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Abstract

In this paper, a new algorithm is proposed to solve pseudo-monotone variational inequalities with the Lipschitz
condition in a real Hilbert space. This problem is an exceptionally general mathematical problem in the sense that
it consists of a number of the applied mathematical problems as a special instance, such as optimization problems,
equilibrium models, fixed point problems, the saddle point problems, and Nash equilibrium point problems. The
algorithm is formulated around two algorithms: the extra gradient algorithm and the inertial algorithm. The proposed
algorithm uses a new step size rule based on local operator information rather than its Lipschitz constant or any other
line search strategy and operates without any knowledge of the operator’s Lipschitz constant. It presents the strong
convergence of the algorithm. Finally, we conduct a number of numerical experiments to determine the performance
and superiority of the described algorithm.
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1 Introduction

This paper examines the problem of classic variational inequalities [27] [11] and variational inequality problem (VIP)
for mapping T : £ — £ is defined as follows:

Find w* € A in order that <’T(w*),y - w*> >0, Vyed (VIP)
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where A is a non-empty, convex and closed subset of a certain Hilbert space £ and (.,.) and ||.|| serve as an inner
product and the led the induced norm in &, respectively. Moreover, R, N are the sets of real numbers and natural
numbers, respectively. It is significant to notice that the problem (VIP]) is identical to figure out the following problem:

Find w* € A in order that w* = Py[w* — (T (w")].
In order to study the strong convergence, the following conditions are believed to have been met:

(T1) The solution set of problem (VIP)), denoted by ® is non-empty;

(T2) An operator 7 : £ — & is said to be pseudo-monotone, i.e.
(T(1)yy2 —y1) > 0= (T (y2), 11 —y2) <0, V1,92 € A;
(T3) An operator T : £ — & is said to be Lipschitz continuous with constant L > 0, i.e., there exists L > 0 such that

1T (y1) = T(w)ll < Lllyr — v2ll, Yy1,92 € A;

(T4) An operator T : £ — & is said to be sequentially weakly continuous, i.e., {T (u,)} converges weakly to T (u) for
every sequence {u,} converges weakly to u.

This variational inequalities was introduced by Stampacchia [27] in 1964. This is an important mathematical con-
struction that brings together several key topics of applied mathematics, such as the problems of network equilibrium,
the necessary optimality conditions, the complementarity problems and the systems of nonlinear equations (for more
details [7, 8, @ 10 4 [15] 29} 24, 211, 20l 22]) and others in [25] 14, 19 26, 18| 23| 17, B3] B2]. Korpelevich [12] and
Antipin [I] set up the following extragradient algorithm.

Up € .A,
Yn = Pafun, — (T (un)], (1.1)
Unp+1 = P.A[un - CT(yn)]

Recently, the subgradient extragradient algorithm was presented by Censor et al. [3] for solving the problem (VIP))
in a real Hilbert space. Their algorithm takes the form

Ug € A7
Yn = PA[un - CT(un)]u (12>
Un+1 = PE,,L [un - CT(yn)]

where

It is important to remember that the proposed well-established algorithm has two serious shortcomings, the first
being the fixed constant step size, which requires the information or approximation of the Lipschitz constant of the
associated operator and is only weakly convergent in Hilbert spaces. From a numerical point of view, it could be
challenging to use a fixed step size and thus the convergence rate and performance of the algorithm may be affected.
The main purpose of this study is to set up an inertial-type algorithm, that is needed to enhance the convergence
rate of the iterative sequence. Such algorithms have been formerly formed owing to the oscillator equation with a
damping and conservative force restoration. This second-order dynamical system is called a heavy friction ball, which
was formerly designed by Polyak in [16].

So there is a crucial question:

“Is it possible to establish a new inertial-like strongly convergent extragradient-type algorithm with a non-monotone
variable step size rule”?

In this research, we present an acceptable answer of the raised question, i.e., the gradient algorithm indeed estab-
lishes a strong convergence sequence by maintaining variable step size rule for dealing with problem (VIP]) combined
with pseudo-monotone mappings. Motivated by the works of Censor et al. [3] and Polyak [I6], we introduce a new
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inertial extragradient-type algorithm to figure out the problem (VIP)) in the situation of an infinite-dimensional real
Hilbert space.

The rest of the paper is given as follows: The section [2| consists of the necessary definitions and fundamental
lemmas needed in the article. Section [3| consists of inertial-type iterative scheme and convergence analysis theorem.
Section [] has provided numerical results to explain the performance of the new algorithm and to associate them with
other algorithms.

2 Preliminaries

In this section of the text, we have written a number of significant identities and related lemmas and definitions.
The metric projection P(y1) of y1 € € is defined by

Py(y1) = argmin{||y1 — y2| : y2 € A}

Next, we list some of the important properties of the projection mapping.

Lemma 2.1. [2] Suppose that P4 : £ — A is a metric projection. Then, we have

(i) y3 = Pa(y1) if and only if
(Y1 —ys, 2 —y3) <0, Vyo € A

lyr = Pa2)ll” + 1Pa(y2) — va2ll® < llyr — w2ll®, 1 € A g2 € €.

ly1 = Paly)ll < llyr —v2ll, y2 € Ajyn € €.
Lemma 2.2. [30] Let {p,} C [0, +00) be a sequence satisfying the following inequality

Prn+1 < (1 - Qn)pn + Gn"n, VneN.
Furthermore, {g,} C (0,1) and {r,} C R be two sequences such that

“+oo
lim ¢, =0, an = +o0 and limsupr, <0.
n=1

n—-+00 n—-+oo

Then, limy,—, o pn = 0.

Lemma 2.3. [I3] Suppose that {p,} is a sequence of real numbers such that there exists a subsequence {n;} of {n}
such that
Prni <Pngyr vV tEN

Then, there is a non decreasing sequence my C N such that m;y — 400 as k& — 400, and meet the following
requirements for numbers k € N:

Pmy, < pmk+1 and P < pmk+1~
Indeed, my = max{j < k:p; <pjy1}.

Next, we list some of the important identities that were used to prove the convergence analysis.

Lemma 2.4. [2] For any y1,y2 € € and £ € R. Then, the following inequalities are holds.
) 2 2 2 2
1ey1 + (1 = Ogell” = Lllpall” + 1 = Olly2l” = €A = O)llyr — y2lI”
(i)
g1 + 2l < [ly1l® + 2(y2, 1 + v2)-

*

Lemma 2.5. [28] Assume that 7 : A — £ is a pseudo-monotone and continuous mapping. Then, w* is a solution of

the problem (VIP)) if and only if w* is a solution of the following problem.
Find u € A such that (T (y),y —u) >0, Vy € A
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3 Main Results

In this section, we introduce inertial-type sub-gradient extragradient algorithm which incorporates the new step
size rule and the inertial term as well as provides both strong convergence theorems. The following main result is
outlined as follows:

Algorithm 1
Step 0: Let u_j,up € A, a >0, € (0,1), (o > 0 and select a nonnegative real sequence {(, } such that

+oo
$ < ho0
n=1

Moreover, choose {d6,} C (0, 1) satisfies the following conditions:

+oo
lim 4§, =0 and Z(Sn = +400.
n=1

n—-+4oo

Step 1: Evaluate
Sn=(1—0n) [un + (U — un—l)]

where «,, such that

min {a, 7““71,_6571,—1” } if wp # Up_1,
0<a,<a, and o, = (3.1)

« else,

€n

while €, = o(d,) is a positive sequence, i.e., lim, ;o §* =
n

Step 2: Evaluate

If S, = yn, then STOP and y,, is a solution.

Step 3: Evaluate
Un+1 = Pgn(sn - gT(yn))

where

(iii) Compute

o l‘“cjn_ynlp"'#”un —yn\|2
min {Cn + ©n, 2(T($n)7T(yn),u:ilfyn> }
Gt =14 if (T(S0) = T(Wn): 1 — ya) > 0, (3.2)
Cn + Pn otherwise.

Set n =n+ 1 and go back to Step 1.

Lemma 3.1. Let a sequence {(,} generated by (3.2)) is convergent to ¢ and also satisfy the following inequality

+oo
min{%,CO}SCSCo—FP where P:Zg@n.

n=1

Proof . Due to the Lipschitz continuity of a mapping T there exists a fixed number L > 0. Consider that <T(%n) —
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T (Yn), ns1 — Yn) > 0 such that

pISn = ynll* + ltmir = val®) o 200190 = ynllllunts = ynll
2T (Sn) = T(yn)s unsr = yn) — 207 (Sn) = T(yn)llltins1 — ynll
20180 = ynlllltntr = ynll

o 2Ll|gn - ynHHunJrl - ynH

L
> —, 3.3
> 8 (33)

By using mathematical induction on the definition of (,,+1, we have

min{g,Co} <C<G+P

Let
[Crr1 — Cnrr = max {07 Cnt1 — Cn}
and
[Cnt1 — Ca]” = max {0 (Cny1 — §n)}
From the definition of {(,}, we have

“+o0
Z(Cn-{-l Z max {0 Cnt1 — Cn} < P < Ho0. (3.4)
n=1 n=1
+o00 400
That is, the series Z(C"‘H — (n)T is convergent. Next we need to prove the convergence of Z(Cnﬂ —(n) . Let
n=1 n=1

—+oo
Z(Cnﬂ — (n)” = +00. Due to the reason that (41 — G = (Gor1 — Cn) ™ — (Cug1 — Gu)~- Thus, we have

n=1

k k k

G1 =G0 =D (a1 = G) = D (Gor1 = )T =D (a1 — Ga) ™ (3.5)

n=0 n=0 n=0

By allowing & — 400 in , we have ¢ — —oo as kK — oo. This is a contradiction. Due to the convergence of the
k

series Z(C"“ Cn) T and Z (Cnt1 — ~ taking k — +o0 in , we obtain lim,_,cc ¢, = ¢. This completes the

n=
proof. O

Lemma 3.2. Suppose that an operator 7 : £ — £ meet the conditions (71)-(74). For w* € ® # (), we have

s =" < 19— w77 = (1= 2 Y19 =l = (1= 2 s = gl
Cnt1 Cnt+1

Proof . It is provides that

ms1 =@ ||* = || P, 19 = 6T (ga)] = ||
= ||Pe, [Su — CaT ()] + [0 — GaT @)l = (S — 6T ()] — w0
= IS0~ T (W) — " ||* + || Pe, 1S — T ()] = S — CaT ()|
+2(Pe, (S~ CaT W)l = S = CaT W)l [Sn — G T ()] — "), (3.6)

This is provided that w* € ® C A C &,, we obtain

Hpsn [Sn = T (yn)] — [Sn — CnT(yn)”F
+ <P£n —Cn ( n)] - [%n - CnT(yn)L [%n - CnT(yn)} - w*>
< gn T(yn)] — P, [%n - CnT<yn)LW* — Pe, [%n - CnT(yn)D <0, (3'7)
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that implies that
(Pe,[Sn = T (yn)] = [Su = 6T ()], S = G T (yn)] —w)
s-4U%an—<arwnn—wgn—car@anf. (3.8)
Incorporating the expressions and . we have
ltn i1 — |2 < (|90 = T (Wn) —w*||” = || Pe, [Sn = T (wn)] = [Sn = T (wa)]|”
<80 =@ 2 = 190 = wnga | + 26T (yn), w* = tny1)- (3.9)
Since w* is the solution of problem , we have
(T(w*),y —w*) >0, for all y € A.
Due to the pseudo-monotonicity of 7 on A, we get
(T(y),y —w*)y >0, forall y € A.

By substituting y = y,, € A, we get
<T(yn)7yn - W*> Z 0.

Thus, we have
(T(yn),w" —ttng1) = (T(Yn),w* = yn) + (T Wn)s Un — Unt1) < (T (Yn),Yn — tns1)- (3.10)
By use of (3.9) and (3.10), we get
[tnt1 = w12 < (180 = @17 = 1180 = wng1|* + 26T (Yn)s Y — tnt1)
< S0 - W*HQ — IS0 = Yn +yn — un+1||2 + 2Cn<7—(yn)7yn - Un+1>
<S80 = w12 = 190 = yall® = llyn — tnia I +2(Sn = 6T (Yn) = Y, Untr — Yn)- (3.11)
By use of w11 = Pg, [Sn — T (yn)] and 41, we have
<% = G T (Yn) = Yns Un+1 — yn>
2< =T (Sn) = Yns Unt1 — yn> + 2Cn<7-(sn) =T (Yn)s Uns1 — yn>
Cn
=1 (T (S0) = T (Yn)s Unt1 — Yn)
Cn+

HCn 2, e
3
Cnt1 180 = vall”+ Cnt1

Combining (3.11)) and -, we get

[

<

[ns1 = yall?. (3.12)

¢
< IS — W*”2 — IS — yn||2 — |y — un+1||2 + ¢ Zl [H”Sn - yn||2 + |t 1 — yn||2]
n
<19 — w2 = (1= 2, = gl? — (1= 2y — g (313)
Cn+1 Cn1

O

Theorem 3.3. Suppose that {u,} is a sequence formed by Algorithm [l and meet the conditions (71)-(74). Then,
{un} strongly converges to w* € ®. Moreover, Ps(0) = w*.

Proof . It is given that ¢, — ¢, such that € € (0,1 — u) and

lim (1— MC”)zl—u>e>0.

n—o0 Cnt1
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Thus, there is a finite number n; € N such that

(1— ”<"> >e>0,Vn>n. (3.14)
<n+1
Thus, implies that
ltns1 —w*))* < [|Sn — w*||?, V0 > ng. (3.15)
It is given in expression (3.1) that
. (679 . €n
nglj{looauun—uan Sngrfooanu"_u"_ln =0. (3.16)

By the use of definition of {S,,} and inequality (3.16)), we obtain

||§n —w*|| = Hun + ap(Un — Up—1) — Ontly — Qpln(Uy — Up—1) — wW*
= H(l —0n) (U, — w*) + (1 — ) an (Uun — Up—1) — Spw* (3.17)
<(1- 5n)||un —w* | +(1- 5n)anHun — un_lH + 5nHw* |
< (1= 0p)||tn, — W*|| + 65, My, (3.18)
where o
(1= 6.) 2 i = | + "] < B
By using expressions ([3.15) with (3.18]), we obtain
[tun1 — || < (1= 0p)llun — w*[| + 8 M
< max{”un — w*||,M1}
< max {|jug — w*||, M1 }. (3.19)
Thus, we conclude that the {u,} is bounded sequence. Indeed, by expression (3.18)) we have
S0 = w||* < (1= 80)?[fun — w[|* + 62 ME + 2M1 8, (1 — 8,) [ — |
< lun = w*[|* + 8n [5nM12 + 2My (1 = 6n)[Jun — W*H]
< ln — w*[|? + 6, Mo, (3.20)
where
S ME 4 2M1 (1 — 6,)|Jupn — w*|| < My
for some M, > 0. By using the expressions (3.13) with (3.20]), we have
[uns1 = w1 < [lun — w*[|* + 6, Mo
1Gn 1Gn
— (1= L2180 = gl = (1= £ Y fungs — gl (3.21)
Cn+1 Cn+1
The remainder of the facts shall be split into the following two parts:
Case 1: Next, consider that a fixed number ng € N (ng > ny) such that
[unt1 — w*|| < Jup —w*||, Yn > no. (3.22)
Thus, above implies that lim, oo ||un, — w*|| exists and let lim, o0 ||un, — w*|| = I, for some | > 0. From the

expression (3.21)), we have

(1= L)1 =yl + (1 = 22 ) ltnss = ul?
Cn1 Cn+1

< un — w*||? + 6, Mo — |Jtpy1 — ™| (3.23)
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Due to existence of a limit of sequence ||u, —w*|| and d,, — 0, we deduce that
ISh —ynll =0 and  |Jupst1 —ynll =0 as n — +oo. (3.24)

By the use of expression (3.24]), we have

i [ | € lim S gl 4l e - | =0 (3.25)
Next, we compute
||%n - un” = ”un + an(un - unfl) - 5n [un + an(un - unfl)] - unH

< anHun - un—1|| + 5n||un|| + O‘n(anun - un—1||

2 On

= 6n%|\un = Up—1]| + Inl|un| + 6n5—|\un —Up—1]| — 0 as n — oo. (3.26)
The following provides that
ngrfoo un = tnga | < ngrfoo [tn = Sull + ngrfoo 187 — tnq1 = 0. (3:27)

The above explanation guarantees that the sequences {S,,} and {y,} are also bounded. By the use of reflexivity of
& and the boundedness of {u,} guarantees that there exits a subsequence {uy,} in order that {u,,} — @ € £ as
k — +o0o. Next, we have to prove that 4 € .

It is given that
Yny, = P.A[wnk - CT(wnk)]

that is equivalent to

<wnk - CT(wnk) —Ynpr Y — ynk> S 07 Vy € A (328)
The inequality described above implies that
Further, we obtain
1
E<wnk —Ynir ¥ = Yni) T T (Wny)s Yy — Wny) < AT (Wny ),y — wny), Yy € A (3.30)

Due to boundedness of the sequence {wy, } implies that {7 (wy, )} is also bounded. By the use of limy_, oo ||Wn, —Yn, || =
0 and k& — oo in (3.30), we obtain

likminf<7'(wnk),y —wy,) >0, Vy e A (3.31)
— 00
Furthermore, we have
<T(ynk)7 Yy — ynk>
= (T (yny) = T(wny), ¥ — wa,) + (T (Wny, ), ¥ — Wny) + (T (Yny,)s Wy, — Y )- (3.32)
By the use of limy_yo0 ||Wn, — Yn, || =0 and T is L-Lipschitz continuous on £ implies that
klim |7 (wny) = T (Yn, )|l = 0. (3.33)
— 00
which together with (3.32) and (3.33)), we obtain
Em inf (T (yn, ),y = i) 2 0, Vy € A. (3.34)
—00

Consider a sequence of positive numbers {ex} that is decreasing and converge to zero. For each k, we denote my by
the smallest positive integer such that

(T(wn,),y — wn,) + e >0, Vi > my. (3.35)

Due to {ex} is decreasing and {my} is increasing.
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Case A: If there is a wy,, subsequence of wy,, —such that T(wy,,, ) =0 (Vj). Let j — oo, we obtain
J J

(T(@),y— @) = lim (T(w,,, ).y— i) =0. (3.36)

Jj—o0
Hence @ € A, therefore we obtain @ € ®.

Case B: If there exits ng € N such that for all n,,, > no, T(wnw) # 0. Suppose that

U, = M V1, > ng. (3.37)
" T (wn,, )P *
On the basis of the above definition, we shall obtain
(T (wn,,, );On,,, ) =1, Yrm, >ne. (3.38)
By using expressions and , for all n,,, > ng, we have
(T(wn,, ), y+ eBn,, —wn, )>0. (3.39)
Due to the pseudo-monotonicity of T for n,,, > ng, we have
(T(y + &0, ), ¥+ €xOn,, —wn, )>0. (3.40)
For all n,,, > ng, we have
(TW)y —wn,,) 2 (T(y) =Ty + &On,, ), ¥+ eOn,, —wn,, )= ({T(y),On,,)- (3.41)

Due to {wy, } weakly converges to @ € A through T is sequentially weakly continuous on the set A, we get {7 (wy, )}
weakly converges to 7 (4). Suppose that 7 (4) # 0, we have

T @) < tmint T (u, )| (3.42)
Since {wnmk} C {wy,, } and limg_,o € = 0, we have

€k 0

0< lim |0y, ||= lim < — = 0. (3.43)
k00 B koo [T (wn,, )L T (1T (@)
Next, consider £ — oo in (3.41)), we obtain
(T(y),y—a) >0, Yy € A (3.44)

By the use of Minty Lemma we infer @ € ®.

By using the Lipschitz-continuity and pseudo-monotonicity of 7 implies that the solution set ® is a closed and convex
set. It is given that w* = P3(0) and by using Lemma (ii), we have

0—w"y—w") <0, Vy € . (3.45)
Next, we have to
limsup(w*,w* —u,) = lim (W, w" —uy,) = (W w* —a) <0. (3.46)
n—+o0 k—+o0

By the use of lim,_, 1 o H'U/n+]_ — unH = 0. Therefore, (3.46) indicates that

lim sup{w™, w* — Up11)
n—-+4oo

< limsup(w*, w* — uy,) + limsup{w™, uy, — Un41) < 0. (3.47)

n—-+oo n—-+oo



2660 Wairojjana, Muangchoo, Pakkaranang

Take into account the expression (3.17)), we have

| 2

||Sn—w*
2

= H“" + ap(Un — Up—1) — Ontly — Qpln(Uy — Up—1) — w*
= [|(1 = n)(tn — w*) + (1 = 6p) v (g — tn—1) — 5nw*||2
<11 = 60) (= ") + (1= Bn)tn (1 — 2 1)[|* + 200 (", S — ")
=(1- 6n)2”un — | +(1- 6n)2aiHun — un,ng

+ 20, (1 — 5n)2Hun - w*” ||un - un,1|| + 20, (—wW*, S — Upg1) + 20 (—wW* Upt1 — wWF)

< (1= 80 Jum = [* + 02t = 1 |* + 2001 = 60) |t — 7] = i1
+ 26, [|w*|[||Sn = wns1 || + 200 (—w*, ung1 — w*)

=(1- (5n)Hun —w*

2 70
A P PR Y P
n

+2(1 = &) ||lun — w*

S = |+ 2] [[[ S = | + 20", " = ).
n

From expressions (3.15)) and (3.48) we obtain

)
s =]

< (1=6p)|Jun —w*

B L Y [ [

+2(1—(5n)Hun—w* w*

St = |+ 2|80 = [ + 27,0 — i)
n

By the use of (3.25)), (3.47)), (3.49) and applying Lemma conclude that lim,_, Hun —w*|| =0.
Case 2: Consider that there exist a subsequence {n;} of {n} such that
Hunz - W*” < ||uni+1 - W*||7 VieN.
By using Lemma [2.3] there exists a sequence {m;} C N as {my} — 400 such that
1ty — w0l < |y, —w*]| and  [Jup — w*|| < [Jttm,,, —w|, for all k € N.
As similar to Case 1, the relation (3.23]) implies that
G G
(1= 22 Y ey = g 12+ (1= L2 )ty 1 = o I
leﬁ-l ka+1
< gy, = W17 + G M — [[tm1 — ™|
Due to 6,,, — 0, we can conclude the following:
kgg-loo ||wmk — Ymy, ” = klglr—loo ||umk+1 — Ymy, ” =0.
It continues from that
kgl—&l-loo Humk+1 — Wmy, || S kgg-loo ||umk+1 — Ymy, ” + kgr-‘,r-loo ||ymk — Wy, ” =0.
Next, we will determine
||wmk - umk” = Humk + (umk - umk—l) - 5mk [umk + (umk - umk—l)] - umk”
< Qmy Humk = Umy—1 H + 6mk ||umk || + amkémk ||umk - umrlH
e «@
= 5mk ok ||umk - Umk—lu + 5mk||umkH + 672nk — ||umk - Umk—1|| — 0.
6mk 6mk
This leads from that
kll)rfoo Humk - umk"t‘l” < kgr—ir-loo ||umk - wmkH + kll)r_f_loo mek - umk-‘rl” =0.

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)
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By using the same reason as in Case 1, that is to say,

lim sup(w*, w* — U, +1) < 0. (3.56)

k— 400
By using the expressions (3.49) and (3.50) we obtain

%112
s =]
< (1= )t = 0" [+ O [t s = [ 52 ms — temea|

Qi

+2(1 = Gy ) || thmny, — 3 |y, = tm—1]| + 2||w* ||||wmk — Uy 41| + 2", 0" — umkH)}
miy

< (U= Bt = [ S [ ms = | 72 [my = |
+2(1 = Gy ) || thmy, — " f;:: et = e[|+ 2 [0, = s | + 2%, 0" = 1) (3.57)
Thus, above implies that
[t 1 = W*H2
< Jorme o, = a5 e, =
+2(1 = S|ty — " g‘:k [t = 1]+ 2] ||| = g1 || + 20, w0* =ty 11)] - (3.58)

*

Since d,,, — 0, and Humk —w

is a bounded. Thus, expressions (3.56|) and (3.58]) implies that

|ty +1 —w*||> = 0, as k — 4o0. (3.59)
This means that
. k|12 < . %12 <0. .
im =P < B g1~ ] <0 (3.60)

As a consequence u,, — w*. This will conclude the proof of theorem.
O

4 Numerical Illustrations

This section examines three numerical examples to show the efficacy of the proposed algorithms. Any of these
numerical experiments provide a detailed understanding of how better control parameters can be chosen. Some of
them show the advantages of the proposed algorithms compared to existing ones in the literature.

Example 4.1. First consider the HpHard problem that is consider from [5]. Let 7 : RY — RY be an operator is
defined by
T(u) =Mu+q

where ¢ € RY and
M=AAT"+B+D

where A is an N x N matrix, B is an N x N skew-symmetric matrix and D is an N x N positive definite diagonal
matrix. The set A is taken in the following way:

A={ucR":-100 < u; <100}.

It is clear that 7 is monotone and Lipschitz continuous through L = ||M||. The control condition are taken as
follows: (1) Algorithm 2 in [31]: {p = 0.05;,u = 0.80,a, = m; (2) Algorithm o = 0.05, 4 = 0.80, ¢ =
0.60,¢, = ﬁ, Op = 100(114_2),(,071 = (nl_‘(_)?)i,. During this experiment, the initial point is ug = u; = (2,2,---,2) and
D, = ||S% — yn|| < 1073. The numerical results of these algorithms are shown in Table




2662 Wairojjana, Muangchoo, Pakkaranang

Table 1: Numerical illustrations for both algorithms

Algorithm 2 in [31] Algorithm

N Number of Iterations Elapsed Time Number of Iterations Elapsed Time
5 32 0.143745 11 0.092134
20 47 0.293781 11 0.126725
50 213 1.198352 41 0.341284
100 321 2.391837 31 0.763113
200 209 5.373166 51 1.573813

Example 4.2. For second example, consider the quadratic fractional programming problem in the following form [6]:

uTQu + aTu + ag

i f () = SO
subject to u € A = {u € R*: bTu + by > 0}
where
5 —1 2 0 1 2
1 5 -1 3 2 1
Q= 9o 1 3 ol =2 b= 1 ,a0=—2, and by=4.
0 3 0 5 1 0

It is easy to verify that Q is symmetric and positive definite on R* and consequently f is pseudo-convex on .A. Hence,
V f is pseudo-monotone. Using the quotient rule, we obtain

(0"u +bo)(2Qu + a) — b(u" Q + a”u + ag)
(bTU + b0)2

Vi(u) = . (4.1)

In this point of view, we can set T = V f in Theorem We minimize f over A = {u € R* : 1 < w; <10, i =1,2,3,4}.
This problem has a unique solution w* = (1,1,1,1)" € A. The control condition are taken as follows: (1) Algorithm

2 in BI): o = 025,10 = 0.80, = g5y~ (2) Algorithm [I} ¢o = 0.25, 40 = 0.80,a = 0.60,6, = gy, on =
%,&L = m. During this experiment, the initial points are different and D,, = ||S, — y.| < 107%. The

numerical results of these algorithms are shown in Tables

Table 2: Example Numerical study of Algorithm 2 in [31] and ug = u; = [5,—10,5, —10]T.

Iter (n)

U1

u2

us

Uq

5 © 0010w

9.73621052092642
9.65398088222099
9.57174604515717
9.48955289901919
9.40743194326346
9.32539697955624
9.24345882537906
9.16162656381652
9.07990820317225
8.99831103926803

1.00031601484227
1.00031215935883
1.00030820768938
1.00030416718112
1.00030004508967
1.00029584834516
1.00029157777940
1.00028704334254
1.00002617317537

0.833094840825805
0.999443650015545
1.06492890311881
1.12923908105825
1.19231579167598
1.25416309375667
1.31478659951554
1.37419323423997
1.43239065856804
1.48938694679281

0.999707404385613
0.999714823249607
0.999722106421074
0.999729253535189
0.999736264410505
0.999743139236891
0.999749866096390
0.999756607981979
0.999977974772264

9.90241332280372
9.83074011956143
9.75920250955472
9.68783224607597
9.61664829940396
9.54565902708142
9.47487029657638
9.40428650097328
9.33391113866474
9.26374713071480

1.13272909195984
1.11242178130774
1.09260313929843
1.07326478974856
1.05439834405683
1.03599542429133
1.01804760355120
1.00055874144751
1.00002397019683

1.04929123705160
1.02908763007986
1.00888315702824
1.00001777899295
1.00000002980971
1.00000000018713
1.00000000011988
1.00000020053245
1.00000017038491
1.00000014610962

0.999967307570371
0.999968045673433
0.999968775268394
0.999969496171197
0.999970208192181
0.999970911118532
0.999971604705314
0.999972257950801
0.999992761540142

CPU time is seconds

0.876569
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Table 3: Example Numerical study of Algorithm [1|and uy = u; = [5, 10,5, —10]%.

Tter (n)

U1

U2

us

Ug

1

5 © 0ok W

5.55377533757632
4.41040024375028
12.3448991907237
3.05882604768791
2.13444665314296
1.87015108945082
1.46861344878822
2.05261045125816
1.43898856735670
1.29986269980453

1.00004416092722
1.00003823749786
1.00003579248111
1.00003668241231
1.00004014710912
1.00004007642355
1.00003584694207
1.00003405336513
1.00003483208481

-2.90587269134480
1
-12.6397501083870
-7.92358662619279
-7.44999847685431
1.00000000097286
1.15019734000242
-0.507408676818891
0.490171438084139
0.213085356892448

0.999975499519528
0.999978633212697
0.999980505234820
0.999980324093982
0.999978308970547
0.999977850272896
0.999980050168924
0.999981402563276
0.999981190052566

8.61905463436968
7.45023669240132
13.0658963027246
7.05918169098723
6.31036964537031
6.02864753785448
5.43281104076976
4.10590329281081
3.43815944442871
2.58372157493742

1.00001716683660
1.00001506391126
1.00001322064060
1.00001308096942
1.00001461600524
1.00001542714126
1.00001399157339
1.00001267126779
1.00001263286680

1.72038166468790
1.19425608076334
-13.2192576516318
-2.21603141462490
1.12023327884896
0.955002424010157
1.00000000001322
0.236813108691433
1.28802829936381
0.853687511480199

0.999986491695085
0.999988330027726
0.999989034148032
0.999988723923595
0.999987666312513
0.999987735088239
0.999989050797591
0.999989569857342
0.999989305033961

CPU time is seconds

0.308771

Table 4: Example Numerical study of Algorithm 2 in [31] and ug = u; = [10, —20, 30, —40]7.

Iter (n)

u

Uy

us

ug

50000k W

8.77637333455425
8.69495843974052
8.61358693872012
8.53228969180900
8.45108721657438
8.36999399345207
8.28902146271176
8.20817933122734
8.12747622756739
8.04692006065515

1.00031401521149
1.00031010862601
1.00030610969925
1.00030202573472
1.00029786389858
1.00029362989013
.00028932639364
1.00014344006196
1.00001368001678

-0.0495715784342590
0.997670568432512
1.06067800577058
1.12238972162512
1.18280447433853
1.24192670810562
1.29976325291497
1.35632219180389
1.41161229504697
1.46564271291772

0.999711293014288
0.999718641089626
0.999725853261276
0.999732929257881
0.999739869024494
0.999746673790074
0.999753330048160
0.999865399336672
0.999988955179276

9.29094270258555
9.21911519294898
9.14744366755259
9.07596267735889
9.00468628126089
8.93362315817494
8.86277934051403
8.79215937750138
8.72176691752843
8.65160502630982

1.12206970860473
1.10201854920601
1.08245168429949
1.06336073020762
1.04473729773544
1.02657308709375
1.00885960830576
1.00024238576235
1.00001158885806

0.811840145149117

0.993720619633674

0.999984362800348

0.999999968846574
1.00000020030451
1.00000016812645
1.00000014262042
1.00000012236522
1.00000010618077
1.00000009284194

0.999967693819351
0.999968427501599
0.999969152580824

0.999969868869467

0.999970576173761
0.999971274140246
0.999971962732758
0.999967034603878
0.999996120420831

CPU time is seconds

0.638950
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Table 5: Example Numerical study of Algorithm (1] and uy = u; = [10, —20, 30, —40]7".

Iter (n) u1 Uug us3 Ug

1 3.62540316591384 -4.50907358998138 6.32280270247068 -0.00324645702473703
2 2.35551832614327 1.00000000005651 5.05780638110935 -0.698371567191649
3 1.71910447671045 0.953160264334062 4.29177164937510 0.999999999525121
4 1.15470777752108 0.895315463559908 3.59372641421376 0.999999983377171
5 1.13296432437644 0.650962900197076 2.75601344318112 0.902777544700774
6 1.23231081634727 0.698699138712538 2.24361021384599 0.932339788593485
7 1.09676723997533 0.938983693943763 1.99524423852901 1.01664900928582
8 1.06998496490214 0.914461755684416 1.67181167392322 0.988172769212471
9 1.10337085979123 0.897210465543632 1.39018023991409 0.981585822559744
10 1.06931881399759 0.948386311174497 1.22427628816323 0.995433685763384
55 1.00003232233466 0.999983095332643 1.00001083828621 0.999990015035678
56 1.00003157023173 0.999983454013759 1.00001064467299 0.999990250646380
57 1.00003082551930 0.999983859831028 1.00001036357615 0.999990479905837
58 1.00003052571655 0.999984045978129 1.00001021378732 0.999990569779100
59 1.00003025202721 0.999984177903946 1.00001014388048 0.999990654787794
60 1.00002964901522 0.999984471374164 1.00000997843332 0.999990843128007
61 1.00002905083912 0.999984794582010 1.00000975810614 0.999991027421348

CPU time is seconds

0.280577

Example 4.3. Suppose that the non-linear complementarity problem of Kojima—Shindo while the feasible set A is

A={ueR*:1<u; <5, i=1,2,3,4},

and the mapping 7 : R* — R* is evaluated by

Uy + u2 + ug + ug — duguguy

T (u) =

UL + U + uz + ug — 4duuzuy
UL + U + uz + ug — 4duusuy

UL + Uz + uz + ug — 4duusug

It is easy to see that 7 is not monotone on the set A. By using the Monte-Carlo approach [6], it can be shown that 7T is
pseudo-monotone on A. This problem has a unique solution u* = (5,5,5,5)7. Actually, in general, it is a very difficult
task to check the pseudomonotonicity of any mapping 7 in practice. We here employ the Monte Carlo approach
according to the definition of pseudo-monotonicity: Generate a large number of pairs of points u and y uniformly
in A satisfying 7 (u)” (y —u) > 0 and then check if 7(y)T(y —u) > 0. The control condition are taken as follows:
(1) Algorithm 2 in [3I]: ¢op = 0.15;, 4 = 0.70, v, = m; (2) Algorithm (1t ¢, = 0.15, 4 = 0.70, = 0.60,¢,, =
ﬁ, Pn = (nlf%z ,O0n = (nJer)' During this experiment, the initial points are different and D,, = |3, — yn|| < 1073,
The numerical results of these algorithms are shown in Tables

Table 6: Example Numerical study of Algorithm 2 in [31] and uy = u; = [1,2,3,4]7.

Iter (n) Ul Uug us3 Ug
1 -34.4858669275805 51.8664403130701 74.7007514676511 81.6555636007234
2 -34.7655055354728 52.7053561367472 75.5396672913282 82.4944794244005
3 -68.6885783093673 54.9801618868864 49.8539261662733 48.7706022828314
4 17.3186243752486 21.2315776206067 33.0214233757886 35.6941859283492
5 2.14464032966519 3.41342758196463 6.08695506300084 6.57660634608289
6 2.16077834343589 3.42336001727149 5.00079945477229 5.00277316956197
7 2.17693740637592 3.43332429093693 5.00000861166124 4.99999726228770
8 2.19314690959707 3.44336852111214 4.99999946975626 4.99999956233048
9 2.20940684182298 3.45349275161455 4.99999955360422 4.99999955283736
10 2.22571727346680 3.46369703796100 4.99999959252883 4.99999959253525
141 4.86520623565335 4.99999982676687 4.99999982676687 4.99999982676687
142 4.88890753296478 4.99999983165645 4.99999983165645 4.99999983165645
143 4.91260767205413 4.99999983609968 4.99999983609968 4.99999983609968
144 4.93630665260868 4.99999984001939 4.99999984001939 4.99999984001939
145 4.96000446723282 4.99999984294752 4.99999984294752 4.99999984294752
146 4.98370113286901 4.99999999990961 4.99999999990961 4.99999999990961
147 4.99997372263069 5.00000260496717 5.00000260496717 5.00000260496717
148 4.99999974352490 4.99999988910880 4.99999988910880 4.99999988910880

CPU time is seconds

0.658704
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Table 7: Example Numerical study of Algorithm (1| and uy = u; = [1,2,3,4]7.

Iter (n)

U1

U2

us

Ugq

5 © 000Utk W

-22.4790198515975
-22.7250625769091
-46.9191743963588
4.76470808480016
4.82937349335325
34.3710564606067
45.0594866095192
50.4501740621952
50.5314043274895
50.6403242132421

5.00534491845521
5.00382749328779
5.00271869976732
5.00190964154940
5.00132055408830
5.00089307847857
5.00058462738082
5.00036429098967
5.00021838609581
5.00014354541464

45.1962163525125
45.8890698132465
45.3948805004849
31.6637577598404
4.99939226879006
34.4227198682972
45.1112124144806
50.5022462269367
50.5834595574629
50.6917607820349

5.00534300138664
5.00382612764508
5.00271773349804
5.00190896479704
5.00132008712633
5.00089276321315
5.00058442128729
5.00036416273020
5.00021830930436
5.00014349500391

61.2227868529569
61.9364390512654
49.2573891717001
6.57170133017410
5.01026963319225
34.4353964718562
45.1239165658566
50.5150352890470
50.5962444601586
50.7043937855899

5.00534228567228
5.00382561779860
5.00271737275274
5.00190871213941
5.00131991279145
5.00089264551241
5.00058434434462
5.00036411484598
5.00021828063514
5.00014347618363

64.3371909274850
65.0528149718569
50.2790369811032
0.238787400016093
0.366396789829221
0.629949296125400
1.91644510896386
-1.97169151358552
-2.00626829664043
-5.12057188697462

4.98393420214921
4.98850257752182
4.99183705482842
4.99426819503386
4.99603731806545
4.99732055470556
4.99824621008654
4.99890728946919
4.99934498398791
4.99956947666068

CPU time is seconds

0.232178

Table 8: Example

Numerical study

of Algorithm 2 in [31] and ug = uy = [-1,-2,3,4]7.

Tter (n)

Ul

u

us

Uq

1

5 © 00Utk W

181
182
183
184
185
186
187
188
189

-6.20601542924621
-6.34498204992797
-12.9307982468928
-12.8245110997443
-33.1769125028857
-3.63715262714896
1.04302948168927
1.04978285120354
1.05658705719584
1.06344317268371

4.59862733756248
4.66305529670103
4.72840120415464
4.79467821219419
4.86189966048480
4.93007907865535
4.99908430943714
4.99998796497466
4.99999982724761

40.0843112633838
40.5012111254306
40.0487124082963
40.1793368929725
34.7884817072125
20.5019731319843
5.05452389604395
5.00006058170198
4.99999076271743
4.99998642519517

5.00000320217875
4.99999994825175
5.00000000060611
4.99999999981385
4.99999999985196
4.99999999986557
4.99994852203121
5.00000039194907
5.00000000655933

48.1337650982707
48.5506649603177
47.5003319282679
47.6269383722835
37.8166900961878
-1.76185029487043
1.10650198176853
1.11279404365063
1.11913985722867
1.12554051292081

4.61146934022478
4.67571532974269
4.74088184600983
4.80698200476301
4.87402910964953
4.94203665454547
5.00068438967529
5.00001096999677
5.00000015919175

46.6230007187220
47.0399005807689
46.0967916997756
46.2241156086185
37.2122205719181
2.54576398430683
2.54725466388794
2.54921548696884
2.55121489498328
2.55325387465541

4.99999682258005
5.00000005125787
4.99999999898082
4.99999999983888
4.99999999985158
4.99999999986557
4.99994852203121
5.00000039194907
5.00000000655933

CPU time is seconds

0.830074
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able 9: Example 4. umerical study o gorithm |1| and ug = u; = |—1,-2,3, .
Table 9: E lejd.2t N ical study of Algorithm [1]and 1,-2,3,4]7

Iter (n) Ul Uug us Ug
1 67.7657143133604 76.7145530819899 119.464591876179 136.782073520191
2 -68.2650687067241 78.1919764133559 120.945690214610 138.263931342072
3 -112.028480196941 102.736419249501 68.7617248229671 59.8025934358457
4 10.0905654923274 7.52762193553885 48.8773488496240 59.7184201585889
5 1.58599071741342 0.271536323838546 5.42220385209038 5.83759718234703
6 1.76489239217402 0.956593352840844 5.01190765954745 4.97568499729916
7 18.9241448354569 -5.26396384315423 18.9282891809255 19.1336306496812
8 19.1267857198680 -5.33218756241530 19.1290503062070 19.3344556330365
9 19.1362728432230 -6.71061680639647 19.1381744023155 19.3158660670749
10 13.8198984213228 -14.2428711989199 13.8195679016292 13.7892140927893
39 5.00036606449632 4.99890329629848 5.00036604809619 5.00036452257377
40 5.00029614550570 4.99911277307117 5.00029613224497 5.00029489874547
41 5.00024019269176 4.99928042449310 5.00024018194207 5.00023918201651
42 5.00021568341312 4.99935386554261 5.00021567376480 5.00021477628717
43 5.00022114499712 4.99933751266914 5.00022113510826 5.00022021525583
44 5.00023906491462 4.99928382965716 5.00023905422789 5.00023806015776
45 5.00024676624015 4.99926074961903 5.00024675521250 5.00024572943005
46 5.00023803185504 4.99928690765120 5.00023802122102 5.00023703205387
47 5.00022237747575 4.99933380427636 5.00022236754428 5.00022144372719
48 5.00020993400317 4.99937108540127 5.00020992463042 5.00020905278423
49 5.00020466823032 4.99938686331783 5.00020465909544 5.00020380937576

CPU time is seconds

0.226685
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