Lemma 3.1. Let P € P? and ¢,,(z) = 2", then for any B,-operator 7,

(\T[1](z)|+\T[<pn}(2f)l)max|p(z)| for |2]>1
2 jz1=1 -

IT[P](2)] <

If we take T' =T},  in Lemma then

n!

GomrnmmE - a) -

Tm,a[‘#’n](z) =

and
Tmoll)(2) = =0mia,.

where 6,,1 denotes Kronecker delta.
Thus, we have the following Erdés-Lax type inequality for T, .

n—m+1

Theorem 3.2. Let P € PY, then for every a € C with R(a) < 5 )

max|zP(")(2) — aP" D (z)] < C'max|P(2)]

where

n! o — (mn —m+1)]

Ot =,
" 1|a|+(n—m—|—1)! 2

(3.1)

The inequality is sharp and P(z) = az™ + b is an extremal polynomial, |a| = |b| # 0.

A polynomial f(z) of degree n is said to be self-inversive if f(z) = oq(z), where ¢(z) = 2" f(1/Z) and |o| = 1. The
Theorem also holds if P(z) is a self-inversive polynomials. The following lemma due to Rahman and Schmeisser
[14, p. 539] is needed for the proof.
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Lemma 3.3. Let P € P,,, Q(z) = 2" P(1/Z) and ¢, (z) = 2", then for any B,-operator T'

IT[P](2)] + IT1QI(=)] < (ITL]()] + |Tlpn](2)]) max| P(2)]  |2] = 1

|2|

— 1
Theorem 3.4. Let P(z) be a self-inversive polynomial of degree n, then for every a € C with R(«) < %,
max|zP™)(z) — aP™ Y (2)| < C™ max|P(z)|, (3.2)

[z]=1 |z|=1

where C'" is given by (3.1]). The inequality (3.2)) is sharp and P(z) = az™ + @ is an extremal polynomial, a € C\ {0}.
Proof . Let Q(z) = 2" P(1/Z) then P(z) = 0Q(z) for some unit modulus complex number o. This implies that
}ZP(m)(z) - aP(mfl)(z)‘ = ‘ZQ(’”) (2) — aQ(mfl)(z)’ vz € C. (3.3)

Moreover, from Lemma with 7" = T}, o, we have

2P (2) = aP™ D (2)| 4 20U (2) — aQ V()| (3.4)
< (5m1|a| + (rLZL!Jrl)!'a —(n—m+ 1)) gl‘si}ﬂP(z)\

The inequality (3.2 follows by combining inequalities (3.3]) and (3.4]). This completes the proof. [J

4 Concluding Remarks and Open problems

1. If one refers to proof of Theorem we can conclude that the linearity and zero-preserving property of B,,-
operator plays a fundamental role in the proof. There are operators on P, which have zero-preserving property like
Nagy’s generalized derivative (see [4, [I6]) but are not linear. A natural question one can ask here is that, whether
theorem [2.1] holds for operators which are not linear but does preserve location of zeros, or does there exist non-linear
zero-preserving operators on P,, which satisfy the conclusion of Theorem [2.1

2. For m = 1, the operator T,  takes the form of Simirnov operator (see [B, [I5]). In [I5l Chapter V], Simirnov
proved that his operator preserves inequalities between polynomials. According to his result, for m = 1, the Corollary
holds for all a’s with a/n € €, where €, denotes the image of the disc {t : [t| < |z|} under the mapping
o0

)= %th In this regard, the extension of T, , in Simirnov’s settings is a plausible question to ask.
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