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Abstract

In this article, we define a g-derivative operator of univalent functions associated with the g-exponential function.
Moreover, we introduce differential subordination and differential superordination for the subordination class defined
by this operator. Sandwich-type theorems of several known results also are derived by applying these results.
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1 Introduction

Let S be the class of analytic and univalent functions f(z) in the open unit disc O = {z:|z| < 1} with their
normalized form

f (2 :z+Zajzj. (L.1)

Let H[a, ] be the subclass of the functions f € S defined as
Hia, ] ={f: f(2) =a+az +ap2" +...}.

Next, let f(z) and h(z) be two analytic functions in O, the function f(z) is called subordinate to h(z), or h(z) is
superordinate to f(z), denoted by f(z) < h(z) and h(2) < f(z), respectively, if there is a Schwarz function ¢ with
v(z)=0, |e(2)] <1and f(2) = h(¢(2)). In addition, we get the following equivalence if the function A is univalent
in O

f(z) < h(z) = f(0) = h(0) and f(O) C h(O) (z € O).
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If f and F be two functions in S, the convolution (or Hadamard product) denoted by f * F' defined by

(fxF)(2) ::erZajdjzj, z €0,
j=2

where f is defined (1.1)) and F(z) = z + E;‘;Q djz?, z € O.
Assume that x and A in O are two analytic functions

A(r,e,;2) : C3 x O — C.
If k and A (k(z), 2/ (2), 22" (2); ) are univalent functions and « satisfies the second-order superordination in O.
i(2) <A (K (2), 26" (2),2°K" (2);2) . (1.2)

Then & is said to be a solution to the differential superordination ([1.2)). The analytic function ~ is called a subordinate
of (1.2), if v < & for every the function s satisfying (1.2). A univalent subordinate w that satisfies v < w for all
subordinate v of (1.2)) (see, [26], [27]).

Miller and Mocanu [26] discovered sufficient conditions on the functions «y, s and A to prove the following:
fi(z) <A (K (2), 26 (2),2°K" (2) 1 2) =7 < K. (1.3)

In the same methods above, Bulboaca (|7, 8]), defined general families of first-order differential superordinations and
superordination-preserving integral operators. Furthermore, using Bulboacd’s [§] results, Ali et al.[I] found sufficient
conditions for normalized analytic functions f to fulfill

2f"(2)
f(z)

where 1 and 2 are univalent functions in O with 77 (0) =1 and 75 (0) = 1.

After that, many researchers have been interested in studying the properties of subordination and superordination
(see, [21,13], [6], [12], [15], [C7), [241, [28, [29], 341, 33, I35, [56)).

Many reserchers have interested on the topic of the g-calculus (or g-analysis). The reason for focusing on studying the
g-calculus is due to its wide applications in the field of mathematical, quantum physics, and operator theory. Jackson
([19, 20]) pioneered the introduced of g-derivative and g-integral. More recently, Kanas and Raducanu [2I] (also see,
[@, 10, [13], [14], [16], [18], [31], [25], [22], [23], [32]) investigated certain classes of functions that are analytic in O
using fractional g-calculus operators.

In this article, we present a g-derivative operator Qg’fz q f(2) associated with the g-exponential function. Furthermore,
we introduce differential subordination and superordination results related to this operator. Also, we obtain some
applications of the results of sandwich-type results.

71(2) <

<72 (Z)7

Definition 1.1. [20] (i) Let 0 < ¢ < 1, the g-factorial denoted by [j],!, is defined by:

= { a0~ Bl 72128

where

(ii) The g-derivative operator with 0 < ¢ < 1, is defined by

flgz) — f(2)

Dqf(z) == (q—1)z )

z # 0.

If we let the g-exponential function e, defined by the power series expansion (see, [25])

OEDS 2 (zeo). (1.4)

27,



Differential subordination of g-derivative operator 2797

As a result

Dge(z e dqzj s 'qzjfl - <
Dq(z) :Z ile! :Z m[j]q! :Z [j—1],! :Zfzeq(z), (2 €0).

Now, for £ > 0,9 > 0,0 > 0,0 # ¢, and m € Ny, we introduce a g-derivative operator .7-"19 Uqf(z) : S — S as below

Fioof(2) = f(2), (1.5)
Form of(2) =(1 = €(0 = 0)) f(2) + E(0 — 0)2dy (f(2)) (1.6)
Ffe) = féi,q (F5ms 1) (1.7)

Then from the functions ([L.1]) and ([L.7]), we have

Fim f2) =2+ (1+&0—0)([jlg — 1) a2 (1.8)

j=2

Remark 1.2. We note the following special cases of the operator .Fg:gfq f(2) previously obtained by several authors:
1. Taking ¢ — 1, we obtain differential operator introduced by Darus and Ibrahim [I1].
2. When 9 =0 and & = 1, we get ¢-Al-Oboudi operator defined by Aouf et al. [5].
3. Let ¢ — 1,9 = 0 and £ = 1, this operator defined by Al-Oboudi [4].
4. If 9 = 0,0 =1, and & = 1, we have g-Salagean operator presented by Govindaraj and Sivasubramanian [16].
5. Let ¢ —» 1,9 =0,0 = 1, and £ = 1, we obtain Salagean operator presented by S&lagean [30].

Definition 1.3. For the function f € S, we define a new g-derivative operator Qﬁ o qf(z) :S — S as below
Qi gl (2) = Fipgf(2) * eq(2).

From the above definition, it follows that
Q5 f(2) =2+ (q)a;7, (2 €0) (1.9)

where 1(q) = (1+$(0—1[9j)}i[!j]q—1))m

From (1.9)), we show that the following relationship

Elo —0AQTT () = Q5 t f(2) = (1= &(0 = 9)) Q57 £ (2). (1.10)

The main purpose of this article is to find sufficient conditions for certain normalized analytic functions f(z) to satisfy

pym—+1 P
n(2) < {%ﬂ)} <72 (2)

and .
; b [ (2)
QYo f(2)

where 7 and 2 are univalent functions in O with 47 (0) =1 and 72 (0) = 1.

7(2) < F<72(z2),
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2 Main Lemmas

Firstly, to obtain our results we need the following lemmas

Definition 2.1. [26, 27] Let Q is the set of all analytic and injective functions f on O\ E(f), where

z—=n

E(f) = {ne@(’):limf(z):oo},
such that f’(n) # 0 for n € 9O\ E (f).

Lemma 2.2. [26] In the unit disk O, let x be a univalent function. In a domain D containing x(O), let 6 and ¢ be
analytic with ¢(u) # 0 when u € k(O). Set Q(2) = zk (2)p(k(2)) and A(z) = 0(k(2)) + Q(z). Assume that
(1) Q(2) is a starlike univalent in O.

(2) R { zg(iz))} > 0 for z € O. If p is analytic in O, with v (0) =x(0), v(O)CD and

0 (v (2)) + 27" (2) 0 (7(2)) < 0 (k(2)) + 2" (2) 0 (K (2)) (2.1)

then v < k and & is the best dominant of (2.1)).

Lemma 2.3. [26] Let x be convex univalent function in O. In a domain D containing x(Q), let 6 and ¢ be analytic

with ¢(u) # 0 when u € £(0). Let Q(z) = zk'(2)p(k(2)). Assume that

(1) 'R{(:((:((ZZ))))} >0 for z € O.

(2) Q(z) is a starlike univalent in O.

If v € H[k(0),1] N Q, with v(O)CD, 0(y(z)) + 27'(2)¢(7(2)) is a univalent in O and

0 (k(2)) + 26" (2) 0 (5 (2)) < 0(v(2)) + 27 (2) ¢ (7 (2)), (2.2)

then k < 7 and & is the best subordinate of (2.2)).

Lemma 2.4. [27] In the unit disk O, let x be a convex univalent function, ¢ € C, and R (¢) > 0.
If v € H[k(0),1] N Q and v (2) + pz7/(2) is univalent in O, we get

K (2) + pzr' (2) <7 (2) + pzv' (2), (2.3)
then, k < v and k is the best subordinate of (2.3).

Lemma 2.5. [26] Let s be a convex univalent function in O, ¢ € C, and p € C\{0} with
1
R(1+ 270N < e lo = ($))
K (2) p

(v (2) +p2v' (2) = (i (2) + p2r'(2). (2.4)
Then ~ (z) < £ (2), and £ is the best dominant of (2.4).

If v is analytic in O, we have

Theorem 2.6. In the unit disk O, let x be a convex univalent function with «(0) = 1, 7 € C\{0}, x > 0, and &

satisfies the following condition
2" (2) 7
1 ;— —_ . 2.
R( + K,(Z))>max{0, R(Tf(crl?) (2.5)

If f € S satisfies the subordination condition below

pym—+1 5 &m 2 H &m P H
’ l 19;;7;1 f( ) . 1] [Qﬂ,a,qf( ) + (1 . 7_) lQ§7g,qf( )]
Q5 1 (2) : : (26)
< k(z)+ mélo = 9) 2k (2)
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Then "

lQﬁanf()] < Kk(2), (2.7
and k(2) is the best dominant of (2.6).
Proof . Assume that u

o[l .

Since & is univalent in O and & (0) = 1.
Now, by differentiation logarithmically with respect to z, we get

/

SO £ C290 1) N I l@%’:rﬂ)ll
7 (2) Q5™ f(2) So=9) | Q57 f) |
Then u
fo =)=y (2) _ [QgalC >] l@%??ﬂ)_l] :T[Qi’;ﬁ;“f() 1} [Qﬁa,qf( >]
" : Q5 /(2 05y (2) :
Q ' 7é(o —
v >[”f”] @)+ =y o
From , it follows that
1)+ D o ) <)+ T

7 7
By Lemma 2.5, with p =1 and ¢ = w, we get (2.7). O

Corollary 2.7. In the unit disk O, let k be a convex univalent function with « (0) = 1, 7 € C\{0}, and p > 0, and

k satisfies the following condition
2K (2) o
R<1+ R,(z)>>max{0, R(;)}

If f € S fulfill the following condition

r [Qf;’:?f() 1HQﬁg,qf<>r+< >l9%,qf<>]“
o =9 | Q5. f(2)

Then

and & is the best dominant of ({2.9).

Theorem 2.8. In the unit disk O, let k be a convex univalent function with « (0) =1, ks € C\{0} (s =1,2,3,4), pu >
0, and « satisfies the following condition

R (1 + ) 4 2 ey = 2R ZM(Z)) > 0. (2.10)

K4 K4 K(2) K'(2)

Consider Z:Zi’j) to be univalent starlike in O. If f € S satisfies the subordination condition below

zk' (2)

k(2)

¢§:§l (K1, K2, K3, kg, 5 2) < K1+ Kok(2) + Ka(k (2)) 4 K4 (2.11)



2800 Hadi, Darus

where . o
oy Q
U5 (K, Ko, K, Ky 115 2) = K1+ Ko ﬂ’ogf(z)] + K [ﬂ Ujf( )]
o me(z) (2.12)
e wa_q.
5™ of (%)
Hence i
[Qﬂ”:f()] <k (2), (2.13)
and k is the best dominant in .
Proof . Taking
oy f(2)]"
v(z) = [19;1] . (2.14)

Now, by computing logarithmic differentiation with respect to z, we have

' () _ { (Qﬂ"qf(z))/ - 1] g l%?;lf(z) _

7(2) ngoqf(z) Qﬂaqf( )

By assuming 0 (w) = kgw? + kow + k1 and Q (w) = =4, it is clear 6 is an analytic in C, w € C\{0}, ¢ is also analytic
in C\{0} with ¢(w) # 0, we obtain

Q(z) = 2x(2)p(k(2)) = ka

and

fi(2) = 0(k(2) + Q(2) = k1 + Kar(2) + K3k (2))° + ki

Since @ (z) is an analytic function, we have

B (2) = kg + K (2) + 263k (2) K (2) + Ka v

then
2l (2) K2 253 o 2K (2) | zh"(2)
o T (2) + o (k2 FERITIOR
and
2 (2), K2 23 ()2 2z’ (z) 2K (2)
RO = RO+ 2k + 22 (u(a))? - 2 1 208y >0
1 (2) 4 () T = U (i),
Using , therefore
2 (2) G (Z)

K1+ k2y(2) + K3(7 (2))° + Ka < Ky + kak(z) + k3(k (2))” + k4

7 (2)
By Lemma [2.3] we get v (z) < £ (z). O
Corollary 2.9. In the unit disk O, let the condition (2.10) be satisfied, ks € C\{0} (s =1,2,3,4), and p > 0, if

V-W)z (L ve 2 1tV
(1+V2)(1+Wz) 1+ W2 1wz

with —1 < W <V <1 and 77/15’? (K1, K2, K3, K4, 145 2) defined in (2.12)), thus we get

l@oﬂﬂf<>]“ 14 V2

wfg? (K1, K2, K3, g, 13 2) < K1+ K2

2.1
z 14+ Wz’ (2.15)

and k (z) = 11:11/2\}2 is the best dominant.
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Corollary 2.10. In the unit disk O, if the condition (2.11) is satisfied, s, € C\{0} (s = 1,2,3,4), p > 0, and

0<a<l,if
142\ " 20z
K Fg——s
\1-=z e
where 1[15::,7 (K1, K2, K3, K4, 145 2) defined in (2.12)), thus we get

5] oy

§&m 1+Z «@
Vo (K1, Ko, K3, Ky, 15 2) < K1+ K2 1—2

«@
and k (z) = (}f—i) is the best dominant.

Theorem 2.11. In the unit disk O, let k¥ be a convex univalent function with x(0) = 1, ks, € C\{0} (s =
1,2,3,4,5), > 0, and & satisfies the following condition

2I<L3

R (1 22(e) + 222 + by - 2D 4 2D 2.17)

where

§m . _
1/)0,19 (H17/€27H37/{47/{57N52) = K1+ K2

05, ()", (%5 @]”
z z

Q f( ) 3p Qﬁ m+1f( ) (218)
! z
+Ky W] + K5t [ﬂq) _ 1] .
% Qe f(2)
If the function k satisfies the following subordination condition
!
UST (K1, Ko, K, Ky Bis, 13 2) < R+ Kaki(2) + k3 (s (2))? + ka(k (2))° + ks Z:(S) (2.19)
Thus, we have
Q5 "
l’gﬂ)]<ﬁw, (2.20)

with & is the best dominant of (2.19)).

In the similar way of the Theorem we can get the result.

Theorem 2.12. In the unit disk O, let k¥ be a convex univalent function with « (0) = 1, 7 € C\{0}, and p > 0. If
f € S satisfies the conditions below
m
lQM G )1

€ H[k(0),1]NQ.

z
If £mt1 Iz
n(2)+75(0u_19)2f£/(2)<7[anﬁqff(()) ] [Qaﬂgf( )]
M;U (2.21)
_ w(q)
+(1-1) l . ]
m+1 m H m K
So that 7 {QQ%Z} ff((;)) - 1] [Qi ﬂzqf(z)] +(1-7) {Qf’ﬂ;ﬂ)} be a univalent in 0. Then
w
n@<[%%fmly (2.22)

and & is the best subordinate in (2.21)).
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Proof . Taking

LG )]“. (2.23)

v(2) = [ p,

Using calculating logarithmic differentiation with respect to z, we have

/

Z’}”(z)i (Qoﬁqf(z)) 4l M Qigz;lf()il
- &(o—9) '

@ T QS I (2)

Then

£(o — 19)27’ (2) lQM mic >]
r [nggl ] [ 019,q
019,11

By (2.23)) and (2.24]), we obtain

o f () _1]
05t (2)

m

Qoﬂqf()] ' (2.24)

z

+(1- )[

—— 29 (2).

~2

k(z)+ ——2r" (2) <7 (2) + ————

We will get the result using Lemma 2.3, with ( =1 and p = w. O

Theorem 2.13. In the unit disk O, let  be a convex univalent function with k (0) = 1, k; € C\{0} (s = 1,2, 3,4), p >
0, and  satisfies the following condition

R (”%(Z) + %(H(z))2> > 0. (2.25)

Assume that 25 ) is univalent starlike in O. If f € S fulfill the subordination conditions below
w(z)

ot n
fzf()] € #[x(0).110 Q.
and (2)
it () g (5 (20)° o ma = < VS i i 16 2), (2.26)
where u 24
Q.S (2 QS (2
¢§:? (K17K27’€37K}47U;Z):’€1+H/2 ﬁ+() + K ﬂ%()
cma (2.27)
+kKq 7Q0119’q /) — 1]
Q5 (2)
Hence u
Q
K (2) < [“”9 of )1 : (2.28)
z
and £ is the best subordinate in (2.26]).
Proof . By taking
0 1
v (2) = l‘“’fm] . (2.29)
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Furthermore, using calculating logarithmic differentiation with respect to z, we have

zV'(z):M (ngqf(z))/_1 _ 1 lggvg;ﬂf()
7 () Qaﬂqf(z) §(o—19) Qo’ﬂqf()

By assuming 0 (w) = kaw? + kow + k1 and Q (w) = 4. Tt is clear 6 is analytic in C, w € C\{0}, ¢ is also analytic in
C\{0} with p(w) # 0, we obtain
V(5(2) K (2l + 2un(2)]n(2)

¢(k(2)) Ky
it is obvious that @ (w) is starlike,
V() (R 2
R((b(/{(z )) _R(/@; (2) + ot (k(2)) ) >0
Using (2.25)), therefore
1 aw(2) a6 4 ) s (2) e (22 i L

By Lemma 2.3 we get  (2) <y (z). O

Theorem 2.14. In the unit disk O, let  be a convex univalent function with x (0) =1, ks € C\{0} (s = 1,...,5), u >
0, and « satisfies the following condition

R (Z2n(e) + 22 (07 +

R4 ez K5

3/%4

(f@'(z))?’) > 0. (2.30)

Assume that Z:ES) is univalent starlike in O. If f € S and the following condition holds

m
fo()] € H[r(0),1]NQ
and ,
1+ a(2) + (s (2))7 + as (2)° + s (( )) BET (1, s K g i 152) (2.31)
where wi’& (K1, Ko, K3, K4, K5, 14; 2) defined by .
Hence w
K (2) < lgaﬂzf( )] 7 (2.32)

and & is the best subordinate in (2.30).

Proof . The proof is the similar method of Theorem 2:13} O

3 Results of Sandwich Theorem

Theorem 3.1. In the unit disk O, let k be a convex univalent function with 1 (0) = k2 (0) = 1, 7 € C\{0},and u > 0.
If f € S satisfies the condition below

[Q;ﬂ;;f()] c ’H[LH QQ'
If - )
Tg(()’ — 19) I Qo Z;l,q lf( ) - Qa ﬂ,qf ( )
k1 (2) + I zk1' (2) < (T +¢) 7ng ) 1] [z ]

(3.1)
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gomtl e &m 5 H £m . ®

So that 7 {Qg”gfif ff(( )) - 1] [Q””g’;f( )] +(1-7) {Q”;ﬂ)} be univalent in O.
o,9,q Z

Then

Emope H
k1 (z) < [%f()} < kg (2), (3.2)

z

and k1 (z) and kg (2) are the best subordinate and best dominant in (3.1)).

Theorem 3.2. In the unit disk O, let k be a convex univalent function with k3 (0) = k2 (0) = 1, ks, € C\{0} (s =
1,..,4), p > 0, and « satisfies the following condition

R (Zn(z) + t?’(n(z)ﬁ) > 0. (3.3)

Assume that Z:ES) is univalent starlike in O. If f € S and the following subordination condition holds

§m K
Q"vﬂvqf(z)] EHINQ,

z

and

K1 (2)

z
K1+ Kok (2) + k3(k1 (2))? + Ka () =< ng? (K1, K2, K3, Ky, 15 2)
1

s () (3.4)
4

K2 (2)

< Ky + koka(2) + K3k (2))? + kK

where 1/15:?; (K1, K2, K3, g, iy 2) defined in (2.12)).

Hence em u
k1(z) < [Qa’ﬂ’;f(z)] < Ko (2),

and k1 (z) and kg (2) are the best subordinate and best dominant in (3.4).

Remark 3.3. Theorem and Corollaries and can be study by using the sandwich theorem.

4 Conclusion

Given the importance of g-calculus in many branches of mathematics and quantum physics, many studies focused

on introducing new concepts by using g-calculus. Therefore, we have presented a new g-derivative operator connected
with the g-exponential function e,(z). Moreover, we studied the best dominant and the best subordinate results. After
that, we investigated subordination results in sandwich theorems.
Hence we obtained some new properties of this operator by using the subordination and superordination properties.
Other subclasses of analytic functions can also be introduced using this operator, and further investigations into
the geometric properties like (distortion theorems, coefficient estimates, neighborhoods and starlikeness radii, closure
theorems, and convexity or close-to-convexity of functions).
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