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Abstract

In this paper, we introduce a new subclass of analytic and te-univalent functions in the open unit disc associated with
the operator ’TC)"p 1 which is defined by using the (p,q)-derivative. We obtain the coefficient estimates and Fekete-
Szegd inequalities for the functions belonging to this class.The various results presented in this paper would generalize
and improve those in related works of several earlier authors.

Keywords: bi-univalent functions, coefficient bounds, Fekete-Szegd inequality, Hadamard product, (p,q)-derivative
operator, te-univalent function

2020 MSC: 30C45, 30C50, 05A30

1 Introduction

Let A denote the class of all functions of the form
) =2+ anz", (1.1)
n=2
which are analytic in the open unit disc U = {z € C: |z| < 1}. Further, by S we shall denote the class of all functions

in A which are univalent in U.
For the function f given by (1.1) and ¢ € A given by

((2) =2+ bp2", (1.2)
n=2
the Hadamard product (or convolution) of f and ( is defined by

(f*Q)(2) =2+ Y anbn2" = (¢ f) (2).

n=2
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For b, =1, n > 2, let ((2) = I(2), then (f xI) (2) = f(2).

The theory of g—calculus plays an important role in many fields of mathematical, physical, and engineering
sciences. The first application of the g—calculus was introduced by Jackson in [I7, [I8]. Recently, there is an extension
of g—calculus, denoted by (p, ¢)—calculus which is obtained by substituting g by ¢/p in g-calculus. The (p, ¢)—integer
was introduced by Chakrabarti and Jagannathan in [I0]. For definitions and properties of the (p,q)—calculus, one
may refer to [8] 27].

For 0 < g < p <1, the (p; ¢)—derivative operator for f * ¢ is defined as in [2]:

(f*C)(PZ)*(f*C)(qz)’ Zf e U* =U — {0}

(p—q)=
Dypo(f *¢)(2) = , . (1.3)
f(0), if z=0
From (|1.3)) we deduce that
Dyg(f*Q)(2) =1+ D [n,p,qlanbaz"™" (2 €),
n=2
where the (p, ¢)—bracket number is given by
p —q"
[n,p,q] = Zp" Uty (1.4)
= p" 1+p q+p" P4+t (0<g<p<,
which is a natural generalization of the g—number. Clearly, we note that [n, 1, ¢] = [n] ¢ = 11:‘7; ;and lim,_ - [n,1,¢] =
n.

By using (1.4)) the (p, ¢)—shifted factorial is given by

1, if n=0

[n’p7q]!: n )

I i, q], if neN:={1,23,..}
=1

and for any positive number ¢, the (p, ¢)—generalized Pochhammer symbol is defined by
1, if n=0

[57}73 q]n = n

=1

For the functions f and ¢ are given by (1.1) and (1.2), respectively, we define the linear operator 72)"’) 1A A
by
TC/\’p’qf (2) * Mpga+1 = 2Dpg(f % ()(2) (A>-1,0<qg<p<l,z€el),

where the function M, 4 41 is given by

A+ 1,p,q

"lz” A>-1,0<gq<p<l,zel,).
[n—1,p,q

Mpq/\+1—z+z

It is easy to find that

TP (2) —z-l—Z\I/n Lanz A>-1,0<qg<p<l,zelU), (1.5)
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where
[n,p,q]!

U, 1 =— ———
' [A+17paQ]n—1

bn, n2>2. (1.6)
We note that 720’1"1]‘ (z) — 2(f * C)/(z) as A=0,p=1, and ¢ — 17, where (f C)/ is the ordinary derivative
of the function f x ¢. Also, for A = b, = 1, we have 7;"Pf (2) = f (2).

Remark 1.1. The linear operator TC)"p 4

obtain the next special cases:

is a generalization of many other linear operators considered earlier, we

(i) For p =1, we obtain the operators
Aqf —z—|—ZfI>n 10,2"  (A>-1,0<qg<1l,z€U),

where
[, q]!

I
TN +1,q,

bna

and

’7?]”(2):: hm 7'<>‘qu —ZJrZ )\+ —————apb, 2" (A>-—1,z€U),
—1

where the operators H/\’q and T’\ were introduced and studied by El-Deeb et al. [15];

(ii) For p =1 and b, % v > 0,\ > —1, we obtain the operator

[, q]" ()" 'rw+1)
— [/\—l—l,q]n 14" 1(n—1)lf‘(n+y)anz (ZGU)a

where the operator NV, was studied by El-Deeb and Bulboacé [14]:

«
(iii) For p =1 and b, = (,’:J%}l) ,a >0,k >0, we obtain the operator

k+1 [n, q]! n
Mo ! +nzz(k+n) DL, zel),

where the operator Mgg‘ was studied by El-Deeb and Bulboaca [13];

(iv) For p =1 and b,, = 1, we obtain the the operator

—Z+Z )\+1q nz" (z€U),

where the operator J;* was studied by Arif et al. [5];

mn—

(v) For p=1 and b, = We ™ m > 0, we obtain the g-analogue of Poisson operator:

|
I)\m o e ™ [n’q] " n cU ,
Fz)i=2 Z (n—1)! [/\Jrl,q}n_la @ (2 )

where the operator Z*™ was studied by Porwal [25];

(vi) For p =1 and b,, = [%ﬁ;_l)} l,m € Z,¢ > 0, > 0, we obtain the g-analogue of Prajapat operator [26],
defined by:

TN

ql?ﬂ

1+£+Mn_1) [naq]! n
—I—Z[ T4 7 } P\+Lq]n_1anz (ze€U).
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According to the Koebe one-quarter theorem Duren [12], it ensures that the images of U under every univalent
functions f € S contains a disc of radius %. Thus, every univalent function f on U has an inverse f !, defined by

FHf@) =2 (z€0),
and )
fr = o (ol <n(Dinn = 7).
where
g(w) = fH(w) = w — agw?® + (2a3 — az)w® — (5a3 — bagaz + as)w? + --. (1.7)

A function f € A is said to be bi-univalent in U if both f and f~! are univalent in U. Let ¥ denote the class of
all bi-univalent functions in U given by (|1.1). Some examples of functions in the class ¥ are 2=, —log (1 — z), and

1—=
1 14+
5 log (172) .
Abd-Eltawab [I] introduced the concept of te-univalency associated with an operator, which is a generalization
and extension of the concept of bi-univalency. Let 82‘ P4 denote the class of all functions given by ([1.5]), which are

-1
univalent in U. It is well known that every function ’TC)"p f e SC)‘ P4 has an inverse (’7?”7 a f) , defined by

WTOPIf () =2 (2 €U)
and

) =u (lol < (TP 2 7).

-1
hw) = (T71F) () = w = Wiapw? + 200 — Wag] (1.8)
- [5\111130’3 - 5\111\1/2@2@3 =+ \113(14] w4 + e,

and W¥,,_; is given by (1.6). We note that h(w) = g(w) as A = b, = 1, where g is given by (L.7))

A function f given by (1.1)) is said to be te-univalent in U associated with the operator 7'4)"]” 7 if both 7?”9 af

-1
and (TC)"” 4 f) are univalent in U. Let Zg"p "% denote the class of all functions given by (1.1)), which are te-univalent

in U associated with 7Z>"p’q.

For two functions f and ¢, which are analytic in U, we say that f is subordinate to ¢, written f (z) < ¢ (z) if there
exists a Schwarz function s, which (by definition) is analytic in U with $(0) = 0 and |s(z)| < 1 for all z € U, such that
f(z) = ((s(2)), z € U. Furthermore, if the function ¢ is univalent in U, then we have the following equivalence, (cf.,
e.g., [9] , and [21]):

f(z) = ¢(z) & f(0) = ¢(0) and f(U) C ((U).

Ma and Minda [20] unified various subclasses of starlike and convex functions consist of functions f € A satisfying

the subordination ij(S) < (z) and 1+ ZJ]:'(S)

bi-convex of Ma-Minda type if both f and f~! are respectively Ma-Minda starlike or convex (see [3]). Many interesting
examples of the functions of the class X, together with various other properties and characteristics associated with
bi-univalent functions can be found in the earlier works (see [0, 19, 22] and others). Brannan and Taha [7] introduced
certain subclasses of bi-univalent functions similar to the familiar subclasses of univalent functions consisting of starlike,
convex and strongly starlike functions. They investigated the bound on the initial coefficients of the classes bi-starlike
and bi-convex functions. Recently, many researchers (see [4] [I1], [15] 23] 30} [32]) introduced and investigated some new
subclasses of ¥ and obtained bounds for the initial coeflicients of the function given by . For a brief history and
interesting examples in the class 3 (see [29]).

=< (z) respectively. A function f is bi-starlike of Ma-Minda type or

Earlier in 1933, Fekete and Szegd [16] made use of Lowner’s parametric method in order to prove that, if f € S

and is given by (|1.1)),
2
|as — pa3| <1+ 2exp (—1_55) (0<¢<1,peC).



Maclaurin coefficient estimates of te-univalent functions connected with the (p,q)-derivative 2755

For some history of Feketo-Szegé problem for class of starlike, convex and close-to-convex functions, refer to work
produced by by Srivastava et al. [28]. Besides that, some authors [II [I5] [3T] have studied the Feketo-Szegé inequalities
for certain subclasses of bi-univalent functions.

The object of the present paper is to introduce a new subclass of analytic and te-univalent functions in the open
unit disc associated with the operator Tc’\’p "% and the bound for second and third coefficients of functions in this class
are obtained. Also the Fekete-Szegd inequality is determined for this function class. The results presented in this
paper would generalize and improve some recent works of [3] [7, [IT], [5].

In order to derive our main results we need to use the following lemma:

Lemma 1.2 ([24]). If p € P then |c¢,| < 2 for each n, where P is the family of all functions p, analytic in U, for
which
Re{p(z)} >0 (z€),

where
p(z) =1+cz+ ez’ +e32’+.. (z€U).

2 Coefficient Estimates for the Function Class T3 (, ¢, @)

We begin this section by assuming that ¢ is an analytic function with positive real part in U, with ¢ (0) = 1,
¢’ (0) > 0 and ¢ (U) maps the unit disc U onto a region starlike with respect to 1, and symmetric with respect to the
real axis. Such a function has a series expansion of the form:

©(2) =14 Byz + Byz® + B3z® + ... with B; > 0. (2.1)

Unless otherwise mentioned, we assume throughout this paper that, the function ¢ satisfies the above conditions,
A>-1,0<q<p<l,neC—-{0}and z € U.

Definition 2.1. A function f given by (L.1) is said to be in the class TN (1, ¢, @), if the following subordination
conditions hold true:
AD,q
1 [ #Dpq (Tc (Z)>
fexM with 1+ = —1] <¢(2), 2.2
¢ n 7?’17#1 f(z) (2) (22)

and

1 (2Dyq (h(w))
1+ p (h(w) — 1) <p(2), (2.3)

where the functions ¢ and h are given by ([1.2]) and (|L.8]), respectively.

It is interesting to note that the special values of parameters A, p, ¢, 1, ¢ and b,,, n > 2, the class Tg’p’q n,¢, )
unifies the following known and new classes:

(1) ‘Sg’l’q M, ¢ ] = ‘Ig’q [, ¢, ] improves the class L'g’q [7,¢, ], which was introduced and studied by El-Deeb et
al.[15];

(i) limg_ - ‘Zg’l’q [7,¢, @] = T [, ¢, o] improves the class Gg [, ¢, ¢], which was introduced and studied by El-
Deeb et al.[15];

(i) T37 (n.¢, (£2)") =851 (1.¢.0) (0<a<1);

() TP (0, ¢ G222 ) = S (n,¢,8) (0< 8 < 1);
(v) lim,_;- i;l’q (n,I,p) =S% (n,¢), where the class S5 (1, ¢) was introduced and studied by Deniz [11];

(vi) limg_,q- Tuh(1,1,9) = St (@), where the class S5 () was introduced and studied by Ali et al. [3];
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(vii) lim,_,,- TLb (1 I,

Brannan and Taha [7 ],

)a> = S () (0 < a < 1), where the class S5, (a) was introduced and studied by
viii) lim,__,q- ‘Il’l’q 1,1, M =S5 (B) (0 < B < 1), where the class S5 (8) was introduced and studied by
q by
Brannan and Taha [7].

Theorem 2.2. If the function f given by (T.1)) belongs to the class T3¢ (1, ¢, ¢), then

|n| B1v/ B

lag| < : (2.4)
Wl\/‘n[(q—1)(p+q)+p2]Bf+(p+q—1)2(31—32)
and | | B + |By — B
U 1 2 — b1
o] < Wy {I(q—l) (p+q)+p2] (2:3)

where ¥,,_1,n € {2,3} is given by (1.6).

Proof . If f € ‘Eg’p T (n, ¢, ), from ([2.2)), (2.3), and the definition of subordination it follows that there exist two
analytic functions u,v : U — U with « (0) = v (0) = 0, such that

2Dy (TOP1(2))

TP () —1=nlp(u(z))—1], (2.6)
" 2Dy (h(w)
W—bn[w(v(w))—l]- (2.7)
We define the functions r and s in P given by
r(z) = izgz; =14 w1z 4+ w2z +usz® + ..., (2.8)
and 14+wv(z) 9 3
s(z) = T—u(2) =14+vz+vez” +v3z” + ... (2.9)
It follows from (2.8)) and (2.9) that
u(z) = W = %z + % <u2 — uj) 224, (2.10)
and . . ,
v(z) = igﬂ = %z + 3 (1)2 — 1}21> 224 (2.11)

Using (2.10) and (2.11)) with (2.1] . ) lead us to

Biu 1 u?
plo () =11 =25 | (w2 = ) B i 2

2

and

B 2 1
Do) = 1= 25k |5 (= ) Bk o2 2 4
On the other hand,
Zqu( )\qu( ))

TS (2)
= (p+q—1) Va2 + [(¢(p+q) +p° — 1) Ysaz — (p+q— 1) Via3] 2* + ...,
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and
-1 = —(p+qg—1)Viauw
+ [(2¢=1)(p+4q)+ 2p® — 1) ¥3a3 — (q(p+q) +p* — 1) Woas) w? + ...

Now, equating the coefficients in (2.6)) and , we get
nBiu;

(p+a—1)¥iaz = ——, (2.12)
2 2 2 1 ut L o
(q(p—|—q) +p° — 1) Poas — (p+q—1)Via; =17 slwe—3 By + ZulBQ , (2.13)
Biv
~(ptq—1)Viaw=" 21 : (2.14)
and )
1 v 1
(2¢—=1)(p+q) +2p° — 1) Via3 — (q(p+q) +p* —1) Va3 =1 {2 <v2 - 21> By + 41;%32} : (2.15)
From (2.12) and (2.14), we get
Uy = —U1 (216)
and
2g22_ BT 5 2
2(p+q—1)" Va5 = 1 (uf + 7). (2.17)
Now from (2.13)), (2.15) and (2.17)), we obtain
B B, — B
2(g- 1) (p+a) +22) Wi = TDL(uy )+ LI (2 )
_ 1B 2(By — Bi) (p+q—1)° U3a3
= 5 (ug +v2) + B2 )
Therefore, we have
233
- n" By (us + v) . . (2.18)
193 [nl(a—1) 0+ @) + 7% B} + (0 + 0~ 1)* (B1 - B)|
Using the Lemma [1.2] that |uz| < 2 and |ve| < 2, we immediately have the bound for |ag| as asserted in (2.4).
Next, in order to find the bound on |as|, by subtracting (2.15) from (2.13)) and using (2.16)), we get
2(¢(p+a) +p* — 1) Vaa3 — 2(q(p+q) +1p* — 1) ¥1a3 (2.19)
1 uf 1 1 v3 1
= n |:2 (U2 — 21> By + 4’U€ng| -7 [2 (Ug — 21> By + 4U%BQ:|
= gBl (UQ — ’1)2) .
It follows from (2.15)) and (2.19) that
n[(20-1)(p+q) +20°> —1] Bi (up —v2) 7 U >
—1)(p+q) +p*) Voaz = + = Bjvg + — (Ba — By) vi,
((q ) (p+4q) p) 203 gt +2 -1 o 102 4(2 1) Vi
and then,
— [(2e—1D)(p+q)+2p* -1 us+ (p+q—1)va] Bi + 03 (q(p+q) +p*—1) (B2 — By) (2.20)

Uy d(q@pta+p* =1 ((¢—1)(p+q) +p?)

Taking the absolute value of (2.20]), and applying Lemma once again for the coefficients vy, vo and us, we readily
get the inequality (2.5). O

Taking p = 1 in Theorem we obtain the following corollary which improves the result of El-Deeb et al.
[[15], Theorem 1].
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Corollary 2.3. If the function f given by (|I.1)) belongs to the class ‘Sg’q (n,¢,¥), then

|(l2| < |77|Bl\/Bl
= qU1\/|nBf + By — By
and |
las| < q;ZI/z [B1+ B2 — Bil]

where ¥,,_1,n € {2,3} is given by (1.6).
Taking ¢ — 17 in Corollary we obtain the following corollary which improves the result of El-Deeb et al.
[[15], Corollary 1].

Corollary 2.4. If the function f given by (1.1]) belongs to the class T3 (9, ¢, ¢), then

|n| B1v/ B

|a/2| S 5 9
U1+/|nB} + By — By

and

\a\<'”'[ By +|Bs— Bl .

where ¥,,_1,n € {2,3} is given by (1.6).

Taking ¢ (z) = (22 ) =14 2az+2a%2%2 + ... (0 < a < 1) in Theorem [2.2] we obtain the following corollar
11—z g Yy

Corollary 2.5. If the function f given by (|L.1)) belongs to the class S;)"p’q (n,¢, a), then

2|«

laz| < : (2.21)
\Ifl\/’2n[(q—1)(p+q)+p2]a+(p+q—1)2(1—04)‘
wnd ol [ 2001 +la—1)
n @ a—
\asléqj—2 L(q_l)(“q)”?'] , (2.22)

where W,,_1,n € {2,3} is given by (1.6).

Taking ¢ (z) = % =1+2(1-8)z+2(1-p8)22+... (0 < B < 1) in Theorem we obtain the following
corollary.

Corollary 2.6. If the function f given by (1.1]) belongs to the class S;A’p’q (n,¢, B3), then

2[n| (1 - B)

laz] < (g—1)(p+q) + 2|’ (2.23)
wnd 21 (1-5)
_ 20| _
las] < Uy {I(q—l) (p+q) + p?| (2.24)

where ¥,,_1,n € {2,3} is given by (1.6).

Remark 2.7. (i) Taking ¢ — 1~ and A = b, = 1 in Corollary we obtain the result obtained by Deniz [[I1],
Corollary 2.3];



Maclaurin coefficient estimates of te-univalent functions connected with the (p,q)-derivative 2759

(ii) Taking ¢ — 1~ and n = A = b, = 1 in Corollary we obtain the result obtained by Ali et al. [[3], Corollary
2.1];

(iii) Taking ¢ — 17 and p =9 = XA = b, = 1 in Corollary the inequality in (2.21)) reduces to the estimates
obtained by Brannan and Taha [[7],Theorem 2.1];

(iv) Taking ¢ — 1~ and p=n = A =b,, = 1 in Corollary we obtain the result obtained by Brannan and Taha
[[7], Theorem 3.1];

3 Fekete-Szegd Proplem for the Function Class T3 (n, ¢, @).

Theorem 3.1. If the function f given by (1.1)) belongs to the class ‘Zg’p’q (n,¢, ), then

|Z‘\I/E:1 (‘ () + (I(p+Q)1+p2 - 1‘ i ‘L(M) N q(erq)ler2 -1 ’) (31

ag — paj| <

with
15 (1 3

= (3.2)
nla=1) (p+a) +p2) B+ (p+q-1)* (BL - By)
where p € C and ¥,,_1,n € {2,3} is given by (1.6).
A\, D,q . .
Proof . If f € TZP9(n,(, ¢) like in the proof of Theorem from (2.19) we have,
L 2 nB1 (uz — v2)
as — —a5 = 3.3
W AW (g(ptq) PP — 1) (33)
Multiplying (2.18)) by (i—z - u) we get:
2p3 (Y] _
e
b2 403 [n[(q—l)(p+q)+p}Bf+(p+q—1)2(Bl—Bz)}

Adding (3.3)) and (3.4)), it follows that

a3 — pa; = Zil [(L () + Q(p+Q)1+p2 - 1) 2t (L (k) = Q(p+Q)1+p2 - 1) 02} (35)

where L (1) is given by (3.2)).
Taking the absolute value of (3.5)), and applying Lemma for the coefficients vy and us we obtain the inequality

B1). O

Taking p = 1 in Theorem3.1] we obtain the following corollary which improves the result of El-Deeb et al.
[[15], Theorem 2].

Corollary 3.2. If the function f given by (|L.1)) belongs to the class ‘Zg’q (n,¢,p), then
e (ro+ sarml+ - am))
az — pa W+ ———=|+ L) — ——F
jas = pa] < W e+ W)= T+
with
nB? (1 - %ﬂ)
L _ 1
W= hB B - B

where 1 € C and U,,_1,n € {2,3} is given by (1.6).
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Taking ¢ — 1~ in Corollaryf3.2] we obtain the following corollary which improves the result of El-Deeb et al. [[I5],
Corollary 5].

Corollary 3.3. If the function f given by (I.1]) belongs to the class T& (9, (, ¢), then

ol (AR RA AR
as — pa2| < L)+ =|+|L()—=
lag — pa3| 27, (1) (1)
with
" nB?( —@u)
(1 nB? + By — By

where p € C and ¥,,_1,n € {2,3} is given by (1.6).

«
Taking ¢ (z) = }fz) (0 < @ <1) in Corollar we obtain the following corollary which improves the result

of El-Deeb et al. [[15], Example 3].

Corollary 3.4. If the function f given by belongs to the class Ty* (77, ¢, (%J_r
% (por el o))
az — paz| < Lp)+——|+|L(p) - —
jas —paa] < S -\ [E W0+ 0D R,
with
()
= Flen-Da+1

where p € C and ¥,,_1,n € {2,3} is given by (1.6).

Taking ¢ (z) = 172[3) (0<pB<1)in Corollary. we obtain the following corollary which improves the result
of El-Deeb et al.[[I5], Remark 6].

Corollary 3.5. If the function f given by . belongs to the class ‘I)"q (77 ¢, M) then

2 (e s [0 - o)

‘a?, —uag‘ <

with

where p € C and ¥,,_1,n € {2,3} is given by (1.6).

Remark 3.6. We mention that all the above estimations for the first two Taylor-Maclaurin coefficients and Fekete-
Szeg6 problem for the function class ‘Zg’p 1(n,¢, @) are not sharp. To find the sharp upper bounds for the above
function class, it still is an interesting open problem, as well as for |a,|, n > 4.
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