
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,027 |
تعداد مشاهده مقاله | 67,082,772 |
تعداد دریافت فایل اصل مقاله | 7,656,171 |
Optimality conditions for multi-objective interval-valued E-convex functions with the use of $gH$-symmetrical differentiation | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 262، دوره 13، شماره 2، مهر 2022، صفحه 3261-3270 اصل مقاله (394.73 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.24646.2788 | ||
نویسندگان | ||
Sachin Rastogi1؛ Akhlad Iqbal* 2؛ Sanjeev Rajan1 | ||
1Department of Mathematics, Hindu college, M.J.P. Rohilkhand University, Bareilly-243003, UP, India | ||
2Department of Mathematics, Aligarh Muslim University, Aligarh-202002, UP, India | ||
تاریخ دریافت: 02 مهر 1400، تاریخ بازنگری: 23 خرداد 1401، تاریخ پذیرش: 11 مرداد 1401 | ||
چکیده | ||
In this paper, we introduce and discuss multi-objective interval-valued E-convex programming using gH-symmetrical differentiability. We prove nonlinear optimality conditions of Fritz John type for this context and construct an example to verify our results. Furthermore, we define LU-sE-pseudo convexity and LU-sE-quasi convexity for interval-valued functions and study some of their properties. | ||
کلیدواژهها | ||
Fritz John optimality conditions؛ interval-valued functions؛ E-convexity؛ Multi objective programming؛ gH-symmetrically differentiation | ||
مراجع | ||
[1] I. Ahmad, D. Singh and B. Ahmad, Optimality conditions for invex interval valued nonlinear programming problems involving generalized H-derivative, Filomat 30 (2016), no. 8, 2121–2138. [2] G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic Press. NY. 1983. [3] T.Q. Bao and B.S. Mordukhovich, Set-valued optimization in welfare economics. Adv. Math. Econ. 13 (2010), 113–153. [4] Y. Bao, B. Zao and E. Bai, Directional differentiability of interval-valued functions, J. Math. Comput. Sci. 16 (2016), no. 4, 507–515. [5] M.S. Bazaraa, H.D. Sherali and C.M. Shetty, Nonlinear Programming: Theory and Algorithms, 3rd Edition, Willey publication, 2006 [6] D.P. Bertsekas, A. Nedic and A.E. Ozdaglar, Convex Analysis and Optimization, Athena Scientific. Belmont. U.S.A. 2003. [7] G.R. Bitran, Linear multiple objective problems with interval coefficients , Manag. Sci. 26 (1980), 694–706. [8] Y. Chalco-Cano, W.A. Lodwick and A. Rufian-Lizana, Optimality conditions of type KKT for optimization problem with interval-valued objective function via generalized derivative, Fuzzy Optim. Decis. Mak. 12 (2013), 305– 322. [9] S. Chanas and D. Kuchta, Mutiobjective programming in optimization of interval objective functions-A generalized approach, Eur. J. Oper. Res. 94 (1996), 594–598. [10] B.D. Chung, T. Yao, C. Xie and A. Thorsen, Robust Optimization Model for a dynamic Network Design problem Under Demand Uncertainty, Netw. Spat. Econ. 11 (2010), 371–389. [11] I.P. Devnath and S.K. Gupta, The Karush-Kuhn-Tucker conditions for multiple objective fractional interval valued optimization problems, Rairo-oper. Res. 54 (2020), 1161–1188. [12] Y. Guo, Ye. Guoju, D. Zhao and W. Liu, gH-symmetrically derivative of interval-valued functions and application in interval-valued optimization, Symmetry 11 (2019), 1203. [13] M. Ida, Multiple objective linear programming with interval coefficients and its all efficient solutions, Proc. 35th IEEE Conf. Decis. Control, Kobe, Japan, 13 December 1996, Volume 2, pp. 1247–1249. [14] H. Ishibpchi and H.Tanaka, Multiobjective programming in optimization of interval valued objective functions, Eur. J. Oper. Res. 48 (1990), 219–225. [15] A. Jayswal, I.M. Stancu-Minasian and I. Ahmad, On sufficiency and duality for a class of interval-valued programming problems , Appl. Math. Comput. 218 (2011), 4119–4127. [16] R.A. Minch, Applications of symmetric derivatives in mathematical programming, Math. Program. 1 (1971), 307–320. [17] R.E. Moore, Interval Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1966. [18] R.E. Moore, Method and Application of Interval Analysis, SIAM, Philadelphia, 1979. [19] G.M. Ostrovsky, Y.M. Volin and D.V. Golovashkin, Optimization problem of complex system under uncertainty, Comput. Chem. Eng. 22 (1998), 1007–1015. [20] S. Rastogi, A. Iqbal and S. Rajan, Optimality Conditions for E-convex Interval-valued Programming Problem using gH-Symmetrical Derivative, submitted. [21] M. Sakawa, Fuzzy Sets and Interactive Multiobjective Optimization, Plenum Press, New York. 1993. [22] D. Singh, B.A. Dar and D.S. Kim, KKT optimality conditions in interval valued multiobjective programming with generalized differentiable functions, Eur. J. Oper. Res. 254 (2016), 29–39. [23] L. Stefanini and B. Bede, Generalized Hpkphara differentiability of interval valped fpnctions and interval differential eqpations , Nonlinear Anal, 71 (2009), 1311–1328. [24] J. Tao and Z.H. Zhang, Properties of intervel vector valued arithmetic based on gH-difference, Math. Comput. 4(2015), 7–12. [25] B.S. Thomson, Symmetric Properties of Real Functions, Dekker: New York. USA. 1994. [26] H.C. Wu, The karush Kuhn tuker optimality conditions in an optimization problem with interval valued objective functions, Eur. J. Oper. Res. 176 (2007), 46–59. [27] H.C. Wu, On Interval valued Nonlinear Programming Problems, J. Math. Anal. Appl. 338 (2008), 299–316. [28] H.C. Wu, The optimality conditions for optimization problems with convex constraints and multiple fuzzy-valued objective functions , Fuzzy Optim. Decis. Mak. 8 (2009), 295–321. [29] X.M. Yang. On E-convex set,E-convex functions and E-convex programming, J. Optim. Theory Appl. 109 (2001), no. 3, 699–704. [30] E.A Youness, E-convex set, E-convex functions and E-convex programming, J. Optim. Theory Appl. 102 (1999), no. 2, 439–450. [31] E.A. Youness. Optimality criteria in E-convex programming, Chaos Solitons Fractals 12 (2001), 1737–1745. | ||
آمار تعداد مشاهده مقاله: 43,521 تعداد دریافت فایل اصل مقاله: 332 |