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Abstract

Many awareness programmes are suggested by health care agencies to reduce the adverse effects of swine flu infection
on society. These awareness programmes help to create fear for behavioural changes, which may control the spread
of various diseases. Several mathematical models have been studied by many researchers earlier. In this manuscript,
we suggest an SEIR mathematical model see the impact of awareness and fear on swine flu infection. The bounded
region has been carried out in which, disease-free equilibrium point and endemic equilibrium point exist. The basic
reproduction number has been evaluated to determine the local and global stability conditions around equilibrium
points. Sensitivity analysis of the basic reproduction number is done to find out the dominant parameters that have
a significant impact on infection level. Moreover, suitable graphs are obtained and it is found that awareness is more
effective than fear to reduce the risk of swine flu infection.
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1 Introduction

The social behavior of individuals and dynamics of disease are correlated to each other. Behavior of individual is one
of the causes which makes susceptible infectious one. Behavioral changes help to shape epidemic size by improving
the life style and contact places. The spread of several diseases can be controlled by behavioral changes. Promotion of
awareness among group of people through media can create fear (threat) for behavioral changes which helps to limit
the spread of infection [11]. Changes in knowledge, behavior and psychological responses can manage the anxiety in
the community about the outbreak phase of swine flu infection [22, 23, 7, 3]. Mathematical model is one of the mean
which provides the information about the population and disease dynamics at any moment of time with precautionary
course for controlling the disease [20].

Several researchers have proposed and analyzed the ecological and epidemics models incorporating the effect of aware-
ness and fear. I. Ghosh et al. (2018) proposed a SI epidemic model for HIV/AIDS with media and self-imposed
psychological fear. They calculated basic reproduction number to suggest the stability conditions. They regulated
the HIV case data sets for Uganda and Tanzania to the model and estimated some parameters. On comparing of
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graphs for awareness and self-imposed psychological fear, they observed that awareness is more effective to reduce
the risk of acquiring HIV infection [4]. A. Sha et al. (2019) gave an eco-epidemiological model with disease in the
prey population incorporating fear effect. They evaluated equilibrium points and their stability conditions. Their
numerical results show the backward bifurcation, presence of oscillations and occurrence of chaos due to fear induced
lower disease transmission in the prey population [21]. I. Papst (2015) proposed SIR epidemic model to see the effects
of fear on transmission dynamics of infectious diseases. They calculated equilibrium points and basic reproduction
number for providing the stability conditions. They studied the effects of fear on two important public health metrics
(the epidemic length and peak prevalence) [15]. The ecological model based on three species food chain incorporating
fear with stability and bifurcation analysis in 2018 [13] and three species food chain model with fear induced trophic
cascade in 2019 [14] were studied by P. Panday et al. S. Pal et al. (2019) studied the impact of fear effect in a
predator–prey model with Beddington–DeAngelis functional response. They observed that due to fear of predator
the birth rate of prey population reduces and as the strength of fear increases then model system becomes stable.
They also observed that the fear of predation risk can have both stabilizing and destabilizing effects [12]. K. Kundu
et al. (2018) have given a discrete time prey predator model to see the effect of fear and observed that fear effect
enhances stability in a predator-prey system [6]. A. Das et al. (2019) have proposed stochastic prey predator model
with additional food for predator incorporating fear effect. They have also investigated the model with fear as well as
without fear. Some new results have been carried out for different fear functions [2]. C. Maji (2021) has analyzed an
SEIR model to study the effect of fear induced by media on transmission of epidemic COVID-19 [8]. M. A. Mamun
et al. (2020) has done statistical analysis on Bangladesh population & observed that COVID 19 patients have risk
factor of depression and suicidal ideation due to poor knowledge and greater fear of pandemic [9]. H. Purushwani et
al. (2019) have given SIR model to see the effect of various awareness policy on swine flu infection [19]. H. Purushwani
et al. (2021) have suggested SEIR mathematical model to observe the Impact of early treatment programs on Swine
flu infection with optimal controls [18]. F. Bozurt et al. (2021) has examine an fractional order model of COVID-19
incorporating the effect of fear produced by media and social network in community during lockdown period [1]. More-
over, we have formed an SEIR epidemic model for swine flu epidemics with awareness and fear using system of non
linear differential equations. Bounded region for the existence of solutions is derived. Disease free equilibrium point,
endemic equilibrium point and basic reproduction number are evaluated. Using variational matrix and lyapunov’s
function, conditions for stability are carried out. Sensitivity analysis of basic reproduction number is performed to
guess, most influence parameter that have impact on infection spread and control. Numerical simulation is done to
support obtained results and theoretical results by relevant graphs. Conclusion and discursion is also provided.

2 Formulation of model

To formulate a SEIR mathematical model for swine flu infection with awareness and fear, we assume that the total
population (N) is divided into five distinct subclasses namely; the susceptible unaware class (Su), the susceptible
aware class (Sa), Exposed (E) , Infected (I) and Recovered (R). The lack of awareness about treatment and hygienic
condition in individuals may precede to the growth of infection level. Many awareness programmes are assisted by the
health care agencies to create fear for behavioural changes so that the risk of infection can be reduced. Keeping the
above-mentioned facts into consideration, the transmission dynamics of swine flu infection with awareness and fear
can be described by system of nonlinear differential equations as follows:

dSu

dt
= ∆− αSu + εSa −

β1SuI

N
− dSu (2.1)

dSa

dt
= αSu − εSa −

β2SaI

1 + k (Sa + E + I +R)
− dSa + tE (2.2)

dE

dt
=

β1SuI

N
+

β2SaI

1 + k (Sa + E + I +R)
− (ξ + t+ d)E (2.3)

dI

dt
= ξE − (d+ σ + ν) I (2.4)

dR

dt
= νI − dR (2.5)

with initial conditions

Su(0) = Su0 > 0, Sa(0) = Sa0 > 0, E(0) = E0 > 0, I(0) = I0 > 0, R(0) = R0.
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Figure 1: Flow of disease

The flow of disease in individuals easily can be demonstrated by Figure 1 given below;

In this model, the classes of individuals are connected as follows:

Suppose that constant recruitment rate of individuals is Π. As newly recruited individuals are not aware about infection
severity. Awareness spreads among unaware individuals at a constant rate α by media coverage and reporting. The
information loses the rate ε. Since latent period for swine flu infection is 2-3 days, so initially susceptible population
joins the exposed class then after acquiring proper infection move to infected class. Transmission rate of infection
in unaware and aware population are β1 and β2 respectively where β1 > β2. Suppose β1SuI

N and β2SaI
1+k(Sa+E+I+R) are

portions of unaware population and aware population respectively joining exposed class where k is the fear intensity
that helps to reduce the chance of getting infection. Due to this some exposed people rejoins aware susceptible
class again at the temporary recovery rate t. Conversion rate from exposed to infection class is ξ. Infected population
recovers at the rate ν. Mortality rates are d (natural death rate) and σ (disease induced death rate) of each population
class. The list of variables and parameters is mentioned in Table 1.

3 Basic Properties of the model

3.1 Bounds of the solutions

Suppose N(t) = Su(t) + Sa(t) + E(t) + I(t) +R(t) is total population associated to epidemic.

Differentiating N(t) w.r.to t and using model system (2.1)-(2.5), we get

dN

dt
= ∆− d (Su + Sa + E + I +R)− σI

dN

dt
≤ ∆− d (Su + Sa + E + I +R) = ∆− dN

On solving, we get following result;

N ≤ ∆

d

(
1− e−dt

)
+N0e

−dt

lim
t→∞

N ≤ ∆

d

Thus, all solutions of model system (2.1)-(2.5) lie in the compact positively invariant region τ , where,

τ =

{
(Su, Sa, E, I, R) : (Su + Sa + E + I +R) ≤ ∆

d

}
.



2884 Purushwani, Purushwani

Table 1: List of Variables and Parameters

Symbols Variables and Parameters Unit
Su(t) Unaware susceptible population at time t.
Sa(t) Aware susceptible population at time t.
E(t) Exposed population at time t.
I(t) Infected population at time t.
R(t) Recovered population at time t.
Π Constant recruitment rate of unaware population. Person/day
α Communication rate of awareness. Person/day
ε Lose of information. Person/day
β1 Transmission rate of swine flu infection in unaware population. Person/day
β2 Transmission rate of swine flu infection in aware population. Person/day
k Fear intensity. /Person
ξ Conversion rate from exposed to infection class. Person/day
t Temporary recovery rate of exposed to susceptible. /day
d Natural death rate. /day
σ Disease induced death rate. / day
υ Recovery rate. / day

3.2 Disease-free equilibrium point

The disease-free equilibrium point Edf of the designed model is given by

Edf =

(
−
Su,

−
Sa, 0, 0, 0

)
=

(
∆(ε+ d)

d (α+ ε+ d)
,

∆α

d (α+ ε+ d)
, 0, 0, 0

)
which always exist in region τ .

3.3 Basic Reproduction Number

The average number of secondary infections produced by one infected individual during the entire period of infectious-
ness is known as basic reproduction number. It is required for determining the status of the disease and also stability
conditions of the model around equilibrium points. Mathematically, basic reproduction number is the dominating
Eigen value of the next generation matrix FV −1, where F is the growth rate of new infection in infected class and V
is the outside moment of individuals from infected class by any mean.

F1 =
β1SuI

N
+

β2SaI

1 + k (Sa + E + I +R)
, F2 = 0

V1 = (ξ + t+ d)E, V2 = −ξE + (d+ σ + ν) I

This implies;

F =

 0 β1

−
Su

−
Su+

−
Sa

+ β2

−
Sa

1+k
−
Sa

0 0

 =

[
0 β1(ε+d)

(α+ε+d) +
β2∆α

d(α+ε+d)+k∆α

0 0

]

and

V =

[
(ξ + t+ d) 0

−ξ (d+ σ + ν)

]
⇒ V −1 = 1

(ξ+t+d)(d+σ+ν)

[
(d+ σ + ν) 0

ξ (ξ + t+ d)

]
Therefore,

FV −1 =
1

(ξ + t+ d) (d+ σ + ν)

[
ξ
(

β1(ε+d)
(α+ε+d) +

β2∆α
d(α+ε+d)+k∆α

)
(ξ + t+ d)

(
β1(ε+d)
(α+ε+d) +

β2∆α
d(α+ε+d)+k∆α

)
0 0

]
Consequently,

R0 =
ξ

(ξ + t+ d) (d+ σ + ν)

(
β1 (ε+ d)

(α+ ε+ d)
+

β2∆α

d (α+ ε+ d) + k∆α

)
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3.4 Endemic equilibrium point

The endemic equilibrium point Ee

(
∗
Su,

∗
Sa,

∗
E,

∗
I,

∗
R

)
of proposed model is obtained by equating the equations of the

model system to zero. where,

∗
Sa =

(
α+ β1

∗
I

∗
N

+ d

)
∗
Su −∆

ε

∗
E =

(d+ σ + ν)
(
∆− d

∗
N
)

σξ
,

∗
I =

∆− d
∗
N

σ
,

∗
R =

ν
(
∆− d

∗
N
)

dσ
,

Further,
∗
Su can be obtained by following quadratic equation;

A2

∗
Su

2

+A1

∗
Su +A0 = 0 (3.1)

where,

A0 =
∆(ε+d)

(
1+k

∗
N

)
ε +

(
∆−d

∗
N

)
σ

 t(d+σ+ν)

(
1+k

∗
N

)
ξ + β2∆

ε

,
A1 = −

 tk(d+σ+ν)

(
∆−d

∗
N

)
σξ + k∆(ε+d)

ε +
(
1 + k

∗
N
)β1

(
∆−d

∗
N

)
σ

∗
N

+ d


+

d
(
1 + k

∗
N
)

ε
+

β2

(
∆− d

∗
N
)

εσ


α+

β1

(
∆− d

∗
N
)

σ
∗
N

+ d




A2 = dk(α+ε+d)
ε +

β1k(ε+d)

(
∆−d

∗
N

)
εσ

∗
N

Since ∆ > d
∗
N , hence under this condition one root of equation (3.1) and value of

∗
Sa,

∗
E,

∗
I,

∗
R will be positive. Conse-

quently when ∆ > d
∗
N then endemic equilibrium point Ee

(
∗
Su,

∗
Sa,

∗
E,

∗
I,

∗
R

)
will exist.

4 Stability Analysis

In this section, stability conditions are proposed by following theorems given below;

Theorem 4.1. The disease-free equilibrium point Edf of the model (2.1) to (2.5) is linearly stable when R0 < 1 and
unstable otherwise.

Proof . To obtain stability condition, we will find Jacobian matrix Jdf around the disease free equilibrium point

Edf =

(
−
Su,

−
Sa, 0, 0, 0

)
as follows;

Jdf =



− (α+ d) ε 0 −β1

−
Su
−
N

0

α − (ε+ d) t − β2

−
Sa

1+k
−
Sa

0

0 0 − (ξ + t+ d) β1

−
Su
−
N

+ β2

−
Sa

1+k
−
Sa

0

0 0 ξ − (d+ σ + ν) 0
0 0 0 ν −d





2886 Purushwani, Purushwani

Eigen equation of above matrix is given by;

(d+ λ)
2
(α+ ε+ d+ λ)

(
B0λ

2 +B1λ+B2

)
= 0

where,

B0 =

(
−
Sa +

−
Su

)(
1 + k

−
Sa

)
> 0,

B1 = ((ξ + t+ d) + (d+ σ + ν))

(
−
Sa +

−
Su

)(
1 + k

−
Sa

)
> 0,

B2 =

(
−
Sa +

−
Su

)(
1 + k

−
Sa

)
(ξ + t+ d) (d+ σ + ν)− ξβ1

−
Su

(
1 + k

−
Sa

)
− ξβ2

−
Sa

(
−
Sa +

−
Su

)
=

(
−
Sa +

−
Su

)(
1 + k

−
Sa

)
(ξ + t+ d) (d+ σ + ν) (1−R0) > 0 when R0 < 1

Hence, all the Eigen values of above equation will be negative when R0 < 1. Consequently, disease-free equilibrium
point Edf of the model (2.1) to (2.5) is linearly stable when R0 < 1 and unstable otherwise. □

Theorem 4.2. The endemic equilibrium point Ee

(
∗
Su,

∗
Sa,

∗
E,

∗
I,

∗
R

)
of the model system (2.1) to (2.5) is linearly

stable when R0 > 1 and unstable otherwise.

Proof . To obtain stability condition, we will find Jacobian matrix Je around the endemic equilibrium point

Ee

(
∗
Su,

∗
Sa,

∗
E,

∗
I,

∗
R

)
as follows;

Je =


J11 J12 0 J14 0
J21 J22 J23 J24 J25
J31 J32 J33 J34 J35
0 0 J43 J44 0
0 0 0 J54 J55


where,

J11 = −
(
α+ d+ β1

∗
I

∗
N

)
, J12 = ε, J14 = −β1

∗
Su
∗
N

, J21 = α,

J22 = −

ε+ d+ β2

∗
I

1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

) − kβ2

∗
Sa

∗
I(

1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

))2

 , J23 = t+ kβ2

∗
Sa

∗
I(

1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

))2 ,

J24 = −

 β2

∗
Sa

1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

) − kβ2

∗
Sa

∗
I(

1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

))2

 , J25 = kβ2

∗
Sa

∗
I(

1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

))2 ,J31 = β1

∗
I

∗
N

,

J32 = β2

∗
I

1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

) − kβ2

∗
Sa

∗
I(

1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

))2 , J33 = −

(ξ + t+ d) + kβ2

∗
Sa

∗
I(

1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

))2

 ,

J34 = β1

∗
Su
∗
N

+ β2

∗
Sa

1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

) − kβ2

∗
Sa

∗
I(

1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

))2 , J35 = − kβ2

∗
Sa

∗
I(

1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

))2 , J43 = ξ,

J44 = − (d+ σ + ν) , J54 = ν, J55 = −d Eigen equation of above matrix is given by;

D0λ
5 +D1λ

4 +D2λ
3 +D3λ

2 +D4λ+D5 = 0

where,
D0 = −1,
D1 = J11 + J22 + J33 + J44 + J55,
D2 = J12J21 + J23J32 + J34J43 − J11 (J22 + J33 + J44 + J55)− J22 (J33 + J44 + J55)− J33 (J44 + J55)
−J44J55,
D3 = J12J23J31 + J11J22J33 + J14J31J43 + J24J32J43 + J11J22J44 + J11J33J44 + J22J33J44 + J35J43J54
+J11J22J55 + J11J33J55 + J22J33J55 + J11J44J55 + J22J44J55 + J33J44J55 − (J11 + J44 + J55) J23J32
− (J33 + J44 + J55) J12J21 − (J11 + J22 + J55) J34J43,
D4 = J12J24J31J43 + J14J21J32J43 + J11J23J32J44 + J12J21J33J44 + J25J32J43J54 + J11J23J32J55
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+J12J21J33J55 + J12J21J44J55 + J23J32J44J55 + J11J22J34J43 + J11J34J43J55 + J22J34J43J55
−J14J22J31J43 − J11J24J32J43 − J12J23J31J44 − J11J22J33J44 − J11J35J43J54 − J22J35J43J54
−J12J23J31J55 − J11J22J33J55 − J14J31J43J55 − J24J32J43J55 − J11J22J44J55 − J11J33J44J55
−J22J33J44J55 − J12J21J34J43,
D5 = J12J25J31J43J54 + J11J22J35J43J54 + J14J22J31J43J55 + J11J24J32J43J55 + J12J23J31J44J55
+J11J22J33J44J55 + J12J21J34J43J55 − J11J25J32J43J54 − J12J21J35J43J54 − J12J24J31J43J55
−J14J21J32J43J55 − J11J23J32J44J55 − J12J21J33J44J55 − J11J22J34J43J55

Here, all Di < 0; i = 0, 1, 2, 3, 4, 5 ,whenR0 > 1 Hence, all the Eigen values of above equation will be negative
when R0 > 1. Consequently, endemic equilibrium point Ee of the model (2.1) to (2.5) is linearly stable when R0 > 1
and unstable otherwise. □

Theorem 4.3. The endemic equilibrium point Ee

(
∗
Su,

∗
Sa,

∗
E,

∗
I,

∗
R

)
of model system (2.1) to (2.5) is globally stable

under following condition, otherwise unstable.t+
β2∆

(
1 + k

( ∗
E +

∗
I +

∗
R
))

+ kβ2d
∗
Sa

∗
I

(d+ 4∆k)

(
1 + k

(
∗
Sa +

∗
E +

∗
I +

∗
R

))
 >

β1d
∗
Su

∗
I

∆
∗
N

Proof . Let a positive definite function U as follows;

U =
1

2

[(
Su −

∗
Su

)2

+

(
Sa −

∗
Sa

)2

+
(
E −

∗
E
)2

+
(
I −

∗
I
)2

+
(
R−

∗
R
)2

]

Differentiating U w.r.to t and using proposed model system, we have following;

dU
dt =

(
Su −

∗
Su

)[(
− (α+ d)

(
Su −

∗
Su

)
+ ε

(
Sa −

∗
Sa

)
− β1SuI

N + β1

∗
Su

∗
I

∗
N

)]
+

(
Sa −

∗
Sa

)α

(
Su −

∗
Su

)
− (ε+ d)

(
Sa −

∗
Sa

)
− β2SaI

1+k(Sa+E+I+R) +
β2

∗
Sa

∗
I

1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

) + t
(
E −

∗
E
)

+
(
E −

∗
E
)β1SuI

N − β1

∗
Su

∗
I

∗
N

+ β2SaI
1+k(Sa+E+I+R) −

β2

∗
Sa

∗
I

1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

) − (ξ + t+ d)
(
E −

∗
E
)

+
(
I −

∗
I
) [

ξ
(
E −

∗
E
)
− (d+ σ + ν)

(
I −

∗
I
)]

+
(
R−

∗
R
) [

ν
(
I −

∗
I
)
− d

(
R−

∗
R
)]

This implies

dU
dt = −

α+ d+
β1I

(
∗
Sa+

∗
E+

∗
I+

∗
R

)
N

∗
N

 (
Su −

∗
Su

)2

−
(
ε+ α+ β1

∗
Su

∗
I

N
∗
N

)(
Su −

∗
Su

)(
Sa −

∗
Sa

)

+

ε+ d+
β2

(
1+k

(
∗
E+

∗
I+

∗
R

))
I

(1+k(Sa+E+I+R))

(
1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

))
(

Sa −
∗
Sa

)2

+ (d+ σ + ν)
(
I −

∗
I
)2

−

t+
β2∆

(
1+k

(
∗
E+

∗
I+

∗
R

))
+kβ2d

∗
Sa

∗
I

(d+4∆k)

(
1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

)) − β1d
∗
Su

∗
I

∆
∗
N

(
Sa −

∗
Sa

)(
E −

∗
E
)

+

(ξ + t+ d) + kβ2

∗
Sa

∗
I

(1+k(Sa+E+I+R))

(
1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

)) + β1

∗
Su

∗
I

N
∗
N

(
E −

∗
E
)2

−

−β1

∗
Su

(
Su+

∗
Sa+

∗
E+

∗
R

)
N

∗
N

(
Su −

∗
Su

)(
I −

∗
I
)
− β1

∗
Su

∗
I

N
∗
N

(
Su −

∗
Su

)(
R−

∗
R
)

−

(
β1

∗
Su

∗
I+β1I

(
∗
Sa+

∗
E+

∗
I+

∗
R

))
N

∗
N

(
Su −

∗
Su

)(
E −

∗
E
)
+ d

(
R−

∗
R
)2
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−

ξ +
β1

∗
Su

(
Su+

∗
Sa+

∗
E+

∗
R

)
N

∗
N

+
β2

(
1+k

(
Sa+

∗
E+

∗
R

))
∗
Sa

(1+k(Sa+E+I+R))

(
1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

))
(

E −
∗
E
)(

I −
∗
I
)

−

−

β1

∗
Su

∗
I

N
∗
N

+ kβ2

∗
Sa

∗
I

(1+k(Sa+E+I+R))

(
1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

))
(

E −
∗
E
)(

R−
∗
R
)

−

 −β2

(
1+k

(
Sa+

∗
E+

∗
R

))
∗
Sa

(1+k(Sa+E+I+R))

(
1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

))
(

Sa −
∗
Sa

)(
I −

∗
I
)

−

 kβ2

∗
Sa

∗
I

(1+k(Sa+E+I+R))

(
1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

))
(

Sa −
∗
Sa

)(
R−

∗
R
)
− ν

(
I −

∗
I
) (

R−
∗
R
)]

Putting the conditions of bounded region, we have following

dU

dt
≤ − [buu

(
Su −

∗
Su

)2

− bua

(
Su −

∗
Su

)(
Sa −

∗
Sa

)
+ baa

(
Sa −

∗
Sa

)2

− bae

(
Sa −

∗
Sa

)(
E −

∗
E
)

+bee

(
E −

∗
E
)2

+ bii

(
I −

∗
I
)2

+ brr

(
R−

∗
R
)2

− bui

(
Su −

∗
Su

)(
I −

∗
I
)
− bue

(
Su −

∗
Su

)(
E −

∗
E
)

−bur

(
Su −

∗
Su

)(
R−

∗
R
)
− bei

(
E −

∗
E
)(

I −
∗
I
)
− ber

(
E −

∗
E
)(

R−
∗
R
)
− bai

(
Sa −

∗
Sa

)(
I −

∗
I
)

−bar

(
Sa −

∗
Sa

)(
R−

∗
R
)
− bir

(
I −

∗
I
) (

R−
∗
R
)]

,

On rearranging the terms, we have;

dU
dt ≤ −

[{
buu

4

(
Su −

∗
Su

)2

− bua

(
Su −

∗
Su

)(
Sa −

∗
Sa

)
+ baa

4

(
Sa −

∗
Sa

)2
}

+

{
baa

4

(
Sa −

∗
Sa

)2

− bae

(
Sa −

∗
Sa

)(
E −

∗
E
)
+ bee

4

(
E −

∗
E
)2

}

+

{
buu

4

(
Su −

∗
Su

)2

− bui

(
Su −

∗
Su

)(
I −

∗
I
)
+ bii

4

(
I −

∗
I
)2

}

+

{
buu

4

(
Su −

∗
Su

)2

− bue

(
Su −

∗
Su

)(
E −

∗
E
)
+ bee

4

(
E −

∗
E
)2

}

+

{
buu

4

(
Su −

∗
Su

)2

− bur

(
Su −

∗
Su

)(
R−

∗
R
)
+ brr

4

(
R−

∗
R
)2

}
+

{
bee
4

(
E −

∗
E
)2

− bei

(
E −

∗
E
)(

I −
∗
I
)
+ bii

4

(
I −

∗
I
)2

}
+

{
bee
4

(
E −

∗
E
)2

− ber

(
E −

∗
E
)(

R−
∗
R
)
+ brr

4

(
R−

∗
R
)2

}
+

{
baa

4

(
Sa −

∗
Sa

)2

− bai

(
Sa −

∗
Sa

)(
I −

∗
I
)
+ bii

4

(
I −

∗
I
)2

}

+

{
baa

4

(
Sa −

∗
Sa

)2

− bar

(
Sa −

∗
Sa

)(
R−

∗
R
)
+ brr

4

(
R−

∗
R
)2

}
+

{
bii
4

(
I −

∗
I
)2

− bir

(
I −

∗
I
)(

R−
∗
R
)
+ brr

4

(
R−

∗
R
)2

}]
where,

buu =

α+ d+
β1

(
∗
Sa+

∗
E+

∗
I+

∗
R

)
∗
N

 , bua =

(
ε+ α+ β1d

∗
Su

∗
I

∆
∗
N

)
, baa =

ε+ d+
β2∆

(
1+k

(
∗
E+

∗
I+

∗
R

))
(d+4∆k)

(
1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

))
 ,

bae =

t+
β2∆

(
1+k

(
∗
E+

∗
I+

∗
R

))
+kβ2d

∗
Sa

∗
I

(d+4∆k)

(
1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

)) − β1d
∗
Su

∗
I

∆
∗
N

 , bee =

(ξ + t+ d) + kβ2d
∗
Sa

∗
I

(d+4∆k)

(
1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

)) + β1d
∗
Su

∗
I

∆
∗
N

 ,
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bii = (d+ σ + ν) , brr = d, bui = −

β1d
∗
Su

(
Su+

∗
Sa+

∗
E+

∗
R

)
∆

∗
N

 , bue =

(
β1d

∗
Su

∗
I+β1∆

(
∗
Sa+

∗
E+

∗
I+

∗
R

))
∆

∗
N

,

bur = β1d
∗
Su

∗
I

∆
∗
N

, bei =

ξ +
β1d

∗
Su

(
(∆/d)+

∗
Sa+

∗
E+

∗
R

)
∆

∗
N

+
β2d

(
1+k

(
(∆/d)+

∗
E+

∗
R

))
∗
Sa

(d+4∆k)

(
1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

))
 , bar =

 kβ2d
∗
Sa

∗
I

(d+4∆k)

(
1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

))
 ,

ber = −

β1d
∗
Su

∗
I

∆
∗
N

+ kβ2d
∗
Sa

∗
I

(d+4∆k)

(
1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

))
 , bai = −

 β2d

(
1+k

(
(∆/d)+

∗
E+

∗
R

))
∗
Sa

(d+4∆k)

(
1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

))
 , bir = ν

Further, under following conditions dU
dt will be negative definite;

1
4

α+ d+
β1

(
∗
Sa+

∗
E+

∗
I+

∗
R

)
∗
N

ε+ d+
β2∆

(
1+k

(
∗
E+

∗
I+

∗
R

))
(d+4∆k)

(
1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

))
 >

(
ε+ α+ β1d

∗
Su

∗
I

∆
∗
N

)2

,

1
4

ε+ d+
β2∆

(
1+k

(
∗
E+

∗
I+

∗
R

))
(d+4∆k)

(
1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

))
(ξ + t+ d) + kβ2d

∗
Sa

∗
I

(d+4∆k)

(
1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

)) + β1d
∗
Su

∗
I

∆
∗
N



>

t+
β2∆

(
1 + k

( ∗
E +

∗
I +

∗
R
))

+ kβ2d
∗
Sa

∗
I

(d+ 4∆k)

(
1 + k

(
∗
Sa +

∗
E +

∗
I +

∗
R

)) − β1d
∗
Su

∗
I

∆
∗
N


2

,

1
4 (d+ σ + ν)

α+ d+
β1

(
∗
Sa+

∗
E+

∗
I+

∗
R

)
∗
N

 >

β1d
∗
Su

(
Su+

∗
Sa+

∗
E+

∗
R

)
∆

∗
N

2

,

1
4

α+ d+
β1

(
∗
Sa+

∗
E+

∗
I+

∗
R

)
∗
N

(ξ + t+ d) + kβ2d
∗
Sa

∗
I

(d+4∆k)

(
1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

)) + β1d
∗
Su

∗
I

∆
∗
N



>


(
β1d

∗
Su

∗
I + β1∆

(
∗
Sa +

∗
E +

∗
I +

∗
R

))
∆

∗
N


2

,

1
4d

α+ d+
β1

(
∗
Sa+

∗
E+

∗
I+

∗
R

)
∗
N

 >

(
β1d

∗
Su

∗
I

∆
∗
N

)2

,

1
4 (d+ σ + ν)

(ξ + t+ d) + kβ2d
∗
Sa

∗
I

(d+4∆k)

(
1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

)) + β1d
∗
Su

∗
I

∆
∗
N



>

ξ +

β1d
∗
Su

(
(∆/d) +

∗
Sa +

∗
E +

∗
R

)
∆

∗
N

+
β2d

(
1 + k

(
(∆/d) +

∗
E +

∗
R
)) ∗

Sa

(d+ 4∆k)

(
1 + k

(
∗
Sa +

∗
E +

∗
I +

∗
R

))


2

,

1
4d

(ξ + t+ d) + kβ2d
∗
Sa

∗
I

(d+4∆k)

(
1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

)) + β1d
∗
Su

∗
I

∆
∗
N



>

β1d
∗
Su

∗
I

∆
∗
N

+
kβ2d

∗
Sa

∗
I

(d+ 4∆k)

(
1 + k

(
∗
Sa +

∗
E +

∗
I +

∗
R

))


2

,

1
4 (d+ σ + ν)

ε+ d+
β2∆

(
1+k

(
∗
E+

∗
I+

∗
R

))
(d+4∆k)

(
1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

))

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>

 β2d
(
1 + k

(
(∆/d) +

∗
E +

∗
R
)) ∗

Sa

(d+ 4∆k)

(
1 + k

(
∗
Sa +

∗
E +

∗
I +

∗
R

))


2

,

1
4d

ε+ d+
β2∆

(
1+k

(
∗
E+

∗
I+

∗
R

))
(d+4∆k)

(
1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

))
 >

 kβ2d
∗
Sa

∗
I

(d+4∆k)

(
1+k

(
∗
Sa+

∗
E+

∗
I+

∗
R

))
2

,

d(d+σ+ν)
4 > ν2. Hence, under following condition dU

dt is negative definite;t+
β2∆

(
1 + k

( ∗
E +

∗
I +

∗
R
))

+ kβ2d
∗
Sa

∗
I

(d+ 4∆k)

(
1 + k

(
∗
Sa +

∗
E +

∗
I +

∗
R

))
 >

β1d
∗
Su

∗
I

∆
∗
N

Consequently, using Lyapunov Stability theorem, under above mentioned condition the endemic equilibrium point

Ee

(
∗
Su,

∗
Sa,

∗
E,

∗
I,

∗
R

)
of model system (2.1) to (2.5) is globally stable, otherwise unstable. □

5 Numerical simulation

In this section, proposed model is simulated for the set of parameters values to observe the effect of awareness and fear
on swine flu infection. Some numerical facts are verified for the existence and stability properties of the equilibrium
points.
For the analysis of swine flu transmission with awareness and fear, we choose set-1 for values of parameters given
below-

∆=1.5 Person/day, β1=0.035 Person/day, β2=0.025 Person/day, α=0.4 Person/day, ε=0.3 Person/day, d=0.02 /day,
σ=0.01 /day, υ=0.01 /day, k=0.8 / Person, t=0.4 /day, ξ=0.5 Person/day then for this set basic reproduction number
R0=0.6236 <1 and disease free equilibrium point is Edf(33.333, 41.666, 0, 0, 0) Figure 2 shows all species versus time
plot, it is cleared that all the trajectories moves towards the disease free condition, which represents that the disease
free equilibrium is locally asymptotically stable. Next, if we take same set expect k=0.3 /Person then for this set basic
reproduction number R0=1.2597 >1 and endemic equilibrium point is Ee(27.783, 34.179, 0.5015, 6.2683, 3.1341). In
same Figure 2, It is clear that endemic equilibrium point is stable under these values of parameters. Figure 3 shows
as fear intensity increases R0 decreases and awareness has parabolic nature.

Figure 4 and Table 2 depict that for fixed value of k=0.3, as awareness increases then basic reproduction number
and numbers of infectious decreases. Similarly, Figure 5 and Table 3 highlight that for fixed value of α=0.4, as fear

Table 2: Basic reproduction number and Equilibrium Point for various values of α

α Basic reproduction number Equilibrium Point
0.4 1.2597 Ee(27.783, 34.179, 0.5015, 6.2683, 3.1341)
0.6 1.2254 Ee(21.844, 40.362, 0.492, 6.151, 3.076)
0.8 1.2018 Ee(18.069, 44.563, 0.476, 5.946, 2.973)

increases then basic reproduction number and numbers of infectious decreases. In Figure 6, plot between time versus

Table 3: Basic reproduction number and Equilibrium Point for various values of k

k Basic reproduction number Equilibrium Point
0.4 1.0125 Ee(33.009, 41.231, 0.029, 0.366, 0.183)
0.6 0.7557 Edf(33.333, 41.666, 0, 0, 0)
0.8 0.6236 Edf(33.333, 41.666, 0, 0, 0)
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infected population is traced to compare the effect of awareness and fear on swine flu infection. It is observed that
awareness minimizes infection cases speedily whereas fear minimizes infection cases slowly. See the scale of both graphs
also. Further, sensitivity indices are obtained to guess the most dominant parameters that have significant impact on
spread and control of swine flu infection, using normalized forward sensitivity index techniques. It can be observed

Table 4: Sensitivity Indices for Basic Reproduction Number

Parameters Sensitivity indices

∆ +0.0616
α -0.0658
ε +0.0617
β1 +0.1678
β2 +0.8322
k -0.7706
ξ +0.4565
t -0.4348
d -0.5793
σ -0.2500
ν -0.2500

from above table, that the recruitment rate of susceptible, loss of awareness, transmission rate of infection in unaware,
aware population and conversion rate from exposed to infection class are those parameters that have significant positive
association with basic reproduction number i.e. sensitivity indices for β1 is +0.1678, indicates that 10% increase in β1

would approximately increase R0 by 1.678%. Similarly, communication rate of awareness, fear intensity, temporary
recovery rate of exposed to susceptible, mortality rate (natural and disease induced) of individual, recovery rate are
those parameters that have significant negative association with basic reproduction number i.e. sensitivity indices for
α is -0.0658, indicates that 10% increase in α would approximately reduce R0 by 0.658 %.

6 Conclusion

In this manuscript, we have analyzed a mathematical model consists of nonlinear ordinary differential equations for
five different interacting populations to see the spread of swine flu infection with awareness and fear. Bounded feasible
region has been obtained in which all the solutions of proposed model exist. The disease free equilibrium point,
endemic equilibrium point and basic reproduction number are evaluated to provide the stability conditions. It has
been derived that the disease free equilibrium point is linearly asymptotically stable if R0 < 1 otherwise unstable
(Theorem 4.1 and Figure 2) i.e. swine flu infection will wash out from the community. It has been also noticed that a
unique endemic (positive) equilibrium point exists and stable if R0 > 1 otherwise unstable (Theorem 4.2 and Figure
2) i.e. swine flu infection will persist from the community. It is also pointed about that awareness and fear may reduce
the basic reproductive number or the infection severity (Figure 3). Further, the phase plane plots between infected
and susceptible also indicate that awareness and fear help to minimize the number of infected population (Figure 4
, 5). Moreover, it is also found that awareness can reduce the infection cases more rapidly than the fear (Figure 6).
Consequently, it can be concluded that awareness is more influence parameter than fear to control infection severity
and protect community structure. From sensitivity indices, influence of parameter on disease spread can be observed
and it can be decided that how the parameters should be handled by adopting suitable way to save the community
from the risk of infection.
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