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Abstract

In this paper, we consider the inverse spectral problem for the impulsive Sturm-Liouville differential pencils on [ 0, π]

with the Robin boundary conditions and the jump conditions at the point
π

2
. We prove that two potentials func-

tions on the whole interval and the parameters in the boundary and jump conditions can be determined from a

set of eigenvalues for two cases: (i) The potentials are given on
(
0,
π

4
( α+ β)

)
. (ii) The potentials is given on( π

4
( α+ β) ,

π

2
( α+ β)

)
, where 0 < α < β < 1 and α+ β > 1, respectively.
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1 Introduction

Consider the following impulsive Sturm-Liouville problem:

ℓy := −y
′′
+ q(x)y (x) = λρ (x) y (x) , x ∈

(
0,
π

2

)
∪
(π
2
, π

)
, (1.1)

with the boundary conditions

U (y) := y
′
(0)− hy(0) = 0, (1.2)

V (y) := y
′
(π) +Hy(π) = 0, (1.3)

and the jump conditions

y
(π
2
+ 0

)
= ay

(π
2
− 0

)
, (1.4)

y
′
(π
2
+ 0

)
= a−1y

′
(π
2
− 0

)
+ γy

(π
2
− 0

)
,

where λ is the spectral parameter, q(x) is a real-valued function in L2 (0, π) ,
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ρ(x) =

 α2, 0 < x <
π

2
,

β2,
π

2
< x < π,

α, β, h,H, a, γ are real, and a > 0, |a− 1|2 + γ2 ̸= 0, 0 < α < β < 1, α+ β > 1.

Inverse spectral problems consist in recovering the coefficients of an operator from their spectral characteristics. The
first results on inverse problems theory of classical Sturm-Liouville operator where given by Ambarzumyan and Borg
([3, 12]). Inverse Sturm-Liouville problems which appear in mathematical physics, mechanics, electronics, geophysics
an other branches of natural sciences have been studied for about ninety years ([21, 22, 25, 26, 36] and the references
there in).

The half inverse Sturm-Liouville problem which is one of the important subjects of the inverse spectral theory has
been studied firstly by Hochstadt and Lieberman in 1978 [27]. They proved that spectrum of the problem

−y
′′
+ q(x)y = λy, x ∈ (0, 1) ,

y
′
(0)− hy(0) = 0 = y

′
(1) +Hy(1),

and potential q (x) on the

(
1

2
, 1

)
uniquely determine the potential q (x) on the whole interval [0, 1] almost everywhere.

Since then, this result has been generalized to various versions. In 1984, Hald [6] proved similar results in the case
when there exist a impulse conditions inside the interval. He also gave some applications of this kinds of problem to
geophysics. Recently, some new uniqueness results in inverse spectral analysis with partial information on the potential
for some classes of differential equations have been given (see for example [8, 23, 28]) . These kinds of results are known
as Hochstadt and Lieberman type theorems. In particulary, in the work [36] studied the inverse spectral problem for
the impulsive Sturm-Liouville problem on (0, π) with the Robin boundary conditions and the jump conditions at the

point
π

2
. They proved that the potential q (x) on the whole interval and the paremeters in the boundary conditions

and jump conditions can be determined from a set of eigenvalues for two cases:

i) The potential q (x) is given on

(
0,

1 + α

4
π

)
,

ii) The potential q (x) is given on

(
1 + α

4
π, π

)
, where 0 < α < 1,

and also shown that the potential and all the parameters can be uniquely recovered by one spectrum and some
information on the eigenfunctions at some interior point. Similary problem studied in [9]. In particulary, they discuss

Gesztesy-Simon theorem and show that if the potential function q(x) is prescribed on the interval

[
π (1− α)

2
, π

]
for

some α ∈ (0, 1) , then parts of a finite number of spectra suffice to determine q(x) on [0, π] .

2 Preliminaries

Let φ(x, λ) and ψ (x, λ) be the solutions of the equation (1.1),satisfying the initial conditions φ(0, λ) = 1, φ′(0, λ) =
h, ψ (π, λ) = 1, ψ′(π, λ) = −H and the jump condition (1.4). Denote

σ (x) =

x∫
0

√
ρ (t)dt, λ = k2, τ = Im k.

Theorem 2.1. The solution y(x, λ) of impulsive equation (1.1) with initial conditions y(0, k) = 1, y′(0, k) = ik and
jump conditions (1.4) can be expressed by the formula

y (x, λ) = r+eikσ(x) + r−eik(απ−σ(x)) +

σ(x)∫
−σ(x)

R (x, t) eiktdt, (2.1)
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where r± =
1

2

(
a± α

aβ

)
and the kernel R(x, t) satisfies the inequality

σ(x)∫
−σ(x)

|R (x, t)| dt ≤ c
{
et(x) − 1

}
,

with t(x) =

x∫
0

(x− s) |q(s)| ds.

The kernel R(x, t) of the integral representation (2.1) has both partial derivatives DxR(x, t), DtR(x, t) belonging

to the space L1 (σ (x) ,−σ (x)) for every x ∈
[
0,
π

2

)
∪
(π
2
, π

]
and the following relations hold:

i)
d

dx
R(x, σ (x)) =

r+

4
√
ρ (x)

q(x),

ii)
d

dx

{
R(x, t)

∣∣∣t=απ−σ(x)+0
t=απ−σ(x)−0

}
=

r−

4
√
ρ (x)

q(x),

iii) R(x,−σ (x)) = 0.

Moreover, if q(x) is differentable on (0, π), than R (x, t) satisfies the partial differential equation

ρ (x)Rtt (x, t)−Rxx (x, t) + q(x)R(x, t) = 0, (0 ≤ x ≤ π, |t| ≤ σ (x)).

Proof . Similar to the proof of [20], so we omit the proof.

It is easy to verify from the integral representation (2.1) above that the solution φ (x, λ) following asimptotic

relation is valid as |k| → ∞. For
π

2
< x < π,

φ(x, λ) = r+ cos kσ(x) + r− cos k(απ − σ (x)) +
h

kα

{
r+ sin kσ(x) + r− sin k(απ − σ (x))

}
+ (2.2)

+O
(
k−2 exp (|τ |σ (x))

)
,

φ
′
(x, λ) = −kr+β sin kσ(x) + kr−β sin k(απ − σ (x)) +

h

α
β
{
r+ cos kσ(x)− r− cos k(απ − σ (x))

}
+ (2.3)

+O
(
k−1 exp (|τ |σ (x))

)
.

Similarly, for the solution ψ (x, λ) following asimptotic relation hold as |k| → ∞. For 0 < x <
π

2
,

ψ(x, λ) = R+ cos k(σ(π)− σ (x)) +R− cos k(βπ − (σ (π)− σ (x))+ (2.4)

+
1

k

{(
H

β
R+ +

γ

α

)
sin k (σ(π)− σ(x)) +

(
H

β
R− +

γ

α

)
sin k (βπ − (σ(π)− σ(x)))

}
+

+O
(
k−2 exp (|τ | (σ (π)− σ (x))

)
,

ψ
′
(x, λ) = kαR+ sin k(σ(π)− σ (x))− kαR− sin k(βπ − (σ (π)− σ (x)))− (2.5)

−
{(

H

β
R+ +

γ

α

)
αk cos k (σ(π)− σ(x)) +

(
H

β
R− +

γ

α

)
αk cos k (βπ − (σ(π)− σ(x)))

}
+

+O
(
k−1 exp (|τ | (σ (π)− σ (x))

)
,

where R± =
1

2

(
1

a
± βa

α

)
. □
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Definition 2.2. It is easy to verify that if y(x) and z(x) satisfy equation (1.1) and impulsive condition (1.4), then
⟨y, z⟩ is independent of x, and

⟨y, z⟩
∣∣
x=π

2 −0 = ⟨y, z⟩
∣∣
x=π

2 +0 .

Denote
∆(λ) = ⟨φ,ψ⟩ = V (φ) = −U(ψ). (2.6)

The function ∆(λ) is called the characteristic function of L, which is entire in λ, and it has an at most countable
set of zeros {λn}n≥0.

∆(λ) = ∆0(λ) +

σ(π)∫
0

R̃ (π, t) cos ktdt, (2.7)

where ∆0(λ) = φ
′

0(x, λ) +Hφ0(x, λ),

φ0(x, λ) = r+ cos kσ(π) + r− cos k (απ − σ (π))+

+
h

kα

{
r+ sin kσ (π) + r− sin k (απ − σ (π))

}
,

⟨φ (x, λ) , ψ (x, λ)⟩ := φ (x, λ)ψ
′
(x, λ)− φ

′
(x, λ)ψ (x, λ).

Lemma 2.3. The following statements hold:

i) The zeros {λn}n≥0 of the characteristic function ∆ (λ) coincide with the eigenvalues of the boundary value
problem L.

ii) The functions φ (x, λn) and ψ (x, λn) are corresponding eigenfunctions and exists a sequence {βn} , βn ̸= 0,
n = 0, 1, 2, ..., such that

ψ(x, λn) = βnφ (x, λn) . (2.8)

Next, we denote by L2 ((0, π) ; ρ (x)) a space which has the inner product

(φ,ψ) =

π∫
0

ρ (x)φ(x, λ)ψ(x, λ)dx.

Lemma 2.4. The eigenvalues {kn}n≥0 of the problem L are real and simple. The eigenfunctions corresponding to
the different eigenvalues are orthogonal in the weighted space L2 ((0, π) ; ρ (x)) and for sufficiently large values of n,
the eigenvalue kn has the following behavior

kn = k0n +
dn
k0n

+
kn
k0n
, (2.9)

where, λ0n are zeros of ∆0 (λ) = φ′
0(π, λ) +Hφ0 (π, λ) , dn is bounded and kn ∈ ℓ2,

k0n =
nπ

σ (π)
+ θn, sup

n
|θn| < +∞.

Proof of lemmas similarly to the proof of [20], so we omit the proof. Let αn (n ≥ 0) be the normalized constants,
which are defined as

αn :=

π∫
0

ρ (x)φ2 (x, λn) dx for all n ≥ 0.
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Lemma 2.5. The following relation holds:
•
∆(kn) = −2αnβnkn (2.10)

where
•
∆(kn) =

(
d

dλ
∆(λ)

)
k=kn

, βn = − [φ (π, kn)]
−1
.

Proof . The functions φ (x, k) and ψ (x, kn) are solutions of the equation (1.1), then

−φ
′′
(x, k) + q (x)φ (x, k) = k2ρ (x)φ (x, k) ,

and
−ψ

′′
(x, kn) + q (x)ψ (x, kn) = k2nρ (x)ψ (x, kn) .

Multiplying the two equations by ψ (x, kn) and φ (x, k), respectively, and subtracting the second equation from the
first equation, it follows that

d

dx

[
φ (x, k)ψ

′
(x, kn)− φ

′
(x, k)ψ (x, kn)

]
= (k2 − k2n)ρ (x)φ (x, k)ψ (x, kn) .

Integrating the above equality from 0 to π and considering the discontinouty point, we can obtain that

(k2 − k2n)

π∫
0

ρ (x)φ (x, k)ψ (x, kn) dx = −∆(λ) .

Dividing the two sides by k2 − k2n and letting k → kn yields

−
•
∆(kn) =

π∫
0

ρ (x)φ (x, kn)ψ (x, kn) dx.

Combining (2.8) with the definition of αn, we arrive at (2.10). In particular, it follows from (2.10) that all
eigenvalues kn are simple.

Let be δ > 0 and fixed. Define Gδ :=
{
k ∈ C :

∣∣k − k0n
∣∣ ≥ δ, n = 1, 2, ...

}
. The following inequality can be deduced

using the asymptotic formula for ∆ (λ) ,

∆0 (k) ≥ C |k| exp(|τ |σ (π)), k ∈ Gδ, (2.11)

for some pozitive constant C. □

3 Main Results

Now we state the main result of this work. It is assumed in what follows that if a certain symbol s denotes an
object related to L, then the corresponding symbol s̃ with tilde denote the analogous object related to L̃.

Lemma 3.1. If kn = k̃n, n = 0, 1, 2, ... then σ (π) = σ̃ (π),that is the sequence {λn}n≥0 uniquely determines σ (π).

Proof of Lemma is easily obtained from the asymptotic expression of λn.

Lemma 3.2. The specification of the spectrum {kn}n≥0 uniquely determines the characteristic function ∆ (k) by the
formula

∆ (k) = σ (π) (k20 − k2)

∞∏
n=1

[
k2n − k2

(k0n)
2

]
, (3.1)

and the estimation
|∆(k)| ≥ Cδ |k| exp (|τ |σ (π)) , (3.2)
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holds for some Cδ > 0.

Proof . From (2.7) we have that ∆ (k) is an entire function of order one, and consequenly by Hadamard’s theorem
[17]

∆ (k) = C

∞∏
n=0

[
1− k2

k2n

]
, (3.3)

with some constant C. Because

∆0 (k) = −k2σ (π)
∞∏

n=1

[
1− k2

(k0n)
2

]
, (3.4)

then

∆ (k)

∆0 (k)
=

C

σ (π)

(
k2 − k20
k2k20

) ∞∏
n=1

(k0n)
2

k2n

[
1 +

k2n − (k0n)
2

(k0n)
2 − k2

]
. (3.5)

Taking representain of ∆ (k) and (2.9) into our account, we calculate

lim
k→+i∞

∆(k)

∆0 (k)
= 1, lim

k→+i∞

∞∏
n=1

[
1 +

k2n − (k0n)
2

(k0n)
2 − k2

]
= 1,

which imply

C = σ (π)
(
k20 − k2

) ∞∏
n=1

k2n
(k0n)

2
.

Substituting this into (3.4), we have

∆ (λ) = σ (π)
(
k20 − k2

) ∞∏
n=1

[
k2n − k2

(k0n)
2

]
. (3.6)

Now from (3.4) and (3.6), we can write

∆0 (k)

∆ (k)
=

(
k2

k2 − k20

) ∞∏
n=1

[
1 +

(k0n)
2 − k2n

k2n − k2

]
. (3.7)

Because, λn = λ0n +O

(
1

n

)
, n→ ∞ and

∣∣∣∣ (k0n)2 − k2n
k2n − k2

∣∣∣∣ ≤ Cδ

n2
,

for all k ∈ Gδ =
{
k :

∣∣k − k0n
∣∣ ≥ δ, δ > 0

}
, where Cδ > 0, we have

∣∣∣∣∆0 (k)

∆ (k)

∣∣∣∣ ≤ Mδ for some constant Mδ > 0. Then

using (3.2) we obtain the estimation (3.3). □

Lemma 3.3. If kn = k̃n, n = 0, 1, 2, ... then a = ã , ρ (x) = ρ̃ (x) , h = h̃ and H = H̃.

Proof . Since, kn = k̃n, n = 0, 1, 2, ..., Lemma 2.3 requires σ (π) = σ̃ (π) or α + β = α̃ + β̃. ∆(k) , ∆̃ (k) are entire
functions of order one by Hadamard factorization theorem, for λ ∈ C

∆(k) ≡ C∆̃ (k) . (3.8)

Then from Lemma 2.4 and σ (π) = σ̃ (π) we obtain C = 1.
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On the other hand, (3.8) can be written as

∆0 (k)− C∆̃0 (k) =
[
∆̃ (k)− ∆̃0 (k)

]
− [∆ (k)−∆0 (k)] . (3.9)

Hence [
∆̃ (k)− ∆̃0 (k)

]
− [∆ (k)−∆0 (k)] = −r+kβ sin kσ (π) + r−kβ sin k(απ − σ (π)) (3.10)

+ h
β

α

[
r+ cos kσ (π)− r− cos k(απ − σ (π))

]
+H

{
r+ cos kσ (π) + r− cos k(απ − σ (π))

+
h

kα

[
r+ sin kσ (π) + r− sin k(απ − σ (π))

]}
−
{
r̃+kβ sin kσ (π) + r̃−kβ sin k(απ − σ (π))

+ h̃
β

α

[
r̃+ cos kσ (π)− r̃− cos k(απ − σ (π))

]}
− H̃

{
r̃+ cos kσ (π) + r̃− cos k(απ − σ (π))

+
h̃

kα

[
r̃+ sin kσ (π) + r̃− sin k(απ − σ (π))

]}
,

if we multiply both sides of (3.10) with sin kσ (π) and integrate with respect to k in (ε, T ) (ε is sufficiently small
pozitive number) for any pozitive real number T , then we get

T∫
ε

([
∆̃ (k)− ∆̃0 (k)

]
− [∆ (k)−∆0 (k)]

)
sin kσdk =

T∫
ε

{−r+kβ sin kσ (π) + r−kβ sin k (απ − σ (π)) + h
β

α
[r+ cos kσ (π)− r− cos k (απ − σ (π))]

+H [r+ cos kσ (π)− r− cos k (απ − σ (π)) +
h

kα
(r+ sin kσ (π) + r− sin k (απ − σ (π)))]

− [r̃+kβ sin kσ (π) + r̃−kβ sin k (απ − σ (π)) + h̃
β

α
(r̃+ cos kσ (π)− r̃− cos k (απ − σ (π)))]

−H̃

[
r̃+ cos kσ (π) + r̃− cos k (απ − σ (π)) +

h̃

kα
(r̃+ sin kσ (π) + r̃− sin k (απ − σ (π)))

]}
sin kσdk.

Since
∆ (k)−∆0 (k) = O

(
k−2 exp (|τ |σ (π))

)
, ∆̃ (k)− ∆̃0 (k) = O

(
k−2 exp (|τ |σ (π))

)
,

for all k in (ε, T )

β

4
r̃+ − β

4
r+ = O(

1

T 2
).

By letting T tend to infinity we see that
r+ = r̃+. (3.11)

Similarly, if we multiply both sides of (3.10) with sin k (απ − σ(π)) and integrate again with respect to k in (ε, T ),
and by letting T tend to infinity, then we get

r− = r̃−. (3.12)

Taking a > 0 into account, (3.11) and (3.12) implies that a = ã, α = α̃,β = β̃.

Considering that Lemma 3.2, and a = ã, if both sides of the last expression are multiplied by the cos kσ (π) and
integrate with respect to k in (ε, T ) , then we get

h
β

α
r+ +Hr+ = h̃

β

α
r+ + H̃r+. (3.13)
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Similarly, if we multiply both sides of the last expression are with cos k (απ − σ(π)) and integrate again with respect
to k in (ε, T ) , and by letting T tend to infinity, then we get

h
β

α
r− −Hr− = h̃

β

α
r− − H̃r−. (3.14)

Finaly, from (3.13) and (3.14) implies that h = h̃ and H = H̃. □

Theorem 3.4. If λn = λ̃n for all n ≥ 0, q (x) = q̃ (x) on

(
0,
α+ β

4
π

)
, then q (x) = q̃ (x) almost every where on(

α+ β

4
π,
α+ β

2
π

)
, h = h̃, H = H̃, ρ (x) = ρ̃ (x) and a = ã.

Proof . Let the boundary value problems L and L̃ satisfy the conditions of Theorem2.1, then by virtue of Lemma2.4

and Lemma2.5 h = h̃,H = H̃, ρ (x) = ρ̃ (x) and a = ã. For brevity, denote c1 =
α+ β

4
π and c2 =

α+ β

2
π. Let

ψ (x, λ) , ψ̃ (x, λ) be the solutions of the equations

−ψ
′′
(x, λ) + q(x)ψ (x, λ) = λρ (x)ψ (x, λ) , (3.15)

−ψ̃
′′
(x, λ) + q̃(x)ψ̃ (x, λ) = λρ̃ (x) ψ̃ (x, λ) , (3.16)

with the initial valued conditions, respectively

ψ (π, λ) = 1, ψ
′
(π, λ) = −H (3.17)

ψ̃ (π, λ) = 1, ψ̃
′
(π, λ) = −H̃ (3.18)

and the impulsive conditions (1.4). After multiplying (3.15) by ψ̃ (x, λ) and (3.16) by ψ (x, λ) , we subtract these
equations from each other. Then by integrating on [c1, π] with respect to x, using the initial conditions (3.17), (3.18)
and impulsive conditions (1.4), we have

π∫
c1

(q(x)− q̃(x))ψ(x, λ)ψ̃(x, λ)dx = ψ
′
(c1, λ)ψ̃(c1, λ)− ψ̃

′
(c1, λ)ψ(c1, λ), (3.19)

from the hypothesis q(x) = q̃(x) on (0, c1) .

Denote Q(x) = q(x)− q̃(x) and

F0 (λ) =

π∫
c1

Q (x)ψ(x, λ)ψ̃(x, λ)dx. (3.20)

It follows from (2.4) and (3.19) that F0 (λ) is an entire function of exponential type, and there are same pozitive
constants c1 and c2 such that

|F0 (λ)| ≤ C |k| exp (|τ |σ (π)) , for all λ ∈ C. (3.21)

It is clear from the properties of ψ(x, λ), ψ
′
(x, λ) and the boundary conditions (1.2)

F0

(
k2n

)
= 0, n = 0, 1, 2, ..., (3.22)

for each eigenvalue λn = k2n.

Define

F (λ) :=
F0 (λ)

∆ (λ)
,



Half inverse problems for the singular Sturm-Liouville operator 3169

which is an entire function from the above arguments and it follows from Lemma 3.2 and (3.21) that

F
(
k2

)
= O (1) ,

for sufficiently large |k| , k ∈ Gδ. Using Liouville’ s theorem [15], we obtain for all λ = k2 that

F
(
k2

)
= C,

where C is a constant.

Let as show that the C = 0. Now, we can rewrite the equation F0 (λ) = C∆(λ) as

π∫
c1

Q (x)ψ(x, k)ψ̃(x, k)dx = C
[
−kr+β sin kσ (π) + kr−β sin k (απ − σ (π))

+Hr+ cos kσ (π) +Hr− cos k (απ − σ (π))
]

+O (exp (|τ |σ (π))) .

By use of Riemann-Lebesque Lemma [15], we see that the limit of the left-hand side of the above equality exists
as x→ ∞, k ∈ R. therefore, we get that C = 0. So, we have

F0 (λ) = 0, for all λ ∈ C.

Then, from the equality (3.19) we obtain

ψ
′
(c1, λ) ψ̃(c1, λ)− ψ̃

′
(c1, λ)ψ (c1, λ) = 0,

for all λ ∈ C. Hence,
ψ (c1, λ)

ψ′ (c1, λ)
=

ψ̃(c1, λ)

ψ̃′(c1, λ)
. (3.23)

Note that M (λ) = − ψ (c1, λ)

ψ′ (c1, λ)
is the Weyl function, defined in [35], of the boundary value problem for equation

(1.1) on the interval (c1, π) with the boundary conditions y
′
(c1) = 0, V (y) = 0 and the impulsive conditions (1.4). It

has been shown in [35] that the Weyl function uniquely specifies the function q (x) on (c1, π) , consequently on (c1, c2) .
Theorem is proved. □

Theorem 3.5. If λn = λ̃n for all n ≥ 0, q(x) = q̃ (x) on

(
α+ β

4
π,
α+ β

2
π

)
, then q(x) = q̃ (x) almost every where

on

(
0,
α+ β

4
π

)
and

(
α+ β

2
π, π

)
, h = h̃,H = H̃, a = ã and ρ (x) = ρ̃ (x) .

Proof . By Lemma 2.5 and the conditions of Theorem 3.4, we have h = h̃,H = H̃, a = ã, ρ (x) = ρ̃ (x) and q(x) = q̃ (x)
on (c1, c2) . Let φ(x, λ), φ̃ (x, λ) be the solutions of the equations

−φ
′′
(x, λ) + q(x)φ (x, λ) = λρ (x)φ(x, λ), (3.24)

−φ̃
′′
(x, λ) + q̃(x)φ̃ (x, λ) = λρ̃ (x) φ̃(x, λ), (3.25)

with the initial valued conditions, respectively

φ (0, λ) = 1, φ
′
(0, λ) = h, (3.26)

φ̃ (0, λ) = 1, φ̃
′
(0, λ) = h̃, (3.27)
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and the impulsive conditions (1.4). Multiplying (3.24) by φ̃(x, λ) and (3.25) by φ(x, λ), we subtract these equations
from each other. Then by integrating on [0, c2] with respect to x, using the initial conditions (3.26), (3.27) and
impulsive conditions (1.4), we have

H (λ) =

c1∫
0

Q (x)φ(x, λ)φ̃(x, λ)dx = φ
′
(c1, λ)φ̃ (c1, λ)− φ̃

′
(c1, λ)φ(c1, λ), (3.28)

from the hypothesis q(x) = q̃ (x) on (c1, c2) . Similarly to proof of Theorem 3.4, we have that H (λ) = 0, for all λ ∈ C.
Then, from the equality (3.28) we obtain

φ
′
(c1, λ)φ̃ (c1, λ)− φ̃

′
(c1, λ)φ(c1, λ) = 0

for all λ ∈ C, so

φ(c1, λ)

φ′(c1, λ)
=
φ̃ (c1, λ)

φ̃′(c1, λ)
.

The function M (λ) =
φ(c1, λ)

φ′(c1, λ)
is the Weyl function of the impulsive boundary value problem for equation (1.1)

on (0, c1) with boundary conditions U (y) = 0, y
′
(c1) = 0 and without jump conditions (1.4) [1]. By [1], the Weyl

function uniquely specifes q(x) on (0, c1) . Next, now using Theorem 3.4 we obtain q(x) = q̃ (x) on (c2, π). Theorem
3.5 is proved. □
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