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Abstract

This paper presents a method for determining the actual rank of the coefficients matrix in the reduced rank multi-
variate regression model. The method is constructed using the singular value decomposition and the Likelihood Ratio
Test(LRT). Some illustrative examples are given to verify this method.
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1 Introduction

Consider the multivariate regression model

yT
i
= cT + xT

i M + eTi , i = 1, 2, ..., n (1.1)

where xi(r × 1) is the vector of dependent variables, y
i
(t × 1) is the vector of dependent variables, M(r × t) is a

matrix whose columns are the individual unknown regression coefficients for each dependent variable on the set of the
independent variables, c(t×1) is a vector of unknown response specific constants and ei(t×1) is a vector of stochastic
errors assumed to be independently distributed with zero mean and unit variance. T indicates transpose of a matrix
or a vector. In matrix form, Equation (1.1) can be written as

Y = C +XM + E, where C = 1 cT . (1.2)

Suppose the rank of M is s, where s ≤ k = min(r, t). The full rank regression coefficient matrix occurs when s = k.
The reduced rank regression coefficient matrix occurs (due to some linear restrictions on the regression coefficients)
when s < k. Such models have been studied by several authors. Izenman (1975) considered the problem of estimating
the regression coefficient matrix having (known reduced) rank and showed that the canonical variable and principal
component are special cases of a reduced rank regression model [5]. Alvarez et al. (2016) presented a procedure for
coefficient matrix estimation in multivariate model for reduced rank in the presence of multicollinearity [1]. Davies et
al. (1982) gave a method for estimating the coefficient matrix, which is justified by a least-square analysis employing
singular value decomposition and the Eckart-Young theorem [2].
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One problem that arises in the estimation of the reduced rank regression coefficient matrix is the choice of s, the
assumed maximum rank of M. Madhi (1981) employed cross validation criterion to determine the rank in reduced
rank regression model, RRRM , [6].

Madhi and Abushilah (2021) determined the rank of the coefficients matrix in RRRM using the Akaike’s information
criterion (AIC) [7].

In this paper, we present a method for determining the actual rank of the coefficient matrix in the reduced rank
regression model (RRRM) employing the method of estimation proposed by Davies et al. (1982) [2] and the Likelihood
Ratio Test(LRT).

Some numerical examples are given to illustrate the Method.

2 Preliminaries

2.1 Singular Value Decomposition of a Matrix (SVD)

If A is a m× n matrix, of rank k, it can be expressed as

A = UDWT , (2.1)

where
U is an m×m orthogonal matrix, W is an n×n orthogonal matrix and D is an m×n diagonal matrix with non-negative
elements, D = dia(σ1, ..., σk, 0, ..., 0), σ1 ≥ ... ≥ σk > 0.

If Q and V consist of the first k columns of U and W respectively, and Σ is a k × k diagonal matrix with positive
diagonal elements, σ1 ≥ · · · ≥ σk > 0, then

A = QΣV T , (2.2)

where QTQ = V TV = Ik and Σ = diag (σ1, σ2, . . . , σk) with σ1 ≥ σ2, . . . ≥ σk > 0 is called basic diagonal (Green,
2014) [4].

The basic diagonal part of the decomposition is always unique regardless of whether A is of full rank, square, or
rectangular. Each one of Equations (2.1) and (2.2) is equivalent to

A = σ1q1v
T
1 + σ2q2v

T
2 + . . . . . .+ σkqkv

T
k (2.3)

That is, the sum of k matrices of rank 1. The column vectors
{
q
i

}k

i=1
of Q are orthonormal (orthogonal and each

of length 1 ) and each has m components. The row vectors {vi}
k
i=1 of V T are orthonormal and each has n components.

The numbers σ1, σ2, . . . are the singular values of A. The vectors q
1
, q

2
, . . . . . . and v1, v2, . . . . . . are respectively

the left and right singular vectors. When A is square and symmetric the singular decomposition reduces to known
spectral decomposition, where the left and right singular vectors are identical and reduce to eigenvectors.

The orthonormal sets
{
q
1
, q

2
, . . . .q

k

}
and

{
v1, v2, . . . .vk̇

}
can be completed to sets

{
q
1
, q

2
, . . . .q

m

}
and {v1, v2, . . . .vn}.

A complete decomposition of A is then (if m ≤ n without loss of generality)

m∑
i=1

σiqiv
T
i , with σk+1 = · · · = σm = 0. (2.4)

The singular decomposition (2.3) is of course equal in numerical value to the complete singular decomposition
(2.2). The SVD is closely related to the eigenvalue decomposition, since

AAT = QΣ2QT , (2.5)

where V TV = Ik and
∑2

= diag
(
σ2
1 , σ

2
2 , . . . ., σ

2
k

)
and σ2

1 , σ
2
2 , . . . , σ

2
k are the non-zero eigenvalues of the m×m matrix

AAT and the columns of Q are the corresponding eigenvectors of ATA. Furthermore,

ATA = V Σ2V T , (2.6)

where QTQ = Ik and
∑2

= diag
(
σ2
1 , σ

2
2 , . . . ., σ

2
k

)
and σ2

1 , σ
2
2 , . . . . . . , σ

2
k are also the non-zero eigenvalues of the n× n

matrix ATA and the columns of V are the corresponding eigenvectors. Hence, the singular values of A are the square
roots of the common positive eigenvalues of the m×m matrix AAT and the n× n matrix TA.
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2.2 Generalized Inverse

Generalized inverse can be very useful in the regression model, where inverses arise naturally. The basic types of
generalized inverse (Green, 2014) [4] are:

(a) G-Inverse

Let A be an m×n matrix of any rank. A generalized inverse (or a G-Inverse) of A is an n×m, denoted by A−,
such that

AA−A = A. (2.7)

A generalized inverse always exists, but it is not necessarily unique. One way of illustrating the existence of A−

and its non- uniqueness is by using SVD. For m× n matrix, write

A = UΣV T ,

then the general G-Inverse (Good, 1969) [3] is

A− = V Σ−UT = σ1
−v1u

T
1 + .......+ σk

−vku
T
k (2.8)

where k = min(m,n), σ1, σ2, . . . , σk are all the singular values of A (non-negative square roots of all the eigen-
values of AAT if m ≤ n, or ATA if m ≥ n ), and σ−means σ−1 if σ ̸= 0 and is otherwise arbitrary.

(b) Moore-Penrose Generalized Inverse

Moore and Penrose (Good, 1969) [3] defined a particular generalized inverse often called (the pseudo inverse) as
a matrix A+(nxm ) to distinguish it from a general g-inverse A−, satisfying the properties:

i. AA+A = A

ii. A+AA+ = A+

iii. (AA+)
T
= AA+

iv. (A+A)
T
= A+A

Such an inverse always exists and is unique. For an arbitrary m× n matrix A, of rank k, write the SVD as

A = UΣV T ,

then the Moore-Penrose inverse is

A+ = V Σ−1UT = σ−1
1 v1u

T
1 + σ−1

2 v2u
T
2 + . . . . . .+ σ−1

k vku
T
k . (2.9)

It is obvious that A+can be uniquely defined as the g-inverse of minimum rank, since the rank of A+is simply the
number of σ′s

j that do not vanish.

2.3 Eckart-Young Theorem

Given Y (m,n), of rank k = min(m,n), the matrix H∗(m,n) of rank at most(s < k = min(m,n)) that best
approximate Y , i.e. H∗ satisfies

min
H rank H≤s

∥Y −H∥2, (2.10)

is given by the partial sum of the first s terms of the SVD of Y . That is, if

Y =

k=min{m,n}∑
i=1

σiuiv
T
i , (2.11)

then

H∗ =

s∑
i=1

σiuiv
T
i . (2.12)
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3 Estimation of the Coefficient Matrix Rank in RRRM

3.1 Introduction

In this section, we discuss the method of estimation of the coefficient matrix in RRRM which has been developed
by Davies and Tso (1982) [2]. A solution employing matrix singular value decomposition was proposed and justified
by the Eckart-Young theorem. This solution has the feature of generality as we can use it even when the regression
coefficients are under - determined. Generalized inverses have been used to achieve this generality.

3.2 Reduced Rank Regression Model, RRRM

Consider the model (1.1). Suppose that there are s < min(r, t) linear combinations of the independent variables
n1 = xTa1, . . . , ns = xTas ( i.e. nT = (n1 . . . ns)

)
normalized such that aTi ai = δij, such that all the variation in Y is

due to only linear combinations of X plus stochastic error. This reduces the set of independent variables x1, x2, . . . , xr

to a new set of independent variables n1, . . . , ns. Consequently, the rank of M will be less than or equal to s. Again
consider the model (1.2). We now center the data by subtracting the column means from each variables of X and Y
such that

1TX = OT , 1TY = OT . (3.1)

Hence, the model (1.2) can be written as
Y = XM + E, (3.2)

where X(n× r) and Y (n× t) are matrices whose n rows contain, respectively, independent and dependent data, and
whose columns each sum to zero, E is the matrix of stochastic errors which are assumed to be uncorrelated row-wise.
We have lost, (txc) parameters but there is a corresponding loss in the data since quantities

yij − ȳ.j , i = 1, 2, . . . , n; j = 1, 2, . . . , t

represents only (n− 1)× t separate pieces of information to the fact that their sum to zero, whereas

yij , i = 1, 2, . . . , n; j = 1, 2, . . . , t

represent n× t separate pieces of information. Effectively, the lost pieces of information have been used to enable the
proper adjustments to be made to the model so that the C term can be removed. This transformation of the origin
data to corrected data is consistent with least-square estimation of the vector of response constants c. The problem
now is to estimate the unknown matrix of regression coefficients M(r × t) subject to the rank constraint

ran(M) ≤ s < min(r, t).

The first step is to determine the unconstrained least-squares estimate of M̂ by minimizing

∥Y −XM∥2. (3.3)

The unique least-squares solution can be written in generalized matrix form as

M̂ = X+Y, (3.4)

when X is of full column rank, this is equivalent to the ordinary least-squares estimator,

M̂ =
(
XTX

)−1
XTY. (3.5)

Hence, the corresponding unconstrained fitted of Y are obtained by

Ŷ = X̂M̂. (3.6)

The next step is to consider the estimation of the matrix M when it is constrained to have rank at most s. First
of.all, let us decompose (3.3) as

∥Y −XM∥2 = ∥Y − Ŷ ∥2 + ∥Ŷ −XM∥2. (3.7)

The second term only, in the above decomposition, varies as M varies. We may choose M to satisfy XM = (Ŷ )s,
where (Y )s, is the partial sum to the s terms of the SVD of Y . By the Eckart-Young theorem M must minimize the
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second term in (3.7) and therefore must minimize the least-squares criterion (3.3). Finding Ŷ , perform the singular
value decomposition of Ŷ as follows:

Ŷ = Q
∑

V T (3.8)

where Q = (q
1
, .....q

t
); Σ = diag(σ1, ..., σt);V

T = (v1, .....vt)
T . Now, letM∗

s denote the optimal reduced rank regression
coefficient matrix of rank s; then M∗

s can be computed by one of the following two procedures:

1. Evaluate the reduced-rank fitted values Y ∗
s = (Ŷ )s by taking the partial sum to the s terms of the SVD of Y ,

and then premultiplying it by X+, the generalized inverse of X, we get

M∗
s = X+Y ∗

s = XT (Ŷ )s. (3.9)

2. We construct the (t× s) matrix Vs by taking the first s columns of the matrix V , i.e.

Vs = (v1, . . . vs)

then evaluate M∗
s by

M∗
s = M̂VsV

T
s . (3.10)

The corresponding reduced-rank fitted values of Y will be given by

Y ∗
s = (Ŷ )s = XM∗

s . (3.11)

Indeed both procedures are numerically equivalent. The residual sum of squares resulting from a rank s fit is then

∥Y − Ŷ ∥2 + σ2
s+1 + · · ·+ σ2

t

i.e. the residual resulting from an unconstrained fit plus the contribution from the least significant singular values of
Ŷ .

4 Determination of the Actual Rank of the Coefficient Matrix in the RRRM

If Y has full rank, i.e has rank t and E are independently and identically normally distributed N(0, 1), then the
least-squares estimation is equivalent to maximum likelihood estimation. Consider the model (3.1), then the likelihood
function can be given by

L(M) = (2π)−
nt
2 exp

{
−1

2
tr (Y −XM) (Y −XM)T

}
(4.1)

and the log-likelihood function is

logL(M) =
−nt

2
log(2π)− 1

2
tr

{
(Y −XM)

(
Y −XMT )

}
(4.2)

Λt = 2 logL(M) = −nt− tr
(
Y Y T

)
+ tr

(
Y Y T

)
= −nt− tr

(
Y Y T

)
+

t∑
i=1

σ2
i

(4.3)

where
{
σ2
i | i = 1, 2, . . . . . . , t

}
are the eigenvalues of Ŷ Ŷ T . Let M∗

s be the rank s maximum likelihood estimator of,
then (4.4) becomes

LogL(M∗
s ) =

−nt

2
log(2π)− 1

2
tr

{
(Y −XM∗

s )(Y −XM∗
s )

T
}
. (4.4)

Letting Ys
∗ = XM∗

s , (4.4) can be written as

Λs = 2logL(M∗
s ) = −nt− tr(Y Y T ) + tr(Y ∗

S Y
∗T
S )

= −nt− tr(Y Y T ) +

s∑
i=1

σ2
i

(4.5)
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where
{
σ2
i |i = 1, 2, ......., s

}
are the eigenvalues of Y ∗

s Y
∗T
s . The log-likelihood ratio for testing a rank s model against

a full rank model is given by the sum of the (t-s) smallest eigenvalues of Ŷ T Ŷ . That is

Λt − Λs = σ2
s+1 + .....+ σ2

t . (4.6)

We reject the null hypothesis that M has rank s against the alternative that it is greater if the (t-s) smallest
eigenvalues are not sufficiently small. For large samples, the asymptotic distribution is

n

t∑
i=s+1

σ2
i ∼ χv

2, (4.7)

where v = (t−s)(r−s) is the number of degrees of freedom, might be used to test s.

5 Numerical Examples (Applications)

In this section, we present same examples to verify the method . For each example, we estimate the reduced -rank
regression coefficients matrix using Davies and Tso (1982) [2] procedure and then we apply the likelihood ratio test
to determine the rank of the RRRM. A program was written to compute the singular values of the fitted values of Y,
M∗

s and the residual sum of squares resulting from a rank s fit.

Example 1:

(a) The data

X =


2.1 1.5 2.2
2.3 1.1 2.5
1.2 2.1 2.0
2.2 3.3 2.4
2.3 2.0 2.4

 M =

 1 2
1.5 3
0.5 1

 C =


1.5 1.2
1.5 1.2
1.5 1.2
1.5 1.2
1.5 1.2


There is only one linearly independent column in the matrix M as the second column is twice the first. Therefore
the rank of M is 1.

(b) Estimation of coefficients matrix in RRRM

Singular Values of Ŷ

4.75119 1.46906

Coefficient Matrix (M∗
s )

M∗
1 =

 −0.18052 −0.39397
1.09826 2.39690
2.45988 5.3685

 M∗
2 =

 −0.31428 −0.33268
1.39774 2.25968

−0.28996 6.62854


Residual sum of squares

s=1 s=2
∥Y − Y ∗

S ∥2 3.61976 1.46161

(c) Testing of hypotheses and result.

We wish to test:

H0 : s = 1

H1 : s > 1.

The statistic is
σ2
2 = 2.158137
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and the number of degrees of freedom is

(t− s)(r − s) = (2− 1)(3− 1) = 2.

For a level of significance of ∝= 0.01, χ2
2 (0.01) = 9.21. Since 2.158137 < χ2

2 (0.01), we conclude that null
hypothesis is true, that is the actual rank of M is 1.

Example 2:

(a) The data

X =


1 2 2

2.2 3 1.2
2.2 4 1.5
2.6 2.7 4
1.8 3.7 3

 M =

 1 3 −4
−1 −3 4
2 6 8

 C =


3 4 2
3 4 2
3 4 2
3 4 2
3 4 2


It is clear that the second column is three the first column. Column three is equal to the negative value of the
sum of the first and second columns. Thus, the rank M is 1.

(b) Estimation of coefficients matrix in RRRM

Singular Values of Ŷ

26.94091 1.24209 0.01113

Coefficient Matrix (M∗
s )

M∗
1 =

 1.12757 3.66908 −6.07972
−0.83682 −2.72299 4.39376
1.65281 5.37817 −7.70734

 M∗
2 =

 1.03060 2.71183 −6.07942
−0.78199 −2.18173 4.39376
1.68514 5.69734 −7.70734


M∗

3 =

 1.03377 2.71130 −6.07942
−0.77662 −2.18263 4.39427
1.68550 5.69728 −7.70731


Residual sum of squares

s=1 s=2 s=3
∥Y − Y ∗

S ∥2 7.99454 6.45175 6.45163

(c) Testing of hypotheses and result.

We wish to test:
H0 : s = 1

H1 : s > 1

The statistic is
σ2
2 + σ2

3 = 1.5429.

The degrees of freedom is 4 and χ2
4 (0.01) = 13.28, but

1.5429 < χ2
4 (0.01) .

So we accept the null hypothesis, and hence the actual rank of M is 1

Example 3:



3180 Madhi

(a) The data

X =



1 2 3 2 1
2 1 4 2 1
3 2 1 1 3
2 1 3 2 1
3 2 1 4 5
1 3 4 2 5
1 2 5 3 4


M =


1 3 1
2 2 −4
5 11 −1

−4 −4 8
3 5 −3

 C =



2 3 1
2 3 1
2 3 1
2 3 1
2 3 1
2 3 1
2 3 1


Three times of column two is equal to the sum of seven times the first column and twice the third column.
Hence, the rank of M is 2.

(b) Estimation of coefficients matrix in RRRM

Singular Values of Ŷ

42.93819 18.13227 1.44764

Coefficient Matrix (M∗
s )

M∗
1 =


0.89210 1.45118 −0.84816
2.04185 3.32149 −1.94128
5.68908 9.25443 −5.40887

−4.56148 −7.42017 4.33681
3.65144 5.93981 −3.47160

 M∗
2 =


0.84736 2.61471 1.09555
2.08527 2.19241 −3.82744
5.59805 11.62184 −1.45404

−4.65003 −5.11705 8.18423
3.64779 6.03492 −3.31272



M∗
3 =


0.78223 2.64372 1.07668
2.06269 2.20247 −3.83398
5.67385 11.58807 −1.43208

−4.65214 −5.11611 8.18362
3.15592 6.25402 −3.45520


Residual sum of squares

s=1 s=2 s=3
∥Y − Y ∗

S ∥2 336.18325 7.40402 5.30835

(c) Testing of hypotheses and result.

We examine the hypotheses:
H0 : s = 1

H1 : s > 1

The statistic is
σ2
2 + σ2

3 = 330.8748.

The degrees of freedom is 8 and χ2
8 (0.01) = 20.09. Since 330.8748 > χ2

8 (0.01) .

Hence , H0 is rejected. Next, consider the hypotheses that

H0 : s = 2

H1 : s > 2.

The statistic is σ2
3 = 2.09366157. The degrees of freedom is 3 and χ2

3 (0.01) = 11.34.

We note that
2.09366157 < χ2

3 (0.01) .

Therefore, the null hypothesis s=2 is accepted and the actual rank of M will be 2.
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6 Conclusion

The numerical examples show that LRT is effective in determining the actual rank in the reduced rank regression
model.
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