
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,026 |
تعداد مشاهده مقاله | 67,082,736 |
تعداد دریافت فایل اصل مقاله | 7,656,160 |
Vaccination and control measures on vector transmission dynamics: Modeling and simulation | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 239، دوره 13، شماره 2، مهر 2022، صفحه 2999-3015 اصل مقاله (576.37 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.25189.2946 | ||
نویسندگان | ||
Aadil Hamid* 1؛ Poonam Sinha2 | ||
1Department of mathematics, Jiwaji University, Gwalior, M.P., India | ||
2Department of mathematics, Govt. S.M.S. Science College, Gwalior, M.P., India | ||
تاریخ دریافت: 18 آبان 1400، تاریخ بازنگری: 13 تیر 1401، تاریخ پذیرش: 26 تیر 1401 | ||
چکیده | ||
In this paper, a non-linear mathematical model is proposed and analyzed to study the role of vaccination and control measures on the spread of vector-borne diseases. It is assumed that susceptible hosts can be infected either directly or indirectly. In the modelling process, it is considered that only a susceptible person can be vaccinated. The existence of the control problem is proved and later used to investigate effective control efforts for the prevention of direct and indirect transmission of disease. The model is analyzed using Hurwitz and Sylvester’s criterion. The analysis of the model reveals that, if the vaccination reproduction number $\mathcal{R}_{v}$ is less than one, the disease can be eradicated provided, and the vaccine is highly efficient. | ||
کلیدواژهها | ||
Vector-borne diseases؛ Control؛ Vaccination؛ Reproduction number؛ Stability | ||
مراجع | ||
References [1] A. Abidemi, M.I. Abd Aziz, and R. Ahmad, Vaccination and vector control effect on dengue virus transmission dynamics: Modelling and simulation, Chaos Solitons Fractals 133 (2020), 109648. [2] R.M. Anderson and R.M. May, Spatial, temporal, and genetic heterogeneity in host populations and the design of immunization programmes, Math. Med. Bio.: J. IMA 1 (1984), no. 3, 233–266. [3] L. Billings, A. Fiorillo, and I.B. Schwartz, Vaccinations in disease models with antibody-dependent enhancement, Math. Biosci. 211 (2008), no. 2, 265–281. [4] K.W. Blayneh and S.R. Jang, A discrete sis-model for a vector-transmitted disease, Applicable Anal. 85 (2006), no. 10, 1271–1284. [5] V.G. Boltyanskiy, R.V. Gamkrelidze, Y.E.F. Mishchenko, and L.S. Pontryagin, Mathematical theory of optimal proce[6] W.S. Burnside and A.W. Panton, The theory of equations: with an introduction to the theory of binary algebraic forms, Longmans, Green and Co., Ltd., London, 1935. [7] C. Cosner, J.C. Beier, R.S. Cantrell, D. Impoinvil, L. Kapitanski, M.D. Potts, A. Troyo, and S. Ruan, The effects of human movement on the persistence of vector-borne diseases, J. Theor. Bio. 258 (2009), no. 4, 550–560. [8] L. Coudeville and G.P. Garnett, Transmission dynamics of the four dengue serotypes in southern vietnam and the potential impact of vaccination, PloS one 7 (2012), no. 12, e51244. [9] I.V. Coutinho-Abreu and M. Ramalho-Ortigao, Transmission blocking vaccines to control insect-borne diseases: a review, Mem. Instit. Oswaldo Cruz 105 (2010), no. 1, 1–12. [10] K. Dietz and D. Schenzle, Proportionate mixing models for age-dependent infection transmission, J. Math. Bio. 22 (1985), no. 1, 117–120. [11] M.K. Enduri and S. Jolad, Dynamics of dengue disease with human and vector mobility, Spat. Spatio-temporal Epidemiol. 25 (2018), 57–66. [12] T. Feng, Z. Qiu, and Y. Song, Global analysis of a vector-host epidemic model in stochastic environments, J. Franklin Instit. 356 (2019), no. 5, 2885–2900. [13] W.E. Fitzgibbon, J.J. Morgan, and G.F. Webb, An outbreak vector-host epidemic model with spatial structure: The 2015–2016 zika outbreak in rio de janeiro, Theor. Bio. Med. Model. 14 (2017), no. 1, 1–17. [14] L. Gao and H. Hethcote, Simulations of rubella vaccination strategies in china, Math. Biosci. 202 (2006), no. 2, 371–385. [15] A.B. Gumel, C.C. McCluskey, and J. Watmough, An sveir model for assessing potential impact of an imperfect anti-sars vaccine, Math. Biosci. Engin. 3 (2006), no. 3, 485. [16] M. Haber, I.R.A.M. Longini Jr, and M.E. Halloran, Measures of the effects of vaccination in a randomly mixing population, Int. J. Epidemiol. 20 (1991), no. 1, 300–310. [17] K.P. Hadeler and J. M¨uller, Vaccination in age-structured populations i: The reproduction number, (1993). [18] S.B. Halstead, F.X. Heinz, A.D.T. Barrett, and J.T. Roehrig, Dengue virus: molecular basis of cell entry and pathogenesis, Vaccine 23 (2005), no. 7, 849—856. [19] M. Iannelli, M. Martcheva, and X.-Z. Li, Strain replacement in an epidemic model with super-infection and perfect vaccination, Math. Biosci. 195 (2005), no. 1, 23–46. [20] T.K. Kar and S. Jana, Application of three controls optimally in a vector-borne disease–a mathematical study, Commun. Nonlinear Sci. Numer. Simul. 18 (2013), no. 10, 2868–2884. [21] M.Y. Li, J.R. Graef, L. Wang, and J. Karsai, Global dynamics of a seir model with varying total population size, Math.Biosci. 160 (1999), no. 2, 191–213. [22] D. Musso and D.J. Gubler, Zika virus: following the path of dengue and chikungunya?, Lancet 386 (2015), no. 9990, 243–244. [23] B. Shulgin, L. Stone, and Z. Agur, Pulse vaccination strategy in the sir epidemic model, Bull. Math. Bio. 60 (1998), no. 6, 1123–1148. [24] H. Townson, M.B. Nathan, M. Zaim, P. Guillet, L. Manga, R. Bos, and M. Kindhauser, Exploiting the potential of vector control for disease prevention, Bull. World Health Organ. 83 (2005), 942–947. [25] J. Tumwiine, J.Y.T. Mugisha, and L.S. Luboobi, A host-vector model for malaria with infective immigrants, J. Math. Anal. Appl. 361 (2010), no. 1, 139–149. [26] P. Van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci. 180 (2002), no. 1-2, 29–48. [27] C. Vargas-De-Le´on, L. Esteva, and A. Korobeinikov, Age-dependency in host-vector models: the global analysis, Appl. Math. Comput. 243 (2014), 969–981. [28] J.X. Velascohernandez, A model for chagas disease involving transmission by vectors and blood transfusion, Theor. Popul. Bio. 46 (1994), no. 1, 1–31.[29] A.L. Wilson, O. Courtenay, L.A. Kelly-Hope, T.W. Scott, W. Takken, S.J. Torr, and S.W. Lindsay, The importance of vector control for the control and elimination of vector-borne diseases, PLoS Neglect. Tropic. Diseases 14 (2020), no. 1, e0007831. [30] Y. Xu, J.and Zhou, Hopf bifurcation and its stability for a vector-borne disease model with delay and reinfection, Appl. Math. Model. 40 (2016), no. 3, 1685–1702. | ||
آمار تعداد مشاهده مقاله: 44,252 تعداد دریافت فایل اصل مقاله: 339 |