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Abstract

In this paper, inspired by the concept of generalized weakly contractive mappings in metric spaces, we introduce
the concept of generalized weakly contractive mappings in rectangular b-metric spaces to study the existence of fixed
points for the mappings in these spaces.
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1 Introduction

It is well known that the Banach contraction principle [3] is a fundamental result in the fixed point theory, several
authors have obtained many interesting extensions and generalizations [5l [I5] [I8] 30]. The well known metric spaces
have been generalized metric spaces introduced by Branciari [4]. Various fixed point results were established on such
spaces [2] [13] 14 20}, 21, [33].

Recently, George et al. [II] announced the notion of b-rectangular metric space and formulated some fixed point
theorems in the b-rectangular metric space. Many authors initiated and studied many existing fixed point theorems
in such spaces [9, [10 12} [16, 17, 22 23] 24} 25 [32], 34} [35], [36].

Weak contraction principle is a generalization of the Banach contraction principle which was first given by Alber
et al. in Hilbert spaces [I]. Coudhury et al. [§] proved some fixed point results for weakly contractive mappings in
complete metric spaces. Several authors have studied weak contraction mapping in complete metric spaces [6l, [T9] 26
277, 28, 29, [311, [37].

Very recently, Cho [7] introduced a special weakly contractive mappings called generalized weakly contractive

mappings and proved some fixed point results for such mappings in complete metric spaces.

In this work, we introduce a new notion of generalized weakly contractive mappings and provide some fixed point
results for such mappings in complete b-rectangular metric spaces. We also present some special examples of generalized
weakly contractive mappings on b-rectangular metric spaces. Also, we derive some useful corollaries.
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2 Preliminaries

In the following, we collect background information needed in the presentation of our results.

Definition 2.1. [II] Let X be a nonempty set, s > 1 be a given real number and d: X x X — [0, 4+o00[ be a function
such that for all z,y € X and all distinct points u,v € X,

1. d(z,y) =0 if only if x = y;
2. d(z,y) =d(y,z);
3. d(z,y) < sld(z,u) +d(u,v) + d(v,y)] (b—rectangular inequality) .

Then (X, d) is called a b-rectangular metric space.

Example 2.2. [16]. Let X = AUB, where A = {X :n € {2,3,4,5,6,7}} and B = [1,2]. Define d : X x X — [0, +o00|
as follows:
{d(m,y) =d(y,z) for all z,y € X;

and 11 11 11
d(2’3>:d(4’5>:d<6’7>:0’05
(1)1 -o(30) o
(0o ) o)
(D) -e(h) o) o
N e I

d(z,y) = |z —y|)* otherwise.

Then (X, d) is a b-rectangular metric space with coefficient s = 3.
Lemma 2.3. [32] Let (X, d) be a b-rectangular metric space.

(a) Suppose that sequences {z,} and {y,} in X are such that z, — 2 and y, — y as n — 400, with z £ y, z, # x
and y,, # y for all n € N. Then we have

1
gd(m,y) < lim infd(z,,y,) < ll)gr_l supd (T, yn) < sd(z,y) .

n——+oo
(b) If y € X and {z,} is a Cauchy sequence in X with x,, # z,, for any m,n € N, m # n, converging to « # y, then

1
—d(z,y) < lim infd(x,,y) < lim supd(z,,y) < sd(z,y),
S n—-+o0o

n—+00

for all z € X.

Lemma 2.4. [I6] Let (X, d) be a b-rectangular metric space and {z,} be a sequence in X such that

nll}rfood(a:n, Tpy1) = nEI-&r-loo d(zp,Tnia) =0. (2.1)

If {z,} is not a Cauchy sequence, then there exist € > 0 and two sequences {m(k)} and {n(k)} of positive integers
such that

e < kgr—ir-loo inf d (wm(k),xn(k)) < kgr-sl-loo sup d (xm(k),mn(k)) < se,
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€< kgrfoo inf d (@n gy Tmgey 1) < kBI—&I-loo SUP d (Tn iy Tmgey 1) < 52,

e < lim infd(mm<k),a:n(k)+l) < lim supd(mm<k),xn(k)+l) < se,

k—4o00 k—+o0
g . . . 2
5 < kggtloo inf d (zmoc)ﬂ’mn(k)ﬂ) < kEI}rloo supd (Im(k)+17x”(lc)+1) < s%e.

Definition 2.5. A function f : X — RT, where X is a b-rectangular metric space, is called lower semicontinuous if
for all x € X and z,, € X with lim,,_, 4oy = 2, we have

f(z) <liminf f (x,).

n——+0o

Definition 2.6. A function ¢ : X — RT, where X is a b-rectangular metric space, is called is a right upper
semicontinuous function if for all x € X and z,, € X with lim, oz, = =, we have

g (z) = limsup f (z,,) .

n—-+oo
Definition 2.7. [19] A function v : [0,4o00[ — [0, +0o0] is said to be an altering distance function if it satisfies the
following conditions:

(a) is continuous and nondecreasing;

(b) v¥(t) =0 if and only if ¢ = 0.

Example 2.8. Define ¢1; ¥o; 13: [0, +00[ — [0, +00[ by 1 () = t, 14(t) = 2t and 153(t) = t>. Then they are altering
distance functions.

Definition 2.9. [7] Let X be a complete metric space with metric d, and T : X — X. Also let ¢ : X — R* be a
lower semicontinuous function. Then T is called a generalized weakly contractive mapping if it satisfies the following
condition:

Y (d(Tx, Ty) + ¢ (Tz) + ¢ (Ty) <P (m(z,y,d,T,0)) — ¢ (I (2,y,d,T,¢)),

where
m(z,y,d,T, ) = max{d(z,y) + ¢(z) + ¢(y), d(z, Tz) + p(z) + ¢(Tx),d(y, Ty) + ¢(y) + ¢(Ty),
S, Ty) + o) + ¢(Ty) + d(y, To) + o(T2) + o(0)}}
and

Uz,y,d, T, p) = max{d(z,y) + ¢(z) + ¢(y), d(y, Ty) + o(y) + »(Ty)}

for all z,y € X, where 9 : RT — R™T is continuous with ¢(¢) = 0 if and only if £ = 0 and ¢ : RT — R™T is a lower
semicontinuous function with ¢(¢) = 0 if and only if ¢ = 0.

Theorem 2.10. [7] Let X be complete. If T is a generalized weakly contractive mapping, then there exists a unique
z € X such that z = Tz and ¢(z) = 0.

3 Main results

Aspired by idea of the generalized weakly contractive mapping on metric space introduced by Cho [7], we introduce
the notion of generalized weakly contractive mapping on rectangular b-metric space and establish some fixed point on
such mapping.

Definition 3.1. Let X be a complete b-rectangular metric space with metric d and parameter s and 7' : X — X.
Also let ¢ : X — R be a lower semicontinuous function. Then T is called a generalized weakly contractive mapping
if it satisfies the following condition:

¢ (s°d (Tx,Ty) + ¢ (Tz) + ¢ (Ty)) < ¢ (M (z,y,d,T,¢)) — ¢ (M (z,y,d,T, ¢)), (3.1)
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where

M(z,y,d, T, p) = max{d(z,y) + ¢(x) + p(y), d(x, T2) + p(z) + ¢(Tx),d(y, Ty) + ¢(y) + ¢(Ty)}

for all z,y € X, and ¢ is an altering distance function and ¢ : RT™ — R™ is a lower semicontinuous function with
¢(t) = 0 if and only if t = 0.

Theorem 3.2. Let X be a complete b-rectangular metric space with parameter s > 1. If T' is a generalized weakly
contractive mapping, then 7" has a unique fixed point z € X such that z = Tz and p(z) = 0.

Proof . Let g € X be an arbitrary point in X. Then we define the sequence {z,} by z,+1 = Tx,, for all n € N.
If there exists ng € N such that x,, = zn,41 = 0, then z,, is a fixed point of T'.

Next, we assume that x,, # Tpy1.
We claim that
ngrfoo d(zn,xnse1) =0
and

ngrfoo d (T Tnt2) = 0.

Letting ¢ = x,,—1 and y = x,, in (3.1)) for all n € N, we have

¥ (2d (Tzn—1,Txn) + ¢ (Tzp_1) + ¢ (Tzy)) (3.2)
< 1/’ (M ($n_1,$n, da T7 50)) - (rb(M (mn—laxna da T’ 50)) 5

where

M (21, 2n,d, T, p) = max{d(zn_1,2n) + P(Tn_1) + @(2n),d(Tn_1,2n) + @(Tn_1)
+@o(@n), d(wn, Trn) + o(25) + @(T2y)}
= max{d(T,_1,Tn) + @(Tn—1) + ©(Tn), d(Tpn, Tni1) + ©(Tn) + ‘P(Txn+1)}'
If M (2p—1,2n,d, T, @) = d(@n, Tpi1) + ©(Tn) + @(2nt1), then we have

Y (d(Ten—1,Tan) + ¢ (Tan-1) + ¢ (@nt1)) = ¥ (d (@0, Tng1) + @ (Tn) + ¢ (Tn41))
< (52d (Tns Tnt1) + @ (Tn) + ¢ (mn-i-l))
<P (d(Tn; Tng1) + @ (Tn) + @ (Tnt1))

— ¢ (d(@n, Tnt1) + ¢ (@n) + ¢ (Tnt1)) s
which implies
¢ (d(2n, Tnt1) + ¢ (2n) + ¢ (Tn+1)) =0,

and so
A (Tn, Tnt1) + @ (Tn) + ¢ (Tny1) = 0.

Hence
d(Tp,2nq1) =0 and ¢ (v,) = @ (Tny1) =0,

which is a contradiction. Thus we have
d (gjny 33n+1) + ' (xn) + ® ("En-‘rl) S d (:Cn—la mn) + ¥ (xn—l) + 2 (In) ) fOT all n = 17 27 37 ) (33)

and
M (-1, @n,d, T, 0) = d(xpn_1,2n) + @(Xn_1) + @(z,), foralln=1,2,3, ... (3.4)

for all n =1,2,3,.... It follows from (3.2)) that
(2 (d (l‘na xn—&-l) + @ (xn) + @ (xn—&-l)) < (d (l'n—lv xn) + ¢ (xn—l) + @ (xn))

—¢(d (mnfla xn) + (mnfl) + (mn)) . (3.5)
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It follows from (3.3 that the sequence {d (¢, Zn+1) + ¢ (2n) + @ (Tnit1) fnen is nonincreasing.
Hence d (Tn, Tnt1) + ¢ (xn) + @ (Tnt1) — 7 as n — +oo for some r > 0. Assume r > 0 and letting n — +oo in (3.5))
and using the continuity of ¢ and the lower semicontinuity of ¢, we have

W (s°r) <4 (r) —liminf ¢ (d (zn, Tns1) + @ (@n) + ¢ (Tnr1))

n—roo

<P(r)—¢(r).

It follows that ¢ (r) < v (s?r) < ¥ (r) — ¢(r) < ¥ (r), which is a contradiction and hence we have r = 0 and
consequently, limy,—, oo d (Zn, Znt1) + @ (2n) + @ (Tnt1) = 0. So

ngrfoo d(Tpn,Tny1) =0, (3.6)
Jm ¢ (z) = lm ¢ (zn41) =0. (3.7)

Now, we shall prove that T has a periodic point. Suppose that it is not the case. Then z,, # x,, for all n,m €
N, n # m.

In (3.1)), letting * = ©,,—1 and y = 2,41, we have

(] (32d (Tzp—1,TTns1) + @ (TTn-1) + ¢ (TfnJrl))
< 1/’ (M (xn—hzn-&-l, da T7 50)) - (rb(M (mn—laxn-&-l; d7 T7 SD)) )

where
M($n,1,xn+1,d, T, 90) = maX{d($n71,$n+1) + (p(xnfl) + (p(anrl)v
d(@n-1,2n) + P(Tn—1) + @(T0n), d(Tni1, Tny2) + @(Tnt1) + P(Tni2)}
= max{d(xn_l, Tpi1) +@(Tn-1) + ‘p(xn-i-l)a d(wp—1, xn) + ‘P(xn—l) + ‘P(xn)}
So we get

Y (d (T, Tny2) + @ () + @ (Tng2)) < (32d (Tn, Tpy2) + @ (T0) + ¢ (xn+2)) (3.8)
< (max{d(zp—1,Tnt1) + ©(Tn_1) + (Tn+1), d(Tn-1,2n) + @(Tn-1) + ¥(xn)})
—¢ (max{d(Zn—1,ZTnt1) + @(@n—1) + ©(Tnt1), A(@Tn—1,2n) + ©(Tn-1) + ©(xn)}).

Take ap, = d (zp, Zni2) + @ (2n) + @ (Tni2) and by, = d(Tpn, Tny1) + @(zn) + ©(Xnt1)-
Then by (3.8]), one can write

¥ (an) < (max (an—1,bn—1)) — ¢ (max (an—1,bp—1))
< (max (an_1,bn_1)) -

Since 1) is increasing, we get
(27 < max {an—la bn—l} .

By (3.3), we have

bn < bnfl < max {anfla bnfl}a

which implies that
max {an,b,} < max{an_1,bn_1}, ¥n € N.

Therefore, the sequence max {a,_1,b, 1}, is @ nonnegative decreasing sequence of real numbers. Thus there exists
A > 0 such that

nEToo max {an, b} = A

Assume that A > 0. By (3.6)), it is obvious that

A= nll}r}_loo Sup a,, = ngr-sI-loo supmax {an, b, } = nll)r-&I-loo max {an, b, } . (3.9)
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Taking lim sup,, — +o0 in (3.8), using (3.9) and using the properties of ¢ and ¢, we obtain

) = (hm sup an)

n——+oo
= limsup ) (a,)
n——+0o
< limsup ¢ (max {an,b,}) — hm inf ¢ (max {an, b, })
n—-+o00 —+00

<1/)< lim max {ay, by, }) ¢ (nli)rfoomax{ambn}>

n——+oo
=) = o(N),
which implies that ¢(A) = 0, a contradiction. Thus, from (3.9)),

limsupa, =0
n—-+oo

and hence

nll)rfoo d (T Tnt2) = 0.

Next, we shall prove that {xn}neN is a Cauchy sequence, i.e, limy, ;400 d (T, m) = 0 for all n,m € N. Suppose
to the contrary. By Lemma there is an € > 0 such that for an integer k there exist two sequences {n(k)} and
{m(k)} such that

i) e <limg_1o infd (mm(k),xn(k)) <limg_ 4o supd (acm(,c),xn(k)) < se,
i) e <limg_ 1o infd (;z:n(k),xm(k>+1) < limg_, 4o supd (xn(k>,xm(k)+1) < se,
iil) e < limg_y 400 infd (xm(k),wn(mﬂ) <limg— oo supd (:Em(m,xn(k)ﬂ) < sg,

vi) £
S

; 2
<limg 4o infd (acm(k)“,a:n(k)ﬂ) < limg_y oo supd (a:m(k)+17xn(k)+1) < s%e.
From (3.1) and by setting x = zp,,, and y = z,,,, we have

M (s Ty, &5 T 0) = max{d(Tpm ) Tngy ) + @(Tmgy) + @(@mg )
d(xm(k) ’ :Em(k)“l'l) + @(Im(k)) + @(xm(k)-%l)a d(xn(k) ’ I"(k)-‘rl) + gD(Z'n(k)) + @(In(k)-i—l)}'

Taking the limit as k — +oo and using (3.6), (3.7) and (iii) of Lemma[2.4] we have

lim M (xm(k),a:n<k),d, T, <p) < se. (3.10)

k——+o0

Now letting © = @y, and y =z, in (3.1)), we have

(G [Szd (xm<k>+1’ z"(k)“) a2 (m(k) + 1) T ("(’C) + 1)]
<P [d (Tmpy+1, Tagy+1) + @ (Mpy +1) + o (na) +1)]
= ¢ [d (Tmgy s Tngy+1) + ¢ (M) + ¢ (n))] -

Letting k — 400, using (3.6)), (3.7)), (3.10)), and applying the continuity of ¥ and the lower semicontinuity of ¢, we
have

lim w [S d (mm(k)+17$n(k)+1):| < ’@[J(SE) - (b(SE)

k— 400

Using (3.10) and (iv) of Lemma [2.4] we obtain

3 .
¢(35) = w (‘92;) S kEIJ,I:IOO SUpw [82d ($M(k)+17xn(k)+1)] S "/J(SE) - (b(sg)
This is a contradiction. Thus

lim d(zp,z,) =0.
n,m—-+0oo
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Hence {z,} is a Cauchy sequence in X. By completeness of (X, d), there exists z € X such that

lim d(x,,z2)=0.

n—-+o0o

Since ¢ is lower semicontinuous, we get

v (z) <liminfy (x,) < lim ¢ (z,) =0,

n—-+4oo n—-+oo

which implies

¢(z) =0. (3.11)
Now, putting = z,, and y = z in (3.1)), we have
M (xp,2z,d, T, ) = max{d(xn,2)+ ¢ (@) +¢(2),

d(Zn; Tnt1) + @ (Tn) + @ (Tn11),d (2, T2) + ¢ (2) + ¢ (T2)}-

Taking the limit as n — +o0 and using (3.6)), (3.7) and (3.11)), we have
im M (xn,2,d,T,0)=d(z,Tz)+ ¢ (Tz).

n—-+4oo

Since x,, — z as n — +o0, from Lemma , we conclude that
1
—d(z,Tz) < lim supd(Tz,,Tz) <sd(z,Tz).
S n—+oo

Hence 1
sd(2,Tz) = s°=d(2,Tz) < lim sups’d(Tz,,Tz),
s

n—-+o0o

which implies

lim_sup [sd (2,T2) + @ (2s1) + ¢ (T2)] < T _sup [s°d (T, T2) + (ns1) + 0 (T2)]

n—-+oo

Then using (3.1)), we have

§ [2d(Tan, T2) + o (T2) + 0 (T2)] = 6 [0 (@01, T2) + 9 (nyr) + 0 (T2)]
< [M (T, 2,d,T, 90)] —¢ [M (S(:n, z,d, T, 90)] .

Letting n — +o0o and using the continuity of ¥ and the lower semicontinuity of ¢, we have

0| Hm sup (sd (2. 72) 4 ¢ () + 0 <Tz>>}

< [ lim sup (s°d (T2, Tz) + (Tns1) + ¢ (Tz))]

n—-+o0o

< [ lim sup M (xy,2,d,T, cp)] — lim ¢[M (zn,2,d,T, )],

n—-+oo n—+oo
which implies
Plsd(2,T2) +@(T2)] <9 [d(2,Tz) + ¢ (T2)] = ¢[d(2,T2) + ¢ (T2)].
This holds if and only if ¢ (d(z,Tz) + ¢ (Tz)) = 0 and from the property of ¢, we have
d(z,Tz)+ ¢ (Tz) =0.

Hence d (z,Tz) = 0 and so z = Tz and ¢ (Tz) = 0. It is a contradiction to the assumption: that 7' does not have a
periodic point. Thus T has a periodic point, say, z of period n. Suppose that the set of fixed points of T is empty.
Then we have

q¢>0andd(z,Tz) > 0.
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Since T has a periodic point, z = T"z. Letting x = T" 'z and y = T™z, we obtain

M (T”z, T '2,d,T, cp) = max{d (T”flz, T"z) + (T"ilz) +o(T"2),
d(T" 2, T"2) + o (T"'2) + ¢ (T"2) ,d (T"2, TT"2) + ¢ (T"z) + ¢ (TT"2)}.
By a similar method to , we conclude that
M (T"z,T”_lz, d,T, gp) =d (T"_lz,T”z) + (T"_lz) +o(T"2).
From , we have

¥ [$°d(2,T2) + @ (T"2) + o (T"'2)] = [$%d (T2, T"'2) + ¢ (T"2) + ¢ (T"1'2)]
<Y [d (T '2,T2) + o (T '2) + 0 (T72)]
—¢[d(T" 2, T"2) + o (T"'2) + ¢ (T"2)]
< [$d (T "2, T"2) + o (T '2) + ¢ (T"2)]

SPld(z,Tz) + ¢ (2) + ¢ (T2)]
—¢ld(z,T2) + ¢ (2) + ¢ (T2)]

Taking the limit as n — +o00 and applying the continuity of ¢ and the lower semicontinuity of ¢, we have

Hence d(z,Tz) = 0, which is a contradiction. Thus the set of fixed points of T is non-empty, that is, T has at least
one fixed point.

Suppose that z,u € X are two fixed points of T such that u # z. Then Tz = z and Tu = u.
Letting z = z and y = u in (3.1)), we have

¥ (s°d (T2, Tu) + ¢ (T2) + ¢ (Tw)) = ¢ (s’d (z,u)) <& (M (2,u,d, T, ) — ¢ (M (2,u,d, T, )),
where

M(z,u,d, T, ) = max{d(z,u) + ¢(2) + ¢(u),d(z,T2) + ¢(2) + ¢(T2), d(u, Tu) + @(u) + ¢(Tu)}
=d(z,u).

So
'l/) (S2d (Z7u)) < 7/} (d (Zvu)) - ¢(d (Z7u)) :

This holds if ¢ (d (z,u)) = 0 and so we have (d (z,u) = 0. Hence z = u and T has a unique fixed point. [J

Corollary 3.3. Let (X,d) be a complete b-rectangular metric space and T : X — X be a mapping. Suppose that
there exists k € ]0, 1] such that for all 2,y € X,

s°d (Txz, Ty) + ¢ (Tx) + ¢ (Ty) <
kmax{d(z,y) + ¢ (z) + ¢ (y),d(z,T2) + ¢ (z) + ¢ (Tx) ,d(y, Ty) + ¢ (y) + ¢ (T'y) },

where ¢ : RT — R* is a lower semicontinuous function. Then T has a unique fixed point.
Proof . It suffices to take ¢(t) =t and ¢(t) = (1 — k)t in Theorem [3.2] O

Corollary 3.4. Let (X,d) be a complete b-rectangular metric space and T : X — X be a mapping. Suppose that
there exists a € }0, %[ such that for all z,y € X,

s?d (Tz,Ty) + ¢ (Tx) + ¢ (Ty) < a[(d(Tz,z) + ¢ (x) + ¢ (Tx) +d+ ¢ (y) + ¢ (Ty) + (Ty,y))], (3.12)

where ¢ : RT — R* is a lower semicontinuous function. Then T has a unique fixed point.
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Proof . Let k = 2a. Then k €]0,1[. Also, if (3.12)) holds, then

s°d (Tz,Ty) + ¢ (Tx) + ¢ (Ty) < ald(Tz,z) + ¢ (x) + ¢ (Tx) + d+ ¢ (y) + ¢ (Ty) + (Ty,y)]
_ 4Tz 2) + @)+ (Tz) +dt+e(y) +¢(Ty) + (Ty,y)]
2
< kmax{d(z,Tz) + ¢ (z) + ¢ (Tz),d(y, Ty) + ¢ (y) + ¢ (T'y)}
< kmax{d (z,y) + ¢ (z) + ¢ (y),d(z,Tz) + ¢ (¥) + ¢ (T2) ,d (y, Ty) + ¢ (y) + ¢ (Ty)}.

Thus it suffices to apply Corollary O

Corollary 3.5. Let (X,d) be a complete b-rectangular metric space and T : X — X be a mapping. Suppose that
there exists A € |0, 1[ such that for all ,y € X,

s°d (Tx,Ty) + ¢ (Tx) + ¢ (Ty) <
Ad(z,y) + ¢ (@) + ¢ (y) +d(Tz,2) + ¢ (2) + o (Tx) + ¢ (y) + ¢ (Ty) +d(Ty,y)], (3.13)

where ¢ : RT — Rt is a lower semicontinuous function. Then T has a unique fixed point.
Proof . Let k = 3\. Then k € ]0, 1[. Also, if (3.13]) holds, then

s°d (Txz, Ty) + ¢ (Tx) + ¢ (Ty)
<Ald(z,y) + ¢ () + o (y) +d(Tz,2) + ¢ (z) + ¢ (Tx) + ¢ (y) + ¢ (Ty) + d(Ty,y)]

pld@y) o (@) +e(y) +d(T,2) +¢ (@) + ¢ (T2) +¢y) + o (Ty) +d(Tyy)]
3
< kmax{d (z,y) + ¢ (z) + ¢ (y),d(z,Tz) + ¢ (¥) + ¢ (T2) ,d (y, Ty) + ¢ (y) + ¢ (Ty)}.

Thus it suffices to apply Corollary O

Corollary 3.6. Let d (X, d) be a complete b-rectangular metric space with parameter s > 1 and T be a self mapping
on X. If there exists k € ]0,1[ such that for all 2,y € X,

s2d (Tx, Ty) + ¢ (Tx) + ¢ (Tx) <
k[B1(d(z,y) + ¢ (x) +¢(Y) + B2 (d(Tz,z) + ¢ (z) + ¢ (Tz)) + B (d(Ty,y) + v (y) + ¢ (Ty))],

i=3
where 8; > 0 for i € {1,2,3}, > B; <1, v is a lower semicontinuous function. Then T" has a unique fixed point.
i=0

Proof . Take ¢(t) =t and ¢(t) = (1 — k)t. Then it suffices to apply Corollary O
Example 3.7. Let X = AU B, where A = {O L1 1lland B= [%, 1}. Define d : X x X — [0, 400[ as follows:

»5° 9716

d(z,y) = d(y,x) for all z,y € X;
dz,y) =0 y=1x

1 11
— = -, — = 1
d(o,g) d<5,16) 0,

1 11
o(0.2) =a(L1) <o

1 11

d —_ :d _, — =

(0’16> (9’16> 0,05

d(z,y) = (|z —y|)* otherwise.

and

Then (X, d) is a b-rectangular metric space with coefficient s = 3. However we have the following:
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1) (X,d) is not a metric space, since d (£,3) =05>015=d(},%&) +d (%, 3)
2) (X,d) is not a b-metric space for s=3, since d (£,5) =0.5>045=3[d (%, &) +d(%.3)]
3) (X,d) is not a rectangular metric space, since d (%, é) =0.5>025=d (%, %6) +d (%70) +d (0, %)

Define a mapping T : X — X by

Then T'(x) € X for all x € X. Let
tif telo,1]
&) =1, .
2tift>1

t

—ift 1

16 ftelo]
Eift>1
8

and

Then 1 is an altering distance function and ¢ is a lower semicontinuous function and ¢ is a lower semicontinuous
function such that ¥(t) =0 ¢t=0, ¢(t) =0 t=0and p(t) =0t =0.
Consider the following possibilities:

Case I z,y € {0, % 9, 116

Assume that > y. Then

¥ (s%d(Tz, Ty) + o(Tx) + ¢(Ty)) = ¥ (9.4(0,0) + 9 (0) + ¢() = ¥(0) = 0.

Also
d(z,y) + ¢(x) + ¢(y) = d(z,y) + = +y,
d(z,Tz) + ¢(x) + p(Tz) = d(z,0) + =,
d(y, Ty) + (y) + ¢(Ty) = d(y,0) +y

and

M(x,y,d,T,p) = max{d(z,y) + z +y,d(x,0) + x,d(y,0) + y}.

Since z > y, we have
M(z,y,d,T,¢) = max{d(z,y) +  +y,d(z,0) + z}.

If

M(e,9,0,T,0) = dla,y) + 4y 2 55,
then

_ %(d(z,y)+x+y) >0
and so
0= (s*d(Tx,Ty) + o(Tx) + ¢(Ty)) < ¢ (M(z,y,d,T,0) — ¢ (M(,y,d,T,9))) -
If
M(e,y,4,T,0) = d(a,0) 47 > o,

then

3 1 1 1 23
2d(Tx, T T T < - =
¢ (s2d(Tz, Ty) + o(Tx) + ¢(Ty)) < 5% " 20 16" 30

Y (M(x,y,d, T, ) — ¢ (M(z,y,d,T,¢))).

IN
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Assume that z < y. Then
M(z,y,d, T, ) = max{d(z,y) + x + y,d(y,0) + y}.

If
1 1 9
T = > 4
M(z,y,d, T, ) d(x,y)+x+y_20+16 20’

then
3.9 1 9 207
2
< — —_
Y (M(z,y,d,T,p) — ¢ (M(z,y,d,T,p))).

IN

If
M(x,y,d,T,¢) =d(y,0) +y,
then

9
d(y, 0 >
(v, )+y_80,

since x < y and 0 < y. Thus

¢ (s*d(Tx, Ty) + o(Tx) + (Ty)) <o (M(2,y,d, T, ) — ¢ (M(z,y,d, T, ))).

Case II: = € {0 and y € [ } This implies z < y. Then

’5’9’16

¥ (82 (d (T2, Ty) + o(T) + o(Ty))) = > {965 (16 ) n 1} _ 123

16| — 160
Also
d(z,y) + o(x) + oly) = (x —y)* + z +y,
d(x,Tx) + p(x) + o(Tz) = d(x,0) +
1 1

. To) + o)+ o(T9) =d (135 ) + 0+ 1.

and .
M(z,y,d,T,¢) = max{(z — y)* + z +y,d(x,0) +w,d< 16) +y+ f}

Since z < y, we have

1 1
M($7y7d7T7§0) :max{(m—y)2+x+y,d(y716> +y+T6

If
2
11 59
— — > ) =22
then 23 23 59 1357
_ e — >
U (M(@,y,d, T,0)) = & (M(2,y,d, T, ) = T (d(z,y)* +x+y) > 6 100 = 1600 2
Then
O (s*d(Tx, Ty) + o(Tx) + o(Ty)) < (M(2,y,d, T, ) — ¢ (M(z,y,d,T,¢))).
If ,
1 1 1 1 /1 1 193
Mz.y.dT.o)=d(y — i, 1.1 1\"_ 193
(9,4, T, ) <y 16)“’+ 6=2" 16" (2 16) 256°
then 1 123 193 _ 439
M(z.y.d.T. o)) — 4T 3, S
6 (M (5,90, T,0) = 0 (M0, 0. 7o) = 10 (156 ) +3+ 5 2 36 355 = 1008 = 1o
Then

¢ (s*d(Tx, Ty) + o(Tx) + (Ty)) < o (M(2,y,d, T, ) — ¢ (M(z,y,d, T, ))).

123

160

123

773



774

Case IIl: y € {0, 4,4, &} and 2 € [5,1].
By a similar method to Case II, we deduce that

¢ (s*d(Tx, Ty) + o(Tx) + ¢(Ty)) < ¢ (M(2,y,d, T, ) — ¢ (M(z,y,d,T,p))).

Case IV: z,y € [%, 1].
If >y, then

0 (T o)+ lTa) + o) =0 (94 (5. 55) +9 (55) + (55) ) = 15

Also
d(z,y) + o) + ¢ly) = (x —y)* +z +y,
1 1
d(z,Tz) + p(x) + p(Tz) =d < 16) +r+ — 6’
d(y, Ty) + o(y) + p(Ty) = d <y 116) +y+ %6
and

1

9 1 1 1
= — d .
M(x,y,d, T, ) = max{(x — y) +x+y,d< 16>+x+16 <y 16>+y+16}

Since = > y, we have

1
M(z,y,d, T, ) =max{(fv—y)2+:c+y»d< 16> +x+*}

If
M(z,y,d.T,¢) = (z—y)* +z+y> 1,
then ; ’3
<2 < (M(r,y,d o) — 6 (M(e,3,0,T, ).
' 1 1 11 1 1 193
M(x,y,d,T,ga)—d( 16>+x+16_d(2716>+2+16_256’
then

23 193 4439

3
2 <
6 16 256 4096_w( (

z,y,d, T, ) — ¢ (M(z,y,d, T, 9‘7)))
Ifx,y € A and = < y, then

1
M(z,y,d,T,p) =maX{(w—y)2+I+y:d<y716> +y}

By a similar method to the condition x > y, we have

3 _ 4439
< - .
76 < 2006 S ¥ M(z,y,d.T,0) = ¢ (M(2,y,d, T, 9)))

Hence
W (s*d(Ta, Ty) + o(Tx) + o(Ty)) < ¢ (M(2,y,d, T, ) — ¢ (M(z,y,d,T,9))).
Thus all the conditions of Theorem [3.2] are satisfied and 0 is the unique fixed point of T

Rossafi, Kari

Definition 3.8. Let X be a complete b-rectangular metric space with metric d and parameter s, and T : X — X
be a mapping. Also let ¢ : X — RT be a lower semicontinuous function. Then T is called a generalized (v, p, ¢)

contractive mapping if it satisfies the following condition:

¥ (s*d (Tz, Ty) + ¢ (Tx) + ¢ (Ty)) < ¢ (M (z,y,d,T, 9)),

where

(3.14)

M(z,y,d,T, ) = max{d(z,y) + p(z) + ¢(y), d(z, Tx) + p(z) + p(Tz),d(y, Ty) + ¢(y) + ¢(Ty)}

for all z,y € X, and ¥ : RT — R¥ is an altering distance function and ¢ : RT™ — R is a right upper semi-continuous

function with the condition: 1 (t) > ¢(¢) for all ¢ > 0 and ¢(t) = 0 if and only if t = 0.
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Theorem 3.9. Let X be a complete b-rectangular metric space with parameter s > 1 and 7' : X — X be a mapping.
If T is a generalized (¢, ¢, ¢) contractive mapping then T has a unique fixed point z € X such that z = Tz and

p(z) =0.

Proof . Let 2y € X be an arbitrary point in X. Then we define the sequence {z,,} by z,+1 = Tz, for all n € N.
If there exists ng € N such that z,, = z,,41 =0, then z,, is a fixed point of T'.

Now we assume that z,, # ;1.
We claim that

nEI-&I-loo d(xn xnt1) = 0.

Letting x = z,,_1 and y = x,, in for all n € N, we have
) (82d (Txp—1,Try) + 9 (Txp_1)+ ¢ (Txn)) <O (M (zp—1,%n,d, T,p)),
where
M (zp—1,2n,d, T, ) = max{d(xp_1,2n) + p(Tn-1) + ©(zn),d(@n-1,2n) + @(Tpn_1)

+@(xn), d(@n, Tzn) + 9(T0) + (T2y)}
= max{d(xn_l, xn) + @(wn—l) + ‘P(xn)a d(xm mn-&-l) + ‘F’(xn) + ‘P(Txn-&-l)}'

If M (zp—1,%n,d, T,0) = d(xp, Tni1) + ¢(zn) + ©(2n41), then we have
d(Tp, Tny1) + @ (2n) + @ (Tni1))
s*d (Tns Tnt1) + @ (Tn) + ¢ (-Tn-i-l))

(d(Tn, Tnt1) + @ (Tn) + ¢ (Tnt1))
(d(Zn, Tng1) + @ (Tn) + @ (Tny1)) -

This is a contradiction. Thus

M (xn—lv ZTn,d, T, 90) = d(xn—h xn) + So(xn—l) + W(xn)

Therefore,

(0 (32d (T, Tng1) + @ (n) + o ($n+l)) <Y (d(Tn-1,2n) + @ (Tn-1) + ¢ (Tn)) . (3.15)

Since 9 is increasing,

d(Zn; Tng1) + @ (Tn) + @ (Tny1) < d(Tn_1,20) + @ (Tn_1) + @ (T5) - (3.16)

From (3.16)), the sequence {d (z, Tnt+1) + ¢ (zn) + ¢ (Tny1)} is decreasing and bounded below. Hence d (zy,, Zpn41) +
0 (xn) + ¢ (Tpt1) = 7 as n — +oo for some A > 0. Assume A > 0. Letting n — 400 in (3.15) and using the lower
continuity of ¢ and the upper semi-continuous of ¢, we have

v (V) < (s2A)
= lim sup ¢ (52d (@, Tng1) + @ (Tn) + @ (zn-H))

n—-+4oo

<limsup ¢ (d(p—1,%n) + @ (Tn_1) + ¢ (Tn))

n—+o0o
< ¢(\)
< (N).

It follows that ¥ (\) < % (527") < ¢ (\), which is a contradiction and hence we have A\ = 0 and consequently,
limy, 00 d (Tn, Tny1) + @ (Tn) + @ (Tnt1) = 0, which implies

nglilood(mn,xnﬂ) =0, (3.17)
lim ¢(z,)= lm ¢(zuy1)=0. (3.18)

n—-+oo n—-+4oo
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Next, we shall prove that
ngrfoo d(zn,Tni2) =0.

Assume that z,, # x,, for all n,m € N, n # m. Indeed, suppose that x, = x,, for some n = m + k with £ > 0. Using

(3.16)), we have

d(xm7$m+1) + @0 (Tm) + @ (merl) =d (mna anrl) + @ (zn) + @ (mn+1)
<d (wnflvxn) + @ (xnfl) + (xn) .

Continuing this process, we can that
d (xma -Terl) + ¢ (xm) + ¢ (merl) =d (xna -TnJrl) + (l‘n) + @ (anrl)
< d(Tm, Tmy1) + @ (@m) + @ (Tmi1),

which implies that

d (T, Timt1) < d (T, Trp1) -
This is a contradiction. Therefore, d (2, z,) > 0 for all n,m € N, n # m.
Letting * = z,_1 and y = x,11 in (3.14), we have

¢ (52d (Txnfla Txn+1) + (Txnfl) + (Tanrl)) < ¢ (M (xnflv Tn+1, da T, 50)) )

where
M (xn—la Tn+1, dv Tv 90) = max{d(xn—lv $n+1) + cp(xn_l) + CP($n+1),
d(xn—lv xn) + ‘P(xn—l) + ‘P(xn)a d(xn-i-la $n+2) + ‘P(xn-i-l) + ‘P(xn+2)}
= max{d(zn—1,Tnt1) + ¢(Tn-1) + P(Tnt1), d(Tn-1,7n) + @(Tn—1) + p(Tn)}.
So we get

P (d (xn, xn+2) + ¢ (xn) + ¢ (mn—&-?)) < (52d (xm $n+2) + @ (xn) + ¢ (mn+2))
< ¢ (max{d(zn_1,Tnt1) + (Tn_1) + (Tnt1), d(Tn-1,2n) + @(Tn-1) + p(xn)}).

Thus we have

Y (d(Tn, Tny2) + (xn) + @ (Tny2)) (3.19)
< ¢ (max{d(p—1,Tnt1) + P(Tn-1) + @(Tnt1), d(Tn—1,Zn) + P(Tn-1) + ©(T0n)}) .

Take a,, = d (Tpn, Tnt2) + @ (Tn) + @ (Tnt2) and by, = d(zy, Tnt1) + @(2n) + @(2n41). Then, by (3.19), one can write

d) (an) < (max (an—h bn—l)) .

Since 1) is increasing, we get
ap < max {a/n—la bn—l} .

By (3.16)), we have

bn S bnfl S max{anflabnfl} .

This implies that
max {an, by} < max{an_1,bp_1}, Vn € N.

Therefore, the sequence max {a,_1,b,-1},cy is nonnegative decreasing sequence of real numbers. Thus there exists
£ > 0 such that

ngrfw max {a, b, } = 5.

Assume that 8 > 0. Now, by (3.17)), it is obvious that

B = nll}rfoo sup a, = nll)r_{loo sup max {ay, b, } = ngrfw max {an, by} . (3.20)
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Taking lim sup,, — +o00 in (3.19) and using (3.20) and using the properties of ¢ and ¢, we obtain
¥(B) = limsup ¢ (an)
n—-+o0o

< limsup ¢ (max {an, by })

n—-+oo
<¢ <n£rfoo max {a,, bn}>

= o(B)
<Y(B),

which implies that ¢(8) = 0, a contradiction. Thus

limsupa, =0
n—-+00

and hence
lim d(xn,n42) =0. (3.21)

n——+oo

Next, we shall prove that {mn}neN is a Cauchy sequence, i.e, lim, y—too d (T, Tm) = 0 for all n,m € N. Suppose
to the contrary. By Lemma there is a € > 0 such that for an integer k there exist two sequences {n(k)} and
{m(k)} such that

i) e <limg_ 4o infd (xm(k),:rn(k)) <limg_ 4o supd (wm(k),:cn(k)) < se,
il) € <limg_ o0 infd (an(k)7$m(k)+1) <limg_, 4o supd (mn(k),xmmﬂ) < se,
iil) e <limg_, 4o infd (mm(k),xn(k)_,_l) < limg_, oo supd (xm(k),xn(k)+1) < se,

vi) £

<limg_y 4o infd (xm(k)ﬂ, fn(k>+1) <limp_y 4o supd (wmmﬂ, mn(k)ﬂ) < s2%.
Setting © = @, and y =y, in , we have
™ (xmw)  Tngy d, T, p) = max{d (xm(m J "T”oc)) + (xm(k-)) te (mmw)) )
d (T Tmy+1) + @ (Tmgey) + € (@mey+1) 5 & (T Tngy+1) + @ (Tngy) + ¢ (Tngy+1)}-
Taking the limit as k — +oo and using (3.15), and (i4i) of Lemma we have

lim M (xm(k),a:mk),d, T, (p) < se. (3.22)

k—-+o0

Now, taking the upper limit as k — +oo in (3.14)), using (3.17), (3.18), (3.22) and using the properties of 1 and ¢, we
have

Y(se) = (322) < limsup v [s2d ('Tm(k)+1’xn(k)+1)]

n—-+oo

< lim Supd} [82d (xm(kwl ’ m"(k)ﬂ) to (mm(mﬂ) to (xn(k)ﬂﬂ

n—-+oo

< limsup ¢ [M (xm(k),$n<k)7d7 T, @)]

n—-+oo
< ¢(s¢e)
< (se),

which is a contradiction. Thus

mmh_r)n_s_oo d(zm,xn) =0.

Hence {z,} is a Cauchy sequence in X. By completeness of (X, d), there exists z € X such that

lim d(z,,z)=0.

n—-+o0o
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Since ¢ is lower semicontinuous, we get

¢ (z) <liminfp (z,) < lm ¢ (z,) =0,

n—-+o0o n——+00
which implies
¢ (z) =0.
Now, putting = z,, and y = z in (3.14]), we have
M (:En, z,d,T, 90) = maX{d (mna Z) +¢ (.’En) +¢ (2) )
d(zn, 2nt1) + @ (2n) + 0 (Tnt1),d(2,T2) + ¢ (2) + ¢ (T2)}.
Taking the limit as n — 400, we have

lim M (xn,2,d,T,p) =d(z,Tz)+ ¢ (T%). (3.23)

n—-+4oo

Since z,, — 2z as n — +o00, from Lemma we conclude that

1
—d(2,Tz) < lim supd(Tz,,Tz) <sd(z,Tz),
s

n—-+oo

which implies that
sd(z,Tz)+ ¢ (Tz) < lirf sup (s°d (Tzn, T2) + ¢ (Tns1) + ¢ (T2)) .
n—-—+0oQo

Letting n — 400 in (3.14]), using (3.23]) and the property of 1) and the supper semicontinuity of ¢, we have

B (o T2) 4 (1)) < 0 lim_sup (70T T2) 4 ) + (7))
= ngr—{-loo sup ¥ ((8°d (Txn, T2) + ¢ (Tns1) + ¢ (T2)))

< lim sup¢[M (z,,2,d, T, )]

n—-+00

<o [ lim M (x,,2,d,T, gp)}

n—-+oo

< [ngr}rlooM (Tp,2,d, T, go)}
=9 (d(zT2) +¢(Tz)),
which implies
Vlsd(2,Tz) + ¢ (T2)] <¢[d(2,Tz) + ¢ (T2)].
This holds if and only if ¢ (d (2,T2) + ¢ (T'z)) = 0 and from the property of ¢, we have
d(z,Tz)+¢(Tz) =0.

Hence d(z,Tz) =0 and so z =Tz and ¢ (T'z) = 0.

Suppose that z,u € X are two fixed points of T" such that u # 2. Then Tz = z and Tu = u.
Letting x = z and y = u in (3.1)), we get
¥ (5°d (T2, Tu) + ¢ (T2) + ¢ (Tw)) = ¢ (s*d(z,u)) < & (M (2,u,d,T, p)),
where

M(z,u,d, T, ) = max{d(z,u) + ¢(2) + ¢(u),d(2,Tz) + ¢(2) + (Tz), d(u, Tu) + ¢(u) + ¢(Tu)}
=d(z,u).

So
¥ (s*d(z,u)) < o (d(z,u) <9 (d(z,u)).

This is a contradiction. Hence z = u, T has a unique fixed point. [J
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Example 3.10. Let (X,d) be the rectangular b-metric space such that X = AU B, where 4 = {0, 1,5, } and
B=[%1] and d: X x X — [0, +oo is defined by

d(z,y) = d(y,x) for all z,y € X;
dz,y) =0 y==x

1 11
o(0.2) ~a(l) <o
1 11

d - =d
(0:5)=(5:5) =03
11
o(0.5) (L L) oo

d(z,y) = (|z - y\)2 otherwise.

and

Define a mapping T : X — X by
1 if © € L 1
167" 2

T(z) =
0if x € A.
Then T'(z) € X for all x € X. Let
N tiftel0,1]
P =3 ir 1
4t
o) =+
and 5t
¥(t) 5

Then v is an altering distance function and ¢ is a lower semicontinuous function and ¢ is a right upper semicontinuous
function such that ¢ (t) > ¢(t) for all ¢t > 0.
Consider the following possibilities:
. 11 1
Case I: z,y € {0, T E} .
Assume that x > y. Then

¥ (s%d(Tz, Ty) + o(Tz) + ¢(Ty)) = (9.(0,0) + 9(0) + ¢()) = ¥(0) = 0.

Also
d(z,y) + p(x) + ¢(y) = d(z,y) + = + v,
d(z, Txz) + p(x) + p(Tz) = d(z,0) +
d(y, Ty) + ¢(y) + ¢(Ty) = d(y,0) +y
and

M(%y, a,T, ‘P) = max{d(%y) +z+y, d(xv 0) +, d(y7 O) + y}

Since = > y, we have
M(z,y,d,T, ) = max{d(z,y) + = + y,d(z,0) + x}.

If
M(z,y,d,T,¢) =d(z,y) +x+y > 2—10,
then A 41
¢ (M(z,y,d,T,0)) = ¢(dw,y) +x +y) = = (dw,y) +a+y) = = 5520
and so

0= (s*d(Tz,Ty) + o(Tx) + o(Ty)) < ¢ (M(x,y,d, T, p))).
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If
M(z,y,d,T,p) =d(x,0)+ 2z > %
then
0= (s’d(Tz, Ty) + p(Tx) + p(Ty)) < & (M(z,y,d, T, p))).
If x < y, then
M(z,y,d,T, ) = max{d(z,y) + = +y,d(y,0) + y}.
If
M(z,y,d,T,p) =d(z,y) +x+y> i+i = g,
20 16 80
then
6 (M(@,y,d,T,9) = 6 (d(z,y) + 7 +9) > o - = = —
80 5 100
and so
& (s*d(Tx, Ty) + o(Tz) + p(Ty)) < ¢ (M(z,y,d, T, ¢)) .
If
M(z,y,d,T,¢) =d(y,0) +y,
then

9
d(y,0 > —
(4:,0) +y = o5
since z < y and 0 < y. So

6 (M (@,4,d,7,9)) = 6 (d(3,0) +1) = 750

Thus
¢ (sPd(Tx, Ty) + o(Tx) + o(Ty)) < ¢ (M(z,y,d, T, ).

Case II: = € {0 and y € [ } This implies z < y. Then

’5’9’16

b (5% (d (T, Ty) + o(T) + p(Ty))) = > [9d( 1 ) + 1} -2

16’ 16 91
Also
d(z,y) +o(x) +oly) = (t—y)* +2+y,
d(z,Tz) + o(v) + p(Tx) = d(z,0) + =
1 1
d(y, Ty) + ¢(y) + p(Ty) = d (y 16) AT
and ) )
M(I,y,d,T,(p) = Inax{(x*y)2 +:E+y,d(:c,0) +I’,d <y; 16) +y+ Tﬁ}

Since x < y, we have

1
M(z,y,d,T, ) ZmaX{(w—y)2+m+y,d(y716> Lyt =),

16
If 2
1 1 59
M T,p) = 57\275) T 100
then 4 4 59 99
T 4 _
¢ (M(@,y.dT.9) 2 ¢ (d@y)* +o+y) 2 £ 156 = 155
and so
If

2
1 11,1 (1 1 193
M(z,y,d,T,p) =d |y, — 6-2 " 16 \2716) ~ 256
(2,94, T, ) <y716)+y+62+16+<2 16) 256’
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then
4 1 ) S 4 193 _ 193

1
and so
¢ (sd(Tx, Ty) + o(Tx) + o(Ty)) < ¢ (M(z,y,d,T,¢)).

Case III: y € {0, = 9, 16} and x € [ ] . By a similar method to Case II, we deduce that
b (s2d(Tx, Ty) + (Tx) + o(Ty)) < (M(2,y,d, T, ) — ¢ (M(z,y,d, T, ).

Case IV: z,y € [%, 1].
If x >y, then

¢ (s*d(Tx, Ty) + o(Tx) + o(Ty)) = <9d (116 116) +¢ (116) (116» = %-

Also
d(z,y)+o@) + o) =@ -y’ +z+y,
ﬂ%ﬂw+ﬂ@+w@@:d< $)+m+$
. To) + o)+ o(T9) = (135 ) + 0+ 5
and

1 1 1 1
M T, p) = —9)? - —,
(z,y,d, T, ¢) = max{(x — y) +m+y,d< 16>+x+16 d<y, 16)+y+16}

Since z > y, we have

1
M(z,y,d,T, ) max{(xy)2+w+y,d< 16> +‘f“*}

If
M(z,y,d, T, ) = (x—y)° +a+y>1,

then

S5t (M2, d, T, )

48757 Yy Y, ay L, 0)) .
If 1 1 11\ 1 1 193

M T,p) = — T 216/ 72716 256

then

|
In
\
|
I
|

<o (M(z,y,d,T,¢)).

If 2,y € A and = < y, then

1
M(z,y,d, T, ) max{(xy)2+x+y,d( 16) +y}.

By a similar method to the condition z < y, we have

5 4 193 193
— S = ora % S(b(M(xvyad’T’(p))

Hence
¥ (s%d(Tz, Ty) + o(Tx) + ¢(Ty)) < ¢ (M(z,y,d,T,p)).
Thus all the conditions of Theorem are satisfied and 0 is the unique fixed point of T'.
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4 Conclusion

In this paper, inspired by the concept of generalized weakly contractive mappings in metric spaces, we introduced

the concept of generalized weakly contractive mappings in rectangular b-metric spaces to study the existence of fixed
point for the mappings in this spaces. Furthermore, we provided some useful examples.
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