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Abstract

In this paper, we prove some hyperstability results of the bi-Cauchy-Jensen functional equation: 2f (:13 + v, #) =
f(z,2) + f(z,w) + f(y,z) + f(y, w) in Banach spaces by using fixed point method.
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1 Introduction and preliminaries

Throughout this paper, let N, R, R, be the set of natural numbers, the set of real numbers, the set of non-negative
real numbers, respectively, and let N,,,,) = {n € N:n > mq}.

The motivation for researching on stability theory of functional equations was initiated by Ulam in 1940. In [41],
Ulam proposed some unsloved problems and one of them is stability problem of functional equation on the stability
of group homomorphisms as follows:

“Let (G1,-) be a group and (Ga,*,d) be a metric group with the metric d(-,-). Given a real number ¢ > 0, does
there exist a 6 > 0 such that if a mapping h : G1 — Go satisfies the inequality

d(h(z-y), h(z) * h(y)) <o
for all x,y € G1, then there exists a homomorphism g : G1 — G with d(h(x),g(z)) < e for allx € Gy 7.

Later, in 1941, Hyers [29] provided first an affirmative partial answer to Ulam’s problem for the case of an approx-
imately additive mapping in Banach spaces. In 1978, Rassias [39] presented a generalization of Hyers’s theorem for a
linear mapping by considering an unbounded Cauchy differences.

In 1994, Gavruta [21I] generalized Rassias’s results by replacing the unbounded Cauchy difference with a general
control function. For more results on Ulam’s stabitiy and Gavruta’s results, refer to [I4] and [I5]. Further, recently,
many mathematicians have extended and developed the stability of functional equations in many directions (see, for
example, [16] (17, [I8], B7]).
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One way to develop the stability of functional equations is the fixed point method, which is a kind of the approxi-
mation method, instead of the direct method.

Recently, since the first stability problem formulated by Ulam, some authors have considered some kinds of the
stability, for example, stability, b-stability, hyperstability, orthogonal stability, inverse stability and some others (see,
for example, [I7, 35 26, 27]). One of interesting types of the stability is the hyperstability. We say that a functional
equation D is hyperstable if any functional f satisfying the equation D approximately is an actual solution of the
equation D.

In 1949, the first hyperstability result was published in [34] by concerning ring homomorphisms. However, the
term hyperstability was used first by Bourgin in [§]. For more results on the hyperstability, refer to many interesting
papers on the hyperstability (see [I} 2] Bl [, [7), [TT], @], 12} 10} 16l 18, 20, 22| 23, 24, 25| 28, [34] [38], [40])

Let X and Y be vector spaces. A mapping f : X x X — Y is called the bi-Cauchy-Jensen functional equation
(bi-CJE, shortly) if f satisfies the system of the following equations:

f(:c+y,z):f(:v,z)+f(y7z)

and

yt+z
21 (2.255) = fo) + Fo.2) (1)
for all z,y,z € X. In particular, For X =Y = R, The solution of the system (|1.1)) is given by the function
f(@,y) = axy + bz,

where z,y € R and a, b are constant. In fact, the mapping f: X x X — Y satisfies

z4+w

2f (04,25 ) = Fe,2) + flovw) + £0:2) + o) (1.2

for all z,y,z,w € X.

In 2006, Park and Bae [36] showed that the mapping f : X x X — Y satisfies the system (1.1)) if and only if it
satisfies the equation (1.2]) and gave the general solution of the equation (|1.2)) given by

f(x,y) = B(z,y) + A(z)

for all z,y € X, where B : X x X — Y is a bi-additive mapping and A : X — Y is an additive mapping. Moreover,
they proved the stability of the functional equations and in the sense of Gavruta by using the direct method.
In 2012, Bae and Park [5] investigated the stability of the functional equation by using the fixed point method
which has derived from Diaz and Mogolis [I9]. For more results on the stability of the functional equation (|1.2)), see
[6, [30], BT [33].

Especially, in 2017, Fassi et al. [20] presented some hyperstability results of the biadditive functional equation

fletyz—w)+ flx—y 2+ w) =2f(x,2) = 2f(y, w)

on restricted domain by using the fixed point theorem of Brzdek et al. [13] (Theorem 1) and obtained some inequalities
characterizing bi-additive mappings and inner product spaces.

In this paper, we present some results on the hyperstability of the functional equation (|1.2)) by using the fixed
point theorem in function spaces, which have been derived from Brzdek et al. [I3].

Before proving our main results, we state the fixed point theorem which is a useful tool for proving our main
results.
Let A, B be nonempty sets. We denote the family of all mappings of B into A by A® and use the following three

conditions:

(H1) W is a nonempty set, fi, fo, -, fr : W — W and Ly, La,--- , L, : W — R, are given mappings;
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(H2) Y is a Banach space and 7 : YW — YW is a mapping satisfying the inequality:

E

|7¢(x) Z 2)[€(fi(x)) — p(fi(@)]

for all &, p € YW and z € W;
(H3) A:RY — R+W is a mapping defined by

for all § € RY and r € W.

The following theorem was proved in complete metric spaces by Brzdek et al. [13]:

Theorem 1.1. [I3] Assume that the condition (H1)-(H3) are satisfied and the functionse: X - Ry and p: W = Y
fulfil the following two conditions:

[T (z) = p()]| < e(2)

= Z Ale(z) < 00
n=0
for all z € W. Then there exists a unique fixed point ) € YW of T such that

lp() = (@)l < e*()

for all x € W and

for all x € X. Moreover, we have

P(x) = lim T"p(z)

n—oo

for all x € X.

2 The Hyperstability Result I

Let X be a normed space, Y be a Banach space and let X* = X\{0}. First, we give some lemmas for our main
results.

Lemma 2.1. Let m,l € N. Define a mapping 7 : YX XX~ o yX™xX" py
Té(r,y) =&, 2y) + 5E(ma, (2~ 2)y) + 261~ m)z, 2)
+ 56— m)z, (2~ 2)y), (21)
and define a mapping A : Rf*xx* — Rf*xx* by
Ao(z,y) zéé(maﬁ, 2ly) + %6(mm, (2-20y) + %5((1 —m)z, 2y)
1

+ 55((1 —m)z, (2 —2l)y) (2.2)

forall z,y € X*, £ € YX and d € Rf* *X" Then the conditions (H1)—(H3) hold for the mappings 7 and A.

Proof . For any &, 1 € YX *X" and x,y € X*, we obtain that
1T&(x, y) = Tulz, y)lly

= H%f(mx, 2ly) + %E(mx, (2 —2)y) + %E((l —m)z, 2ly)
* %5((1 —m)z, (2= 2l)y) - (%u(mx, 2ly) + %M(mx, (2 - 20)y)

+%M((1_m)x,2ly)+%ﬂ((l_ m)z, (2 = 2l)y )H
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- H%f(mx, 2ly) - %M(mm, 2ly) + %f(mx, (2 —2l)y)
_ %M(ml‘, (2 — 21)?}) + %f((l — m)x, 2ly) — %u((l _ m)x, 2ly)

+ 361 = m)z, (2~ 2)y) = (1~ m)z, (2~ 20)y)|
:Héifuﬂm%%w+%@—ﬂﬂm%@420w

(€~ (1~ m)a, 20y) + (€~ m)(1 — m)a, (2— 20|
E~ WAl + 1€~ h 9l

16~ m el + 5 1E — ) fala Dl

Y

Y

— [\3“—‘

1
< Z
-2

+

N |

Z (@I - w) filz,y)lly,

where
(g_ﬂ)(x’y) Zf(%y)—ﬂ(%y)y fl(xay) = (mx,ZZy),
fo(z,y) = (mz, (2 -20)y), fs(z,y) = ((1 —m)z,2ly),
fa(z,y) = (1 —m)z, (2 - 2))y)
and

1
Ll(xvy) = LQ(muy) = Lg(l',y) = L4($7y) = 5
for all z,y € X*. So, the condition (H2) is valid for 7 with k =4 and W = X* x X*.
It easy to show that the mapping A has the form described in the condition (H3) with k =4 and W = X* x X*
by above notation. This completes the proof. [

Lemma 2.2. If f: X* x X* — Y satisfies

|2 (240,55 ) = S02) = flarw) = 10.2) = Flov)
Y
< Ol Iy el ol (23)

for some 0, p,q,r,s € R with 6 > 0, then , for any m,l € N\{1},

1f(@,y) = T f(x,9)|ly <em(z,y) and A} en(z,y) < nhem(z,y)

for all z,y € X* and n € NU {0} such that 7,,, A, satisfies (2.1), (2.2]), respectively, where
9 T S TS
em(@,y) = gmP(m —1)1(20)"(2 - 2) (5" Ny 1" (2.4)

and
N =mP T2 4 mPTY(2] — 2)" 5 4 (m — 1)PHI(20)" 5
+ (m — 1)PFT9(2] — 2)" s, (2.5)
Proof . Replacing (z,y, z,w) = (mz, (1 — m)z, 2ly, (2 — 21)y) where for any m,l € N\{1} in (2.3)), we obtain

HZf(mx—F (1 —m)x, me+ (2=2) y)

— flma, 2ly) — f(ma (27m>> F( = m)w,20y) = F((1 = m)a, (2= 20y)|
< Ollma| (1 = )z % 12015112 = 20l

Y
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and
1 1
| £@) = 5 e, 21) = 5 F(ma, 2= 20)y)

1 1
— S H( = m)w,20y) = S A= m)w, (2= 2A)y)||

IN

0 T S
g Imal5 1L = m)z|% 120yl [1(2 = 20)y %

0 T s rTTs
" (m = 172" (21 = 2)* [ ly 15 (2.6)

for all z,y € X*. Define an operator Ty, : Y X *X" 5 yX"™xX" py

Tonla,y) = 5€(m, 2y) + SE(me, (2~ 20)y) + S6(1 )z, 2)
+ %5((1 —m)x, (2 — 2l)y) (2.7

for all ¢ € YX " and z,y € X*. It follows from (2.4)), (2.6) and (2.7) that we have
Hf(mvy) - Tmf(l'ay)HY < Em(xvy)
for all 2,y € X* and m, € N\{1}. Define an operator A, : RY *X" — RE X" by

1

And(z,y) ==6(max, 2ly) + %5(mx, (2-20)y) + %5((1 —m)x, 2ly)

2
1

+ 55((1 —m)z, (2 —2)y) (2.8)

for all z,y € X* and 6 € Rf*xx*. Next, we will show that, for any z,y € X* and m,l € N\{1},

Anem(@,y) < npem(z,y) (2.9)

for all n € NU{0}. It is clear that the inequality (2.9) holds for n = 0. Next, assume that ([2.9) holds for some
n =k € N, that is,
Abem(@,y) < nhem(z,y).

Then it follows that

Abem (@, y)
= An(Apem(z,y))
1 k 1 k 1 k

+ %Aﬁlgm((l —m)x, (2 — 2l)y)

1 1 1

2
+ gihen (1= m)a, (2 2)y)
= b (e, 21y) + (e, (2 20)9) + (1 — m)z, 2y)
+em((1 = m)a, (2 - 20)y))
1 k

0
= i (G (m = 1)1(20)" (20 = 2)°| a3 21y

9 TS
+ 5P (m — 1)7(20)" (21 = 2 mal |52 — 2yl

9 TS
+5mP(m = 1)7(2)" (2 = 2)*|(1 = m)2 5|20y |15
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9 ™ S TTSs
o SmP(m = 1120720 = 2)°[(1 = m)a |5 2 — 2]
19 T S TS

— 5 - P m = 110" (20 = 2)°nh, (lmal 5 2ty

+ a2 = 2l + (1 = m)a ]2ty

1= m)z 2 - 2Dy)

16 s
= 5+ 5P (m = 112" (20— 2)°h (P 5207
52— 2) g5+ m = 0P 20 5

+ (m = )Pl 5720 = 27 ly)

= 5 §mp(m - 1)q(2l)r(21 — 2)3||.’E||§(+q||yH;(+5nrkn(mp+q(2l)r+s
£ mPTI(20 = 2)75 4 (m — 1)PTI(20)7H 4 (m — 1)PH(2] — 2)79)
1
= Sem(@hnm = S em(@) <0l e (@)

for all x € X*. This implies that (2.9) holds for n = k 4 1, that is, (2.9) holds for all n € NU {0}. O
By using Lemma [2.I] and Lemma [2.2] we have the following hyperstability result:

Theorem 2.3. If f : X* x X* — Y satisfies (2.3]) such that p+¢ < 0 or r + s < 0, then f is a solution of the
functional equation (1.2]) on X*.

Proof . Suppose that p + ¢ < 0. Replacing (z,y, z,w) = (mz, (1 — m)z,2ly, (2 — 2l)y) where m,l € N with m > 2
and a fixed number [ € N\{1} in (2.3)), By the similar step of the proof of Lemma we have

1f(@,y) = T f (@, 9)|ly <em(z,y) and A} en(z,y) < nhem(z,y)

for all x,y € X* and n € NU {0} where Ty, Ay, e and 7, are defined by (2.7), (2.8), (2.4) and (2.5), respectively.
By Lemma we obtain that conditions (H1)—(H3) hold for the mappings T, and A,,. Since m > 2 and p+ ¢ < 0,
we obtain mPT? < 1 and (m — 1)P*? < 1, Indeed, we have

m—-1>2-1=1 = (m—1)P"7<1.
Then we have lim,, oo mPT9 = 0 and lim,, ;o (m — 1)PT4 = 0. Therefore, it follows that
[mPH9(20y)"+s + mPT9(20 — 2)"T5 + (m — 1)PT9(2])"+*

+ (m — 1)PF9(21 — 2)7+5] = 0,

lim 7, = lim
m—roo m—roo
Then there exists my € N3 such that
mPT(20y) 5 + mPTI(20 — 2)" T + (m — 1)PTI(2D)™5 + (m — 1)PT9(20 — 2)" T < 1

for all m > mg. It follows from (2.9)) that

* 3 n = n Em\T, Y
em(,y) = ZAmEm(xvy) <em(w,y) an = 1£7])
n=0 n—0 m

for all z,y € X* and m > myg. It follows from Theorem that, for each m > mg, there exists a unique solution
F, : X* x X* =Y of the following equation:

1 1 1
Fo(z,y) =§Fm(mx, 2ly) + §Fm(mm, (2-20)y) + §Fm((1 —m)z, 2ly)
1

+ 5Fm((l —m)z, (2 —2)y)

for all z,y € X* such that
em(2,y)

||f(1:,y) - Fm($7y)||y < 1— Nm
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for all x,y € X* and, moreover,
Fo(,y) = Tim T2 (x,y)

for all z,y € X*.

Now, we will show that F,,, satisfies the equation (1.2]) for all z,y € X* and m > mg. First, we show that, for each
m Z mo,

|27t (2 0. 557) = Tf (. 2) = Tof (o) = T d (v 2) = T |,

<mmOllz % 215 w5 (2.10)

=)

for all z,y,z,w € X* and n € NU{0}. It follows from ([2.3) that, for all z,y, z,w € X*, the inequality (2.10] holds in
case n = 0. Assume that, for all z,y, z,w € X*, (2.10) holds for some n = k € N, that is,

ZEE) TS 2) — T w) — TES(5,2) — TS, w),

<im0l lyl% 2l el -

HQTn’if(w +y,

Then we have

zZ+w

ST T A 2) - T ) = TR G, 2) - TE ()|

= |27 (Tt (2w sz)) T T, 2) ~ T (Th )
=TT, 2) = T T w) |

= (57 s (mee +w).2(ZE2)) + L7 (e +0), @ - 2 (5Y))
+%Tﬁf((l—m)(x+y),2z(z+2w))
+%Tﬂ’if((lfm)(x+y),(2—2l)<'z;w))>

~ (§Thrma,212) + ST fOma, (2~ 20)2)

HzT’““f(x +y,

+ 1T,jzf(u —m),20z) + %T,,’if((l —m)a, (2~ 21)2))

M\HM\HL\D\HM‘HM\H/‘\ N = /N N~ /N
N | —

f(mz, 2lw) + %7’,5]”(7719:7 (2 —2l)w)

N |
3=

4= m)e, 200) + STAF((1 = m), (2 - 20)w))
TS (ny,212) + ST (my, (2= 20)2)
P = m)y,202) + STEF((1 = m)y, (2~ 20)2))
T Flmy, 20w) + ST fmy, (2 21))
P m)y, 20) + LT = m)y, 2~ 20w))|
(277 (i + ), 21 (F5))) — STk e, 202) — ST e, 210)
o (my, 20z) — iTn’if(m% 2lw)
7 (m ), @2 - (Z““))) % Thf(ma, (2 20)2)

f(mz, (2 —2D)w) —

+

3

DN | =
3=

+

3=

+

3=

+
/N

[\

1

3=
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24w

+%(2Tn’§f((1—m)(sc+y),2l( 5 )))—%T,Zf((l—m)xﬂlz)

— STEA( = m)a,2hw) — STAF(L = m)y, 202) = STAF(1 = m)y,21w)

Z4+w

+ %(QTn'if((l —m)@+y),2-20)(57))) - %Tn'if((l —m)z, (2 - 20)z)
— SRR = m)e, (2 = 20)w) — SR~ m)y, (2 20)2)

TR = myy, 2~ 2|

ST
ST (mte 49, 20(Z20))) = T fm 202) — T plmar, 200

— T fmy, 202) = T f (my, 20w)||

+% ’(27;§f<m(z+y),(2—21)< ))) — T Fma, (2 — 20)2)

— T, (2 = 20)w) = Ty, (2 = 20)2) = T f(my, (2 = 20)w)|

2| T (- m) . 2(FE))) - ThA(Q - mye22)

= T = ), 20w) = TAF(( = m)y, 202) = ThF((1 = m)y,20w)|
1

+ || (2T (= mye + ), 2 - 2 (F52)))
— T F(L=m)z, (2= 20)2) = T f((1 — m)a, (2 — 2)w)
— TEF(L = m)y, (2= 20)2) = TEF(L = m)y, (2 20w)|

IN

z+w

Y

Y

1 s S
< §nfn9||mff||§(IImyII§(H2lZ||xH2ZWIIX
1 T S
+ §n519||m$||§(||my||§(|\(2 —20)2|%[1(2 = 2Dw]l%
1 T S
+ 5777’%9”(1 —m)z|[% (1 —m)y||§ |20z [[20w]| %
1 s
+ 5777'%9”(1 —m)z |51 — m)yll% (2 — 20) 2% [|(2 — 2D)w(/X
< i Ollz % Nyl % N2 1% ol 5 (m”“’(%)”s +mPra(2] — 2)F
+ (m — 1)PFU)TS 4 (m — 1)PFe(2] — 2)T+S)

= Ol Nyl 20wl Semm = it Ollal ly % 11 llwll -

2o (14, 25 Y) = Fo(,2) 4+ Pl w) + Py, 2) + By, w)

Thus the inequality (2.10]) holds for all x,y, z,w € X* and n € NU {0}. Letting n — oo in (2.10)), it follows that

for all z,y, 2z, w € X* and m > mg. Therefore, we obtain a sequence {F,, }m>m, for the bi-Cauchy-Jensen functional

equations on X\{0} such that

)~ Fuelly < 220

for all z,y,z,w € X* and m > myg. Since

lim 7, =0, lim &,(z,y)=0
m—00 m—0o0

for all z,y € X*, taking m — oo in (2.11)), f satisfies the equation (|1.2)) on X*.

(2.11)

In the case r + s < 0, we have the same result for each | € N with [ > 2 and a fixed number m € N\{1}. This

completes the proof. [
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Let X be a normed space, Y be a Banach space and let X* = X\{0}. First, we give some lemmas for our main

results.
Lemma 3.1. If a mapping f: X x X — Y satisfies

24 (24 9. 555) = #@.2) = Fww) = F02) = Flw)|
<O + loll% + 121 + wls),

Y

where p,q,7,s € R, then , for any m € N,
1f(@,9) = T f (@, 9)lly < em(z,y) and  Afem(z,y) < npem(w,y)
for all z,y € X* and n € NU {0} such that 7,,, A,, satisfies (2.1), (2.2]), respectively, where
9 I S
em(2,y) = 5 ([malx + (1 = m)z| + [12my|x + (2 = 2m)yllx)

and

Dm = 2(m —1)P°  for pg = max{p,q,r,s}.

Proof . Replacing (z,y, z,w) = (mz, (1 — m)z, 2my, (2 — 2m)y) with m € N in (3.1)), we obtain

20y £ Q220 o, 2my) — fme, (2 2m)y)

— F(1 = m)z,2my) = (1= m)a, (2 = 2m)y)||
< Olmall + 11 = m)allg + |2myll% + 12 - 2m)yll%)

H?f(mx + (1 —m)z,

and
|6 9) = 5 e 2my) 2 flma, 2~ 2m)y)

1 1
— S H( = m)e,2my) = S7((1 = m)z, 2= 2m)y) |

< S (llmall% + (1= m)z(l% + 2myll% + (2 = 2m)y[%)

N D

for all z,y € X*. Define an operator Ty, : Y X XX 5 yX™xX" py

Tmé(z,y) =5&

—~

ma, 2my) + S €(me, (2. 2m)y)

DN | =

(1~ m)z, 2my) + SE((1—m)z, (2~ 2m)y),

+
[N

for all ¢ € YX" and z,y € X*. It follows from (3.4) and (3.5)) that we have the following:
Hf(xay) - Tmf(xay)HY < Em(x’y)
for all z,y € X* and m € N. Similarly, we define a mapping A,, : Rf* xXT Rf* xXT py
1 1 1
And(z,y) zié(mx, 2my) + ié(mx, (2—-2m)y) + 5(5((1 —m)x, 2my)

0((1 —m)x, (2 — 2m)y)

1
2

for all z,y € X* and € Rf*XX*. Next, we will show that, for any z,y € X* and m € N,

Avem(z,y) < npem(e,y)

(3.1)

(3.4)
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for each n € NU {0}. Tt is clear that the inequality (3.7 holds for n = 0. Next, assume that (3.7)) holds for some

n =k € N, that is,
Af‘;‘LEm ($7 y) S anf‘?m(x, y)
Then it follows that
A (2,y)
= Am(Aanm(x, Y))

= %A@am(mx, 2my) + %Agem(mx, (2 —2m)y) + %A%é‘m((l —m)x, 2my)
+ Ak en((L—m)a, (2~ 2m)y)
< b m(ma, 2my) + Lok e, (2~ 2m)y) + Sl (1 — )z, 2my)
+ (L= m)a, (2~ 2m)y)
< Sl (e, 2my) + e, (2 = 2m)y) + (1 = )2, 2my)

+ (1= m)z, (2 2m)y))

= o (S Umlma)% + 11— m) ) + 2m(2my)
412~ 2m) my)3)
+ S (mlma)l + 10— m)ma) % + 2m((2 — 2m)y)]
2 - 2m)(2 - 2m)p)l%)

1=m)((1 =m)a)|% + [2m(2my)|x

><<ﬁ

£ 2 (lm((@ —m)) [ + |

—~

1 = 2m)@my)l3) + 5 (Im((1 = m)a) [ + 1 - m)(1 = m)2)]%
+lom((2 — 2my) 5 + 2~ 2m)((2 - 2m)y) %))
= Sl mPlmall +m? (1~ m)a

+@2m)"[[2my|x + 2m)°[|(2 = 2m)yll5 + mP[ma|f +m?[|(1 - m)z|%

+(2m = 2)"[12my|l + (2m = 2)°(|(2 = 2m)y||%
+ (m = 1P Imaz||% + (m — D1 —m)z|% + (2m)"[|2my| %
+(2m)°*[[(2 = 2m)yll% + (m — DP[ma|lx + (m = 1)7[[(1 = m)z|%
+(2m = 2)"[12my|lx + (2m = 2)°(|(2 = 2m)y||%)
1,46 - ”
= S0y (P [mall +m? (1= m)z|§ + (2m)"[[2my|x

+@2m)*(|(2 = 2m)y[l% + mPIma|x +m?|(1 —m)z|% + (2m)"]|2my|x

I
+(2m)°*[[(2 = 2m)yl% + (m — DP[ma|lx + (m = 1)?[[(1 = m)z|%
+ (2m = 2)"[12my + 2m = 2)°[[(2 = 2m)ylx

+ (m = 1P Imaz||% + (m = D1 —m)z||%

+ (2m = 2)"[|2my| + (2m = 2)°[[(2 = 2m)y|%)

0 T T S S
= Mgy (P [ma | +mI||(1 = m)z|§ + @m)"[[2my [ + 2m)*[[(2 = 2m)y[lx
+ (m = 1P Ima||% + (m — DL —m)z|% + (2m — 2)"|[2my||%
+(2m = 2)°[1(2 = 2m)y(l%)
0
< gy (P maz | +m[(1 = m)a|s +m? | 2myl[x +m?|[(2 = 2m)yll%

+ (m = 1) Ima||% + (m — D1 —m)z|%
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+ (m = 1P [2myl[x + (m = 1)™[|(2 = 2m)y| %)
< n'ﬁng((llmxl@ + (A =m)z|% + [12myllx + (2 - 2m)y[|5)m™
+ (Imall + (1= m)z[l% + [12mylx + 12 = 2m)yll%) (m — 1)7)
< by (malf + 10— m)elf + [2myll + 2 — 2m)yl5) e + (m — 1))
<ty Em(@, ) (mP + (m = 1)P*) < e, y)(2(m — 1)P)
=1y em(2,y)
for all z,y € X*. This implies that holds for n = k + 1, that is, holds for each n € NU {0}. O

Theorem 3.2. If a mapping f : X x X — Y satisfies (3.1)) where p,q,7,s < 0. Then f is a solution of the equation
(1.2) on X*.

Proof . Replacing (z,y, z,w) = (mx, (1 — m)x,2my, (2 — 2m)y) with m € N;m > 2 in (3.1) and the similar step of
the proof of Lemma [3.1] we have

1 (2, y) = T f (2, y)lly <em(z,y) and  Ajen(z,y) < npem(e,y)

for all x,y € X* and n € NU {0} where Ty, Ay, e and 7, are defined by (3.5)), (3.6), (3.2) and (3.3), respectively.
By Lemma we obtain that conditions (H1)—(H3) hold for the mappings 7,, and A,,.

Since limy, o0 2(m — 1)P° = 0, it follows that there exists mo € N such that
Mm <1

for all m > mg. From (3.7)), for each m > mg, we have

. — \n — . _ Em(z,y)
Em(ﬂj,y) = ZAmsm(Ivy) < 5m(£li,y) an = ﬁ
n=0 n=0 m

for all z,y € X*. It follows from Theorem [I.I]that, for each m > my, there exists a unique solution F,,, : X*x X* —» Y
of the following equation:

Fon(,5) =g Fon (i 2my) + 3 Fy(ma, (2 2m)y) + 3 F((1 ~ m), 2my)
+ %Fm((l —m)x, (2 — 2m)y)

for all x,y € X* such that
em(2,Y)
||f(x,y) - Fm(may)”Y < ﬁ

for all x,y € X* and, moreover, we have
Fm(iL’, y) = LH;O anqlf(xa y)

for all z,y € X*.

Next, we will show that F),, satisfies the equation (1.2) for all z,y € X* and m > my. First, we show that, for any
m > mo,

o7t (w4, 255) = Tod(o,2) = T w) = Tt f . 2) = Tatf ()|
<Ol + Iyl + 2l + ) (33)

for all z,y,z,w € X* and n € NU {0}. It follows from ({3.1)) that, for all z,y,z,w € X*, the inequality (3.8)) holds in
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case n = 0. Assume that (3.8)) holds for some n = k € N, that is,

o7ty (o0, 255) = T ) = T () = T (0, 2) = T f ()|
= |27 (T (4. 25) ) = T T (2,2)) = T T f (2, 0)

= Tl T (9 2)) = T T f (9, 0) |

(37 e+ 25 )) 4 7t (e -2 ()

yTar (= me 9. 2(55"))

+ %Tﬁf((l —m)(x+y),(2- 2Z)(Z;w)))
;
TR e, (2 20)2))

T fma, 202) + ST f(ma, (2~ 20)2) + S TAF((1L— m)a, 212)

/N

—_

f(mz, 2lw) + %Tn’fbf(mx, (2 —20)w)

N |
RIES

3=

+

P = m)a, 20w) + STEF(( —m)z, (2~ 20)w)

T my, 212) + ST (my, (2.~ 21)2)

+
N | =

A = m)y, 202) + STEF(1—m)y, (2 - 20)2)

{ F(my, 20w) + ST (my, (2~ 20)w)

I = m)y,20w) + STEF(( —m)y, (2~ 20)w))

z4+w

(2Tn’§f(m(x + ), 21( 5 ))) - %T,,’if(mx, 20z) — %Trﬁf(mm, 2lw)

{ Flmy,202) — ST f(my, 20w)

DN | =
3

+

I,

3

45 (o787 (i + ), 2 20 (FE2))) - STk Flm, (2 - 20)2)
— ST, (2~ 20)w) — ST f(my, (2~ 20)2) — ST flmy, (2~ 2)uw)
5 (o7 (0 =m0, 2(550))) — S TR~ e, 212)

AL = m), 20w) — STAF(~m)y, 212) — STEF((1 ~ m)y,20)

))) - %Tn’if((l —m)z, (2 - 20)2)

zZ+w

= o] = b = b = o] = o] — o] = o] = N o — o= — o] = —

2751 (1= m) (@ + ), @ - 20)(

— ~TEH( = m)z, (2 — 2D)w) — %Tn’fbf((l —m)y, (2 — 21)z)
— ST = m)y, (2 = 20)w)||
<o s (e + 9. 20 (F5))) T flom 22) — T pmar, 210

— T (my, 202) = T (my, 20w)|

24w

45 (e +0). 2 =20 (F52))) - Thsome, (2 20)2)
— T f(ma, (2 — 20)w) — T, f(my, (2 — 20)2) — T, f(my, (2 — QZ)w)H

Y
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o (0 - my@ + o), 20(2E0))) TR - m),212)
— TEF(( —m)z, 2lw) — TEF((1 —m)y,21z) — TEf((1 —m)y, ZZw)HY

o] (@ - my@+ o). @ - (FE))) - ThAQ — myz, 2 - 20)2)
= T (L= m)x, (2 = 2Dw) = Ty f((1 = m)y, (2 - 20)z)
— T A (L =m)y. (2 = 20w)|

Y
1
< 5 m(mal + [myl% + [12mz]% + [[2maw]%))
1 T S
+ 5 (i O(Imal + Imylls + 112 = 2m)2|% + 12 = 2m)w|%))

2
1 T S
+ 5O = m)zll + (1= m)yl& + [12m2llk + [ 2mw]%))
1 T S
+ 5O = m)zlly + (1= m)yl% + 112 = 2m)2llx + 12 = 2m)w]%))

< bl el + mlyl + 2m) el + (2m)
+mPllel +mlyll% + 2m = 2)"[l2]%x + (2m — 2)°[Jw]|%]
+ (m = DP|lz[% + (m = 1)%lyll% + (2m)"[|2]% + (2m)*[|lwll%
+ (m = DPllzl% + (m = Dyl + (2m = 2)"||2[% + (2m — 2)*|w]X]
< %n%[m”llﬂlﬁ +mAyll% + @m)" |2l + (2m)°|w]%
+mPllell +milyll% + 2m)" |zl + 2m)*[lwll%]
+ (m = DP[lzl% + (m = Dyl + (2m = 2)"[2]% + (2m — 2)*||lw]%
+ (m = DPllzl% + (m = Dyl + (2m = 2)"||z[% + (2m — 2)"|w]X]
= Bl(m? |l2]|% +m?yll% + 2m)" |||k + (2m)*[w]%)
+ ((m = DPllz)% + (m = Dlyll% + (2m = 2)"[|2[% + (2m — 2)°[lw][%)]
< D Bl(mP ][5 + mP [lyl|% +mP |zl +mPlw]%)
+ ((m = D7zl + (m = 1)Pllyll% + (m = 1P°[lz[x + (m — )P [Jwl|%)]
< mm0(l2l% + yl% + I21% + lwll%) (mPe + (m — 1)P)
< m 82l + Iyl + l21% + lwll%)(2(m — 1)7)
=m0z (% + 1y 1% + 121% + lwll5)mm
=m0l l% + lull% + 1215 + lwll%)-
Therefore, the inequality holds for all z,y,z,w € X* and n € NU{0}. Letting n — oo in , it follows that

z4+w
2

for all z,y,2,w € X* and m > mg. Therefore, we obtain a sequence {F,, }m>m, for the bi-Cauchy-Jensen functional
equation on X\{0} such that

2F,, (:c + ) = Fon(,2) + Foo(z,0) + Fi(y, 2) + Fin(y, w)

1) = o)y < 5520 (3.9

for all x,y,z,w € X* and m > myq. Since

lim 7, =0, lgn em(z,y) =0

m—ro0

for all z,y € X*, taking m — oo in (3.9)), the mapping f satisfies the equation (1.2)) on X*. This completes the proof.
O

Corollary 3.3. Let F: X** 5 Y bea mapping such that F(xo,yo, 20, wo) # 0 for some xg, yo, 20, wo € X*,

1F (2, y, z,w)lly < Olleli vl %zl lwlk (3.10)
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and

1F (@, y, z,w)lly <0(=l% + lyll% + 2l% + lwllk) (3.11)
for all z,y,z,w € X*, where 0 > 0 and p,q,r,s € R. Assume that p,q,r,s with p+¢ < 0orr+s < 0in (3.10) and
p,q,7,8 < 01in (3.11). Then the functional equation

z+w
9(@,2) + g(z.w) + g(y, 2) + 9(y, w) + Fla,y,2.w) = 29 (v +y, ) (3.12)
for all z,y, z,w € X* has no any solution in the class of mappings g : X* x X* —» Y.

Proof . Suppose that g : X* x X* — Y is a solution of the equation (3.12)), that is,

24w

2
Then (3.10]) or (3.11)) holds. Indeed, we have

29 (x +, ) —g(x,2) — g(x,w) — g(y,2) — 9(y,w) = F(z,y, z,w).

H2g(:c +, HJ) —g(z,2) — g(z,w) — g(y,2) — g(y,w)H

2 Y
:HF(‘r7ya Z7w)||y
<6)al% % =1 ol
or
Z+w
20 (2 + 5. 557) = 9(@,2) = gla,w) = 9(y.2) = gy w)||

:HF(%Z/’Z,U))”Y
<O(lzl% + lyll% + lzl% + l[wll%)

for all z,y,z,w € X*. From Theorem [2.3] and Theorem [3.2] it follows that the mapping g is the solution of the
equation (1.2)) on X*. Thus it follows that

29 (i + 4, 25 ) = gl 2) + gl w) + 9(y: ) + 9(yw)

for all z,y,z,w € X*, that is,

zZt+w
1P @y, zwlly = [20(z + 3. 557) = 9(@,2) = g(@,0) = 90y, 2) = gy, w)|, =0

for all z,y,z,w € X*, which implies that F(xq,yo, 20, wo) = 0. This is a contradiction. This completes the proof. [
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