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Abstract

In this paper, we investigate the existence, asymptotic, Hyers-Ulam, and semi-Hyers-Ulam-Rassias stability results
for the Hilfer fractional initial value problem involving the (pi,ps...pn)-Laplacian operator by using the fixed point
arguments.
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1 Introduction

In this paper, we study the following Hilfer fractional initial value problem

{ —(%Zii; D3 (b, (- (g:u))) (1) + D" (Bu) (1) + Rt u(6) =0, 1> 0, 1)

Pim2 g opi>1,forie{l,..,N},

where ¢, (z) = |z

n=m

R(t,u(t)) = p(t,u(t) +q(t) f(tult), p(tu)= Y nu(t)u", NymeN,

n=1

with 7, : RY — R is a positive function, D{1*"?is the o—Hilfer fractional derivative of order y € {a, 8} and type
0<w<lwithO<fg<ac<l.

Fractional differential equations with different initial conditions and boundary conditions were studied by many
authors [2], 8, @, [15] and extended to p-Laplacian fractional differential equations, see, [5l @] [7, 17, [21].

Besides, the subject of stability is a very important notion in physics, and for the sake of such importance and
applicability, one can observe a lot of work in the numerous publications (for example, refer to the references [I4] 23]
24, 26]). The study of Ulam and Hyers-Ulam stability for various equations originated from a famous talk of Ulam
[28]. In 1940, Ulam posed a problem concerning the stability of functional equations: “Give Conditions in order for a
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linear function near an approximately linear function to exist” . Since then, this question has attracted the attention
of many researchers, see, [3| 4, [TT], [16], 18 20, 21|, 25 27, 28], and references therein.

In [16], the authors worked on the existence of positive solution and Hyers—Ulam stability results, for p-Laplacian
fractional differential system :

DP [y [Dou () — g (t,u ()] = —A )y (tu(t — 7)),
¢p [D™ (u () —y2 (-, )] (0) = 0 = (&p [ D*ou () —y2 (u)]) (0),
w(0)=0=u (1), 7" [u() = y2 (., ())]()—0,

where DP, D" are the Caputo fractional derivatives of orders B € (1,2] and vy € (2, 3] respectively and ¢, (z) =
|913|p_2 .z is the p-Laplacian operator.

The authors in [5] investigated the existence of solutions and Hyers-Ulam stability for the following ¢-Hilfer fractional
order differential equation involving a p-Laplacian operator

D2y, (DR (6) = b (6w () R DEFu (D) s ¢ € (a,b]
u(@=u(t) = L Au(G),

7/}10( a2[32¢ )2‘1)07
Uy (DS %u) (0) = 1% (Q), a < ¢, G <b,

where Dgﬁ’ﬁl’“", Dgf’ﬁz’“" are the p—Hilfer fractional derivative of orders ay, s € (1,2) with parameters 51, 82 € [0,1],
RLED!:# the p—-Riemann-Liouville fractional derivative of order p < az and I?}¥ the left-sided ¢—Riemann Liouville

—2
K

fractional integral of order p > 0 and ¢, (z) = |z .z is the p-Laplacian operator.

Motivated by the cited papers, in the present article, we discuss the existence, asymptotic, Hyers-Ulam and semi-
Hyers-Ulam-Rassias stability for Hilfer fractional equation involving the (p1,pa...pn)-Laplacian operator (1.1J).

Throughout the article, we assume that o € C* (RT,RT) is increasing with o (0) = 0 and o’ () # 0 for all ¢ > 0,
p:RT xR — R is a two variable polynomial function and f : R™ x RT — R is a continuous function, and there exist
ke N* X\ e>0and r > 0 such that for all z € [0, 7]

0 < f(t,efz) < A\a+et>0. (1.2)

The functions g, h, 8, 1m,,q : RT — R are continuous, where g is increasing such that g (0) > 0, h,§ and ¢ do not
vanish identically on any subinterval of R*. We consider the following conditions

1 efkrt
]’L € Lloc (R+)

xds

1
' goam <L RD, 13)

s fy e =0, & € Le7P (RY,RT) and 7o, € LS (RY,RY)

1—>+oo g(:r:

where 7, (s) = €51, (s) and 0 (s) = €¥%5 (s) , and for u > 0

x

LY (RT,RT) = {u (RT — ]R*,sup/ o' (s) (o (z) — o ()" T u(s)ds < oo} :
z>0J0

The rest of the paper is organized as follows. In Section 2, some preliminary materials to be used later are stated. In

Section 3, we present and prove our main results consisting of the existence of nontrivial positive solution, asymptotic,

Hyers-Ulam and semi-Hyers-Ulam-Rassias stability results of the initial value problem (L.1)) by using the fixed point

arguments. Finally, example is given to illustrate our results.

2 Preliminaries

For sake of completeness let us recall some basic facts needed in this paper. Let E be a real Banach space equipped
with its norm denoted ||.||. A nonempty closed convex subset P of E is said to be a cone if PN (—P) =0 and (tP) C P
for all ¢ > 0. It is well known that a cone P induces a partial order in the Banach space E. We write for all z;y:€ F;
r<yify—xeP.

The mapping L : E — E is said to be positive in P if L(P) C P, and compact if it is continuous and L (B) is
relatively compact in E for all bounded subset B of E.
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Definition 2.1. [29] Let a € R* and a > 0. Also, let o (x) be an increasing and positive function having a continuous
derivative o’ () on (a,+00). Then the left-sided fractional integral of a function w with respect to another function o

on RT is defined by

2o = i | O @ =0 ) uo

e

In the case o = 0, this integral is interpreted as the identity operator Ig U= U.

Definition 2.2. [29] Let @ € (n — 1,n) with n € N, and u, 0 € C" (R",R) two functions such that o is increasing
and o’ (t) # 0, for all t € RT. The o-Hilfer fractional derivative D7 of u of order n—1 < o < n and type 0 < w <1
is defined by

a,w,o —a),0 1 8 " 1— —a),o
D () = 11" (a«x)ax) 17 (a).

Let’s also recall the following important result [29]:

Theorem 2.3. fuc C*"(RT),n—-1<B8<a<n 0<w<land £ =a+w(n—a), then

®,0 o,w,o _ - (U(x)_g(a))f_k 1 0 ok (1-w)(n—a),o
e e =) - i () u(a).

Moreover, 1771977 (u) = I°7771%7 (u) = I%7 (u) and 1D 71%7 (u) = u.

Remark 2.4. In this paper, we assume that o (z) is increasing and positive with o (0) = 0, having a continuous
derivative ¢’ () on RT and o’ (z) # 0, for all z € RT. If a € (0,1), then n =1 and for x > 0

o(z)) —w)(1—a),0
I3 D4 a) = u(o) ~ T (17000 ) 0),

Moreover, if v : Rt — R is continuous, then

lim (Iéf“”(l*“)’”u) () =0

z—0t

and so 1317 H Dy 7u (z) = u(x).
In what follows, we use of the following Schauder’s fixed-point theorem [I3] :

Theorem 2.5. [13] Let E be a Banach space, C be a nonempty bounded convex and closed subset of E, and T : C' — C
be a compact and continuous map. Then T has at least one fixed point in C.

We will use the following lemma concerning existence of fixed point for a compact map 7' : PN B (0,7) — P, where
r > 0 and P is a cone in a Banach space F.

Lemma 2.6. [10] If |Tu|| < ||u]| for all w € PN OB (0,7), then T has a fixed point u in PN B (0,7).

Definition 2.7. [10] Solutions of IVP (L.1)) are locally asymptotically stable in a cone K of a Banach space E if
there exits a nonempty bounded convex and open subset €2 of E such that, for any solutions u,v € K NQ of IVP (1.1)),
we can write

lim (u(z) —v(x))=0 (2.1)

r—r+00

uniformly with respect to KN Moreover, if (2.1)) is verified for all solutions u,v € K, (1.1)) is said to be asymptotically
stable.
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Definition 2.8. [I8] We say that IVP (1.1)) has the Hyers-Ulam stability in a cone K of a Banach space E if there
exits a constant M > 0 such that for every € > 0, v € K, if

i=N
=5 DI (@, (b (90)')) (8) + DL (3.0) (8) + plt,v (B) + a (8) £ 0(1)| < e, (2.2)
i=1
then there exists a solution u € K of IVP (1.1)), such that
lu(z) —v(x)| < M.e. (2.3)

We call such M a Hyers-Ulam stability constant for (L.1]).

Definition 2.9. [II]We say that IVP (1.1]) has the semi-Hyers-Ulam-Rassias stability in a cone K of a Banach space
FE if it has the following properties:
For every € > 0, there exists w € C (RT,R™") such that for v € K, if

i=N
=Y Dy (Gp (B (g0)')) (8) + Dy (8.0) (8) + plt, v (1) + ¢ (8) f (1, 0(1)| < e, (2.4)
i=1
then there exists a solution u € K of IVP (1.1)), such that

lu(t) —v(t)| <w(t), t > 0. (2.5)
Definition 2.10. We say that IVP (1.1) has the generalized semi-Hyers-Ulam-Rassias stability in a cone K of a

Banach space FE if it has the following properties:
There exists ® € C (R*,RT) such that for every positive function ¢ € L% (RT,R") and v € K, if

i=N
- Z Dy (dp, (h- (9:0))) (8) + Dgi™? (8:0) (£) + plt, v (8) + q (1) f(E,0()| < ¢ (1), (2.6)

then there exists a solution u € K of IVP (1.1)), such that

lut) —v(t)] < @ (¢ (%)), t>0. (2.7)
Remark 2.11. Assume that the function ¢ is bounded and IVP (1.1)) has the generalized semi-Hyers-Ulam-Rassias
stability. Then the constant function ¢ = ¢ € LY (RT,R") and so, IVP (1.1) has the semi-Hyers-Ulam-Rassias
stability.

Let F be a real Banach space defined by

F = {u € C(R*,R) : sup |u(t)] < oo}
x>0
equipped with the sup-norm ||ul|, = sup,cr+ (|u(t)|) and P the cone in F defined as

P={ueF:u(0)=0andu(t) >0 forallt € R"}.
For k € N* given in (|1.3), let E be a real Banach space defined as

FCE= {u € O(R*,R) : lim e *u(t) = o}

: t—o0
equipped with the norm ||-||, where for u € E, |lul| = sup,cp+ (e7* |u(t)]), and

K={ueE:u(0)=0andu(t) >0 forall t e R"}

be the cone of E.
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Lemma 2.12. [I0] A non empty subset M of E is relatively compact if the following conditions hold :

1. M is bounded in F,
2. The set {e‘ktw u € M} is locally equicontinuous on [0, +00), and
3. The set {e‘ktu, u € M} is equiconvergent, that is, for any given € > 0, there exists A > 0 such that

—kx R —ky
e "u(x) ygrfooe u(y)| < e,

for any x > A, u € M.

3 Main results

We consider the operator T : E — C! (R*) defined by

1 1
Tu(z) = —— | = (19777 (6u) + I S
uw) = s [ s (1577 G+ 7 ) + () )
where ) = ¢~ : R — R s the inverse function of sum of p;-Laplacian operators ¢ = Zijlv Gp;, with ¢p, (z) = |2 Pi=2 g
and v, is the inverse function of ¢p, .
Remark 3.1. Let p~ = min {py, p2...pn} and p™ = max {py,p2...p5 }. Forall z > 0,7 € {1,2...N}
bp. (¥) < ¢ (2) < N.p™ (2)
where @) if
4 () ifx>1
¢(”‘{ayw@ if r<1
and so, we conclude that
ot (5) S @) <y @) (3.1)
N/ — — 7Pi
where
er(x):{ Upt (%) ?fx>1
N Yp— (%) ifx <1
Moreover, for x >y > 0,
Yp (x+y) <Pp(2) + 95 (y) ifp>2,
2-p (3.2)

3.1 Existence and asymptotic stability results

For p € {p1,p2...pN}, let

A, (p) = sup <I§I P (8) + 1557 (% Mnaer™ "+ (A4 5) q)) 7
n=1

x>0
where r > 0 is the constant given in (1.2)). Hypothesis (1.3) gives that that A, < co.
Lemma 3.2. u € C* (R") is solution of IVP ([1.1)) if and only if u is fixed point of T’ (i.e Tu = u).

Proof . Let u € E be a fixed point of T, then u € C! (RT), u(0) = 0 and
& (ha') () = T2 (5au) + T2 (plt,w) + 0.F () (1
then it follows from Theorem [2.3] that

D% (haa!) (1) = D" 187 (6:0) (1) + plt.w) + . () (1) (3.3)
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The continuity of the function ¢ — ¢ (t) .u (t) gives that

lim (Igi‘w)“‘ﬁ)’” (5.u)> () =0

t—0t

and so

a,w,0 ra—p,0 a,w,o Tae—p,0 Nea W, (U(x))gil 1— l1—a),0
Do Loy ’ (Ou) = Dy Iy ’ (I(?+ D§+ (5-U)+W (Ié+ @)= (5u)> (0)
Do 1o (Igfpgw (5.u)> = DO (D{f:"” (6. u))
= DJ7 (6u)

then equation (3.3)) means that u is solution of IVP (1.1).
Conversely, it is easily to show, by a direct calculation, that the solution u of the IVP (1.1)) satisfies the equation
u = Tu. This completes the proof. ogd

Lemma 3.3. Assume that Hypothesis (1.2)) and (1.3) hold true.
Then the operator T : K N B (0,7) — K is compact, where r is the constant given in (1.2)).

Proof . -
Let M, =T (£,), where Q, = K N B (0,r) and set

Aou = g(x).Tu = /O-T ﬁ (Igfﬁ’g (6.u) + 1577 (p(t,u) + q.f(., u))) (t)dt.

We show that the set M, = T (€,.) is a subset of E. Let u € Q,. The continuity of the functions g,, f (.,u) and
p (., u) and Hypothesis (|1.3)) make that

% ( 10757 (.a) + 1957 (p(t, ) + q.f (., u))) (t) € Lioe (RT)

and so T (Q,) C C(RT,R).

For x > 0
eka
e FTu(z) = g(x)/o ﬁ o Ba(du)—FI 7 (p(t, u)—|—q.f(_,u))> (t)dt
Bikm . n=m
= 9(z) Jo ﬁ (Ia_ (%ﬂ@ﬂﬁf[ ;nn,k(ﬂk)n+>\qak+eq) >(t)dt
—k;r x
< W (A ) S | %

and from Hypothesis (1.3) leads
lim e % Tu(x) =0,
r—+00

thus M, is a subset of.E.
We show that the operator T : €, — E is continuous. Let v € £, and (up)p C 2, a sequence such that

lim u, = u.
p——+oo

We condider the operator B : 2, — E defined by
B (u) (t) = Ig7 77 (Su) (8) + I537 (p(w) + ¢.f( w)) (£) -

For x >0
—kx

—kx —Tu(x € TL
e Tuw) = Tuy(o) < S [ m,

x e—kt
< | s 0

IN
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where
Ep ) = | (B(up) () — ¢ (B(u) ()]

C= 221;}8 {¢ (Ing_BJ (A ) + I(()era (% n,k- r+ q >‘T + 6))) (t)}

IA

and
lim ¥, (t) =0, for all £ > 0.

p——+oo

e—kt

As m € Ll (R-‘r) 5 then

e—kt

|Tu — Tuyl|| < /0 mzp (t) dt.

—kt C —kt
with iizp (t) < —=

that

€ L' (R*). Thus, we deduce from the Lebesgue’s dominated convergence theorem

lim Tu, = Tu,
p——+oo

proving the continuity of T'.

Now, we show that M, is relatively compact.
First, we show that M, is bounded. Hypothesis (1.2)) and inequality (3.1) of Remarklead that for all i € {1,2..N}

e—kw " n=m
RCIE - o (fo+ " (o) + 13 KZ ”nuak)”wm“q) )W

e ke v dt
< M) S [

this is for all x > 0, where i, (s) = e **u(s) € [0,7]. Then

ITul) < R =y, () Ar (02) .sup{em J1s

x>0 g(.]?)

proving the boundeness of M,..

—kt
Let by <ty < tg < bo, by,be € RT and set w(t) = Z(t) . For all u € Q,. we have
|e_kt2Tu (t2) — e~khiy (t1)| = Jw(ta)Aou (t2) — w(ty)Agu (t1)]

w(tz) [Aou (t2) — Aou (t1)| + Aou (1) [w(tz) — w(t1)]
’LU(tQ) |AOU (tg) — Aou (t1)| =+ ekbzR |w(t2) — w(tl)\

IN A

with

wlta) Ao (02) = Ao ()] < i) [ s (15777 G+ T l0) + () )

wtt) [t (1575 (Sete) + 5 ptt ) + 0. (i + ) 0

w(t) by, () Ay (). / 2 h‘f’;)
2 gt
. h(t)

IN

IN

IN

w(b). Wy, () Ar (pi) -

Because that w and z — fo h;l(tt) are uniformly continuous on compact intervals, the above estimates prove that

{e Ftu,u e MT} is locally equicontinuous on [0, +00).
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Now, let u € Q,, z € R*. Fory > =

le™™T(u) (z) — e ™T(u) (y)| < w(y)|Aou(z) — Aou(y)]
+Aou () [w (y) — w ()]
Yodt

wwywxnmwmjmmw

_1‘

IN

w (y)

w (Y)Y, (r) Ar (pi) - /Oy %

+w (x) . Au (z)

IN

+w (@) 4y, () Ar (pi) - /O"“’ h(Z) mi; - 1’
then
e MT(u) (z) — yﬂrﬂm eMT(u) (y)| < Uy, (1) Ay (pi) ylggow ). /Oy h(z)
+bp, (1) Ay (i) w () ;‘Z)
with .
xll}f_ir_loow z) 0) =Y

so, the equiconvergence of {e’ktu, u € MT} holds. By Lemma we deduce that M, is relatively compact.

Finally, we have from hypothesis (1.2) and (1.3)) that for u € §, the functions q.f(.,u),n.p(u) and d.u are positive,
and so T (KN B(0,7)) C K.
Proving our claim. [

Remark 3.4. For u € K and x > 0

BEWE) = g [ 7 O0@ -0 w0
= N Gnl) 10/ c@)—oc@)* P o) - )’ (u
— et [ W@ - @) - o (0) )
< v(@) I (u) (@)
where
@) = 1B (g )
I'(a)
and so
1 1 a—pf,0 a,o
Tu(w) = Wx)/o oG (1875 (Gan) + 132 (0 w) + 0.5 () ()t
< i #ﬂw (Ig‘;ﬂ”’ (8aw) + v (1) I (p(.,u)+q.f(.,u))) (t)dt.

Consider the condition
there exists ¢ € {1,2...N} such that

;— 2
% 1 Tt -1 (34)
Ar (pz) S rPi (SUP g(x) fo W) ’

where 7 > 0 is the constant given in (1.2]).
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Theorem 3.5. Assume that Hypothesis (1.2)), (1.3) and (3.4) hold true.
Then IVP (1.1) admits at least one positive solution.

Proof . Let u € KN B(0,r), for x >0

—kx e ke (T ] a—p,0 a,0

ETu) = S / i (15777 00 + 1357 (ple) + 0.7 ) ) (e
gt

ol X0k

A
<
&

=
S

then
[Tull < [jul .

We have that the compact operator 7' maps the closed bounded convex set K N B (0,7) into itself. So, Schauder’s
fixed point theorem guarantees existence of a fixed point u of T', which is a positive solution of IVP (1.1). O

We consider the following hypothesis

There exist 7 : RT — R*, 7 >0 and i € {1,2...N} such that for all (¢,z) € R% x (0,7]
p(t,eka) + q.f(t,eMx) < (t).z and for all i € {1,2...N}
2 pi (3.5)

(r)pi =1 sup{ S Ji et (16577 (8) + v () 15777 (m) (9t} <1

Theorem 3.6. If Hypothesis (1.2] , and . hold true, then IVP admits at least one positive solution.

Proof . Foru e KN B(0,r)

Tu(z) = g(lx)/ox % (Igfﬂ’g (0.u) + 1577 (p(.,u) +q.f(.,u))) (t)dt
1 [® 1 o o
< m/o mw (I(H A (0.u) +v(t) Iy B (p(.,u) +q.f(., u))) (t)dt
and then

8
‘ -

e M Tu(z) <

0 (15777 () + v (O 1577 (00 w) + 0. f () ) (D)t

=
—~

t

0 (0 (7 1577 G 4w (1) 6 () 577 () + 0.0 (2 w)) (00

IN

S

—~| 1

sz
o\o\&o\

?\

|

: g_(:r): ”” ﬁ pi (Ia BU( k- “) £) &, (7)) 15777 (p(., ) +q.f(.,u))) (t)dt
< S [ e (507 () 0 00 ) 5 ) 0

—

< mpi—1 sup {;_(:j; /O ’ %%i (155 (5) +v () 15777 () (t)dt} <r

So, Schauder’s fixed point theorem guarantees existence of a fixed point v of T, which is a positive solution of IVP

). oo

Now, we consider the following hypothesis

There exists a function p : RT™ — RT, such that for all ¢ > 0, if z,y € [0,r] then
!f (t,e"z) — f(t,eMy)| < p(t). |z —y| and (3.6)
lim fo h [Ia B (5k) + 15 (p + > ﬁn,k.m“"_l)} (t)dt = 0,

T—r—+00 g(:z:
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where r is the constant given in hypothesis (|1.2)),

1

At) = — |
v ZZ?’ (pi — 1) (1 (N; (£))) P2

with
N (t) = 1070 (§k.r) &)+ I O k™ + (Ar+€).q) (t), ifl<p <2
(1) =
157 (q) .min { f (t,z), (t,x) € RT x [0,err]} if p; > 2.

Let B : K — FE the operator defined as
Bu (1) = Ig7 77 (8.u) (8) + 1557 (p (- u) + q.f (u)) (1)

Theorem 3.7. Assume that Hypothesis (1.2)), (1.3) and (3.6) hold true, and one of the conditions (3.4) or is
satisfied.
Then the positive solutions of problem (I.1)) are locally asymptotically stable in K.

Proof . We have from theorems and that T admits a fixed point in K N B (0,7), which is a solution of IVP
(1) in B(0,r).

Now, we show that the solutions are locally asymptotically stable in K. We assume that u,v € K N B (0,r) are
solutions of IVP (L.1). For x > 0, we have

) = vla) = Tu(o) ~ Tolo) = / ' i (0 (B) = v (Bo) ().

Then there exists a function x € [min (Bu, Bv), max (Bu, Bv)| such that

(w=v) (@) = /I(t)fu (1)) (I&“’*“(a.(ufv))) (t)at

+/0 R O) (157 (0 (w) —p (o)) (1)t
N /0 % ) 1527 (q- [f () = f (o)) (¢) dt
where 1
Alx(®) = =

For w € {u,v} and t € [0, ]

Bw(t) = I}N"7 (6w)+ (Znn +qf(tw)>

1070 (5 )+I§;" (Z +)\qw+qe>

IN

Ig‘;ﬁ’”(A )+I§‘;’<Z +q()\r+e)>

IN

and
Buw (t) > 1§37 (¢-f (t,w)) > 1§37 (¢) - min { f (¢, ) ,t,x > 0},

where 0 (s) = e *w (s) € [0,7].
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Then inequality of hypothesis (3.6)) gives for x > 0

=l (@) < g(lx)/oxh(lt)A(X( D (1777 6 fu = o) + 157 Ip () = p ()] ) (1)t

+g(1x)/ %A(x(t))fgf(q (f (ow) = £ (o)) (1) dt

< ﬁ OI %A(t) (Igﬁ” (d-a—01) + 1527 (tinnn (r)" 1|uv|>> (t)dt
+£) / ’ %A(tﬂgf (p.la— o) (1) dt

< ﬁ OI %A(t) (13; (dr) + 152 C_jnnkn (r) >>(t)dt
ot [ A I (o)

< g(;) Om ﬁA(t) (15 27 (8) + 15 (i:jﬁkn (r) ‘1>> (t)dt
s ’ AW I () (@)

where

At) = — |
v ZZ{V (pi — 1) (v (IV; (t)))(m—z)

and from (3.6) we conclude that lim, o [(u —v) (z)] =0. O O

Remark 3.8. Assume that for all » > 0, (1.2]), (1.3) and (3.6) hold true and one of the conditions (3.4]) or (3.5) is
satisfied then IVP (|1.1)) is asymptotically stable in K.

Now, we assume that f : Rt x Rt — R is continuous and there exists a bounded function ¢; : RT — RT and
€o > 0 such that for all z,¢ >0

0< ft,x) < g1 (t) .z +eo (3.7)
h,d and ¢ are locally bounded and do not vanish identically on any subinterval of R and
Len (R*,RY) /m s se L (R*,R") and n,,q € LS (RT,RY) (3.8)
h loc ’ ’ 0 h(s)g (S) ’ o ) n o ) )
p” <2< m+1<pt and
AGH) = { Is o (1577 ) + 157 G+ 0.90) ) (Dt iEm=1 (3.9)
Iy m ;(t)z/)p+ (1557 (nm)) (t)dt if m > 1.
Let
Bou—Ig‘+ﬁU d.u) Igf(Znn +4q.( gl.u+eo)>7u€P.

Remark 3.9. If the conditions (3.7)) and (3.8)) are satisfied then the operator A : P — F defined as

g(x (t)

is completely continuous and fixed points of A are solutions of IVP (1.1). Moreover, for all u € P and all p €
{p1,p2..--pn}, we have

Auo) = 5 [ i (1577 60 + 157 (0 + () (0

11 a—B,o a0
Au(w) < o / e (557 G lluly) + 1557 s ully) + - (- ully +0))) (D, = 2 0.
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Theorem 3.10. Assume that the conditions (3.7)), (3.8) and (3.9) hold true, then IVP (|1.1)) admits a positive solution.

Proof . We use Lemma we show that there exists r > 0 such that for all w € 9B (0,n) N P
[Aully < fully-

We assume on the contrary, that for all n € N* there exists u,, € 0B (0,n) N P such that || Au,||, > ||un]|, -

1 o— (e o0
Auy(z) < g( )/ (t>¢p+ (IO+ - (0. ||un||o)+10¥ (p(-’\lunllo)Jrq (91~HunHo+€0))> (t)dt
| aw 7T (757 Gut=m) 8 o) + - gm0 ) (@)t >0
then m
Al < [ g™ e (5757 (6017 4 B () + 0 g + ) ) (e
nig — 0 h.g(t) P o+ nm o+ ) - \91- 0
then m
e 1 1 a—p,o —m «@,0
ws [ L (1707 )+ L ) i ) (0
and so,
pr—1-m
1<n Cpt-1 / h (IO‘ P (gnt=m) + —mfgf( (,n)+q. (gl.n+eo))> (t)dt. (3.10)

By passing to the limit in (3.10]), we obtain the following contradiction

1< tim [ g, (Ig‘f"’ (6n1=™) 71&”( (on) +q. (91~n+60))> (t)dt = A (pT) < 1.
n—oo Jo  h.g(t)

Thus, we conclude that there exists r >> 0 such that IVP (1.1 admits a positive solution u in B (0,7)N P. O

Now, we consider the following hypothesis

There exists a function p; : RT™ — RT, such that for all £ > 0, if z,y > 0 then

If(t z) = f(t, )| < p1(t). ]z —y| and (3.11)
Jim s [ sy (0 [ (15757 6) + 152 (o1 + 0= em) ) (0] de = 0,
v(t) = !

(=D @H-@)"

and

YT = 1577 (8) () + Iy (Z M+ (I91] + €0) - ) (t).

Theorem 3.11. Assume that Hypothesw . and - hold true.
Then solutions of problem (|1.1)) are asymptotlcally Stable in P.

Proof . For u,v € P solutions of (L.1)), Let » = max {1, ||u]|,||v]|}. By using the same arguments as in proof of
theorem we have for z > 0

uol(@) < o [ A (15 G o) 4 1 ) - (o) (0
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where
_ 1 1

A t - n S — I’
" SN i) W) T pm =) w(x ()
and x (t) € [min (Bu (t), Bv (t))]. For w € {u,v},t >0

Buw(t) = I5777 (0w)+ 157 (p(w) + ¢.f (w)) (1)
< ISP+ I8 (0 () + a (g1 + €0)) (1)
< AT ()

Then

= ) (t)
@) () s _
S / o o @l v =S (oD @ dt

@) < ST ) (15 6 )+ 25 ) = )

N’(ZE)E) [ 08 @l = P @) a

< W Om ﬁy(t) (13;547 (0. |u—v]) + I <7§nnn- (" Iu—vl>> dt
N (";?()) | i Q1 Goulu ol (1) a

.o (rg”&))(”) /0 ' %v(t) (I&‘ﬂ’" (6) +I%° (Ej - (r)“)) (t)dt
NaC <T;E;>)(2_p) [ i 043 o0

o <w(;’("x>) ) 0’” %m) <z§:"°(5>+1§f (gnm»(t)dt
R (;’(72;(“_) [ oy ® 15 (o) )

leading to

The proof is finished. [J

3.2 Hyers-Ulam and semi-Hyers-Ulam-Rassias stability results
We consider the following conditions
pt>m+1,
A (M) =[5 g et (Iéi_ﬁ’” (0) + 157" 2n=i" mm +a (g1 + eo))) (t)dt < oo and
A(pH) = { J5* gt (16777 (0) + 157 ( + 0.90) ) (B)dt itm =1
I mam et (1087 () (t)dt if m>1

(3.12)
< 1.
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Remark 3.12. Assume that the conditions (3.7) and (3.8)) hold true. If (3.12)) is satisfied then (3.9 also holds, and
from theorem ([3.10)), we deduce that IVP (1.1) admits a positive solution.

In the following lemmas, we give a priori estimates for solutions of IVP (|1.1)) and for inequalities and ((2.6)).

Lemma 3.13. Assume that the conditions (3.7)), (3.8]) and (3.12)) hold true.
If u € P is solution of IVP (|1.1)) then

t-1
[ullg < R (p") = max ¢ 1, (44 (p+))p+ —1-m

Proof . Let u € P be a solution of IVP (1.1)) and assume that ||u[|, > 1. Let g > 0 such that u(zo) = ||u||,. We have

u(wo) = g(io) /OI %w (16777 () + 157 (0 (o w) + af (- w) ) (el
< / K ra @ e (16777 () + 155 (0 () + g (g1 + o)) ) (D)t
< e (Jull]) / " ﬁ@)w (IS‘W () + I (Z o+ 2 (g1 + >>> (1)t
< (Julg)Pt —1 A (p*)
thus
_pt-1
ullg < (A1 (p ))p+ —l=m <R(p*).
O

Lemma 3.14. Let ¢ € L% (RT,R™) be a positive function and let v € P such that

]‘ * 1 a—[3,0 a,0
o@) < s [t (6777 00 + 17 @ (o) +af (o) +9) (1)
then
-1
lollg < Fye () = max { 1, (A (p*,)) PT =1 =m (3.13)
where

As (v, ¢) = / %(t)w,ﬁ (Ig:ﬁ’“ (6) + 127 (i Mo+ 4 (91 + c0) + w)) (t)dt < .

n=1

Proof . Let xo > 0 such that v(z¢) = ||v[|, and assume that |[v||, > 1. We have

o) < s /Ox‘),l(lt)w(fgﬁ”(av) 15 () +af (o) + ) (e

[ gyt (16777 6004 157 () g or0 +- )+ 9)) (0

Gy (lull?) / ° fm% (Ig‘ﬂ*’ (0) + 17 (i e+ ¢ (g1 + €o0) + <P>> ()dt

IN

m

(lullo)P™ =1 As (o, ¢)

IN
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thus
-1
lully < (A (pF,9))PT —1 =7 < Fpi ().
O

Remark 3.15. Assume that v € P verifies

‘ Z Do ') (8) + Dgi7 (d0) () + p(t, v (1) +q (1) F(t,0(8)| < @ (1),

Let 2 (t) = — 3202y Dot (dp, (hv")) () + DS (6.0) () + p(t, v (£)) + q (8) f(t,v(t)). Then

- / ﬁ (16777 (60) + 15 (0(t,0) + a.f(,0) + 2)) (D)t

Theorem 3.16. Assume that the conditions (3.7), (3.8) and (3.12) hold true. Then IVP (|1.1)) has the generalized
semi-Hyers-Ulam-Rassias stability.

Proof . Assume that v € P, ¢ > 0 such that

=3 Dg (s (R (90))) (1) + D™ (80) (8) + plt, v (8) + q (1) f (1 0(2)

i=1

i=N
‘ <p(t).

Let ( ) _ Zz ND04 w,o (¢pl (]’L (g.v)/)) (t) + ngrw,o (51}) (t) —|—p(t,v (t)) + q(t) f(t,v(t)). Then for z > 0, we have
2@ < o (@) and o
- @/o g (5077 @)+ 57 0l 0) + 0. v) +2)) (e

Let u € P be a solution of (1.1)). For = > 0,
) = o) = 5 [ i 0 (Bu) — 0 (B4 2)) () d

where Z = 1777 (z) . It follows from lemmas and || that u, v € [0,IL,+ (¢)] , where

IL+ () = max {R (p¥),Fp+ ()} > 1.

Let w € {u,v}. We have

Bu(t) = Ig777 (8aw) + Ig:7 (n:m M- (W)™ + q.f (¢, w))
n=1
< Ig:ﬁv‘f (dw) + Ig;” (n:m M- (W)" + q. (grw + 60))
n=1
< (M ()™ | I9777 () + I <T§En N +q. (91 + 60))
n=1
Then

ju() — (@) < —— / T L (Bu) + iy (Bo)+ e (12])) (0) de

g() (t)
= %/0 hgt) (Upt (Bu) + s (Bv) + by (1537 () () dt

IA
BQ
&
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where

B(r)= / ' ﬁ (240 (G () + s (12 (¢))) (2) dt,

and

n=1

G () = (s ()™ [1816’” (0) + Igy? (i T +q. (g1 + 60))

Thus, IVP (|L.1)) has the generalized semi-Hyers-Ulam-Rassias stability. O O

Corollary 3.17. Assume that the function o is bounded and the conditions (3.7)), (3.8) and (3.12) hold true. Then
IVP (1.1) has the semi-Hyers-Ulam-Rassias stability.

Proof . It is the direct consequence of the theorem [3.16] and remark 2.11] O

Now, we consider the conditions

l<p  <2<m+1<pt,

A +\ [ 1 Ia—B,o 5 i n=m d 1 (314)

L) = 5 e (15777 0)+ 107 (S0 o+ 4. (91 + ) (Dt < 1,

and
There exists a function g3 : RT — RT such that for z > 0
(e (Bo (1) ()" 19
= 1 o P a—p,0 «,0 n=m
==/ o ) (IO+ (0) + 1577 o=y M-+ q.gg)) (t)dt <1
where

By (1) = I5777 (8) + I53° (p (, 1) + ¢ (91 + €0))

Theorem 3.18. Assume that the function o is bounded and the conditions (3.7)), (3.8, (3.14) and (3.15]) hold true.
Then IVP (L.1) is Hyers-Ulam stable, with the Hyers-Ulam stability constant

1- A (pY) )1 o ik (e Ow) (0)°77 157 (1) (1) dt

M= maxq 2 <f0°° i e (g7 (1) (Ddt ’ (- —1)

where vo
157 (1) (t)

bpt (fooo #(s)%?+ (I((Jlf (1)> (s)ds) .

As(t) = Bo (1) (t) +

Proof . The condition (3.14)) means that (3.9) holds since
ApY) < A (Y <1,
and so, we deduce from theorem the existence of positive solution. Now, let v € P, € > 0 such that

i=N

=Y Dy (b (B (g0)')) (B) + DG (8.0) () + plt, v (1)) + ¢ (8) f (1 0(1))

i=1

< €.

First, we show that

oy < 20 = max {1, 250 7 (13 ) ).

Let
=N
z(t) =— Z D7 (¢, (b (gv)')) (8) + Dgi>? (8.0) (£) + p(t, v () + q () f(£,0(1)),
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then |z (z)| <, for > 0. If ||v[|, > 1:

v(z) = le) /Oz %w (ngfﬁﬂf (0v) + 1537 (p(t,v) + q.f(,v) + z)) (t)dt
< / 91( v (13;@,0 (0.0) + I537 (p(t, v) + q. (g1v + €0) + 6)) (t)dt
< /x 1( ) (Igfﬂﬂ (6. HUHO) + Ig‘f’ (p(t, ||”UH0) +4q.(n Hv”o + 60))) (t)dt
+/0I gl( )¢p+( 47 (€)) (t)dt.
lollp <

U <||v|\0 [ e (15777 0)+ 1557 006 1) 4. (01 + ) (0

[ e U () e

The conditions p* > m + 1 and (3.14) make that

1 o0 1
v <
| ”0—1fA1<p+>/o hg(D)

U (1557 (€)) ()dt.

Thus,
[vllp <X (e)
Now, let v € P be a solution of (1.1). It follows from Lemma and condition (3.14)) that
l[ull < R(p+) =1

We distinguish two cases.

Case 1. If 1 i/’;Z © fo hg 7 ¥pt (1557 (1)) (t)dt < 1, then max{||ull, . ||lv|lo} < 1. In other hand, for z > 0,
1 1
ue) = vle) < o [ s (Bu) — 0 (Bo+ D) (s
< [ ol (Bu) — v (Bo) (1) dt
o h.g(t)
+/0 L( [ (Bv) — b (Bo+ 2)| (t) dt.

So, there exist (x1, x2) € [min (Bv, Bv + I3 (€)) ,max (Bv, Bv 4 I3’ (€))] X [min (Bu, Bv) , max (Bu, Bv)] such that
fort >0

1
Bv) — ¢ (Bv+ Z)|(t) < , 557 (e) (¢
PE B A0 S e e T a9
1

< oo BT @) @0
< oo O B+ @) 5 00
and
(B0 =0 (Bo) € == )(11/)( B
< (p_l_ [ B |Bu- B
< L e (B )] |Bu— By
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with
|Bu—Bo|(t) < I577 (0 Ju—v]) (8) + 1527 (Ip (- w) = p (5 0)| + ¢ |f (ou) = £ (L)) (B)

[lu =l lféiﬁ’” (0) (1) + 153° ( > o (max (u, v))" ™ +q.93> (t)]

llu = wlly [ISZB" )+ 1537 ( n+qgs> )] :
n=1

16 (Bu) — o (Bv)| < B Bo W @) 7 [13‘:‘*’” (6) (1) + 12 (i - q,g3> <t>] —
n=1

IN

Mu

IA

This means that

(= =1
Then
||7,L - U” ¥ (w;n+ (BO (]‘) (t)))Qip_ a—B,0 a,o "~
lu(z) —v(z)] < = 1; /0 X0 [fm B7(8) (1) + Is (2 N1+ q.gs) (t)] dt
T 1 a,o 2—p a,o
[ ey (e (B )+ 17 @) (0)"7 I (0 (0
Hypothesis leads
€ o0 1 .o 2—p o,0
=l < G ) g e Bo W+ 1 @) ) I @) 0
€ ° 1 2—p a,o
< T g e M) @
< Mee.
Case 2. If Yy (€ ( f Up+ (1537 (1)) (t)dt > 1, then
: 1— A 0 hg(t) p 0+ ’

1—A;(ph)

+ (0 ) 0= © b
€> oy (0) Jo" ikt (127 (1) (D)t

and so, for x > 0

prr (6) o 1
IR Gy e (5 W) 0

2.4p+ (€) <1 oo
1-A (p+)/0 YOk (1637 (1)) (1)t

u(2) — ()]

IN

IN

( 1- A (ph) )1"’
I g(t 3 Upt (Ig37 (1)) (t)dt
eM

IN

The proof is finished. [

Example 3.19. We consider the problem

{ —(%;;(V) D7 (¢, (e (gw)')) () + DE7 (8au) () + 26 (£) u(t) = 0, t > 0, (3.16)
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t
with ¢ (z) =2+ |z|. 2,0 (t)=1—e P and g(t) = %, where

a > 2sup {151"7"(1) (t) + \/I“ B + I3 (2),t>0}

1 2
- 2\/F(a—ﬁ) T

and

1 ds
— + 3
h € Lloc (R 7R ) IB_,'_OO g(x) fO h( )

the functions 6, 7,, and ¢ are continuous, positive and bounded.

We get f(t,z) = x, ¢ = 6, p(t,x) = d.x. Hypothesis (3.8) and (3.7) hold, since o is bounded, with ¢¢ = 0 and
g1 (t) = 1. Moreover,

=1 < oo, and

o ()P o ()"
e 0 =0 e o =

and

2:m+1<p+:37 g1 =g93=1,

8 = [ e (15 @+ @) 0ar = VaE [ L (15 )+ 1 @) 0

S
Il

+

wo= [ (@ en) (<5 [T (157 0 g @) @<

0 2

where 67 = sup {d (t), t > 0}. Then the conditions (3.7), ( . 3.14) and (3.15] - hold when 6+ < 2. Thus, we deduce
fom theoremmthat for all 6 € C'(R*,[0,2]), IVP (3.16) is Hyers Ulam stable and so, it is semi-Hyers-Ulam-Rassias
stable.

4 Conclusion

In this work, we have discussed about the existence of the positive solutions of Hilfer fractional IVP (1.1]) involving
a (p1,P2.--Pn)-Laplacian operator. Also, we presented sufficient conditions for the asymptotic, Hyers-Ulam and semi-
Hyers-Ulam-Rassias stability of mentioned IVP ([1.1)).
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