
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,909 |
تعداد دریافت فایل اصل مقاله | 7,656,366 |
A nilpotency criterion for finite groups by the sum of element orders | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 229، دوره 14، شماره 1، فروردین 2023، صفحه 2931-2937 اصل مقاله (367.04 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.27803.3719 | ||
نویسندگان | ||
Maghsoud Jahani1؛ Yadollah Marefat* 1؛ Hassan Refaghat2؛ Bahram Vakili Fasaghandisi1 | ||
1Department of Mathematics, Shabestar Branch, Islamic Azad University, Shabestar, Iran | ||
2Department of Mathematics, Tabriz Branch, Islamic Azad University, Tabriz, Iran | ||
تاریخ دریافت: 24 اردیبهشت 1401، تاریخ بازنگری: 11 تیر 1401، تاریخ پذیرش: 02 مرداد 1401 | ||
چکیده | ||
Let $G$ be a finite group and $\psi(G)=\sum_{g\in G}o(g)$, where $o(g)$ denotes the order of $g\in G$. We give a criterion for nilpotency of finite groups $G$ based on the sum of element orders of $G$. We prove that if $\psi(G)>\frac{13}{21}\psi(C_n)$ then $G$ is a nilpotent group. | ||
کلیدواژهها | ||
Finite group؛ element orders sum؛ nilpotent group؛ simple group | ||
مراجع | ||
[1] H. Amiri and S.M. Jafarian Amiri, Sum of element orders on finite groups of the same order, J. Algebra Appl. 10 (2011), no. 2, 187–190. [2] H. Amiri and S.M. Jafarian Amiri, Sum of element orders of maximal subgroups of the symmetric group, Commun. Algebra Appl. 40 (2012), no. 2, 770–778. [3] H. Amiri, S.M. Jafarian Amiri and I.M. Isaacs, Sums of element orders in finite groups, Comm. Algebra 37 (2009), 2978–2980. [4] M. Baniasad and B. Khosravi, A creterian for solvability of a finite group by the sum of element orders, J. Algebra 516 (2018), 115–124. [5] M. Herzog, P. Longobardi and M. Maj, An exact upper bound for sums of element orders in non-cyclic finite groups, J. Algebra 222 (2018), no. 7, 1628–1642. [6] M. Herzog, P. Longobardi and M. Maj, Two new criteria for solvability of finite groups, J. pure Appl. Algebra 511 (2018), 215–226. [7] M. Herzog, P. Longobardi and M. Maj, Sums of element orders groups of order 2m with m odd, Commun. Algebra 47 (2019), no. 5, 2035–2048. [8] S.M. Jafarian Amiri, Characterization of a5 and psl(2, 7) by sum of element orders, Int. J. Group Theory 2 (2013), no. 2, 35–39. [9] S.M. Jafarian Amiri, Maximum sum of element orders of all proper subroups of psl(2, q), Bull. Iran. Math. Soc. 39 (2013), no. 3, 501–505. [10] S.M. Jafarian Amiri, Second maximum sum of element orders on finite nilpotent groups, Commun. Algebra 41 (2013), no. 6, 2055–2059. [11] S.M. Jafarian Amiri and M. Amiri, Second maximum sum of element orders on finite groups, J. Pure Appl. Algebra 218 (2014), no. 3, 531–539. [12] S.M. Jafarian Amiri and M. Amiri, Sum of the products of the orders of two distinct elements in finite groups, Commun. Algebra 42 (2014), no. 12, 531–539. [13] S.M. Jafarian Amiri and M. Amiri, Characterization of p-groups by sum of element orders, Publ. Math. Debrecen 86 (2015), no. 1–2, 31–37. [14] S.M. Jafarian Amiri and M. Amiri, Sum of element orders in groups with the square-free orders, Bull. Malays. Math. Sci. Soc. 40 (2017), no. 3, 1025–1034. [15] Y. Marefat, A. Iranmanesh and A. Tehranian, On the sum of element orders of finite simple groups, J. Algebra Appl. 12 (2013), no. 7. [16] R. Shen, G. Chen and C. Wu, On groups with the second largest value of the sum of element orders, Commun. Algebra 43 (2015), no. 6, 2618–2631. | ||
آمار تعداد مشاهده مقاله: 17,231 تعداد دریافت فایل اصل مقاله: 255 |