
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,937 |
تعداد دریافت فایل اصل مقاله | 7,656,396 |
بررسی ترمودینامیکی مایسلی شدن سورفاکتانت تترا دسیل تری متیل آمونیوم برمید درمخلوط های متانول/ اتانول/ پروپانول + آب و رنگینه های سان ست یلو /پانسوآ رد با استفاده از هدایت سنجی | ||
شیمى کاربردى روز | ||
دوره 18، شماره 66، فروردین 1402، صفحه 159-172 اصل مقاله (1.33 M) | ||
نوع مقاله: مقاله علمی پژوهشی | ||
شناسه دیجیتال (DOI): 10.22075/chem.2022.25943.2044 | ||
نویسندگان | ||
فاطمه داودی؛ حمید دژم پناه* ؛ بهرام قلمی چوبر | ||
گروه شیمی، دانشکده علوم پایه، دانشگاه گیلان ، رشت، ایران | ||
تاریخ دریافت: 12 بهمن 1400، تاریخ بازنگری: 01 خرداد 1401، تاریخ پذیرش: 02 شهریور 1401 | ||
چکیده | ||
در این تحقیق رفتار مایسلی شدن سورفاکتانت تترا دسیل تری متیل آمونیوم برومید (TTAB) در درصد های جرمی مختلف از مخلوط حلال های آبی متانول، اتانول، و پروپانول (10-30 درصد) و غلظت های مختلفی ازمحلول های آبی رنگینه های پانسوآ رد و سان ست یلو (001/0 تا 007/0 میلی مولار) با استفاده از تکنیک هدایت سنجی در دماهای مختلف ( 298 تا 313 درجه کلوین)، مورد بررسی قرار گرفت . مقادیر نقطه بحرانی مایسلی شدن و درجه یونش آن تعیین شد. نتایج به دست آمده نشان داد که با افزایش درصد جرمی متانول و اتانول غلظت بحرانی مایسلی شدن افزایش می یابد اما با افزایش پروپانول غلظت بحرانی مایسلی شدن کاهش می یابد. همچنین نتایج به دست آمده نشان داد که غلظت بحرانی مایسلی شدن با افزایش غلظت رنگینه های پانسوآ رد و سان ست یلو کاهش می یابد. همچنین ،خواص ترمودینامیکی مانند انرژی آزاد گیبس، آنتالپی و آنتروپی بعنوان تابعی از دما، غلظت رنگینه وکسر های جرمی الکل ها محاسبه شد. | ||
کلیدواژهها | ||
هدایت سنجی؛ مایسلی شدن؛ تترا دسیل تری متیل آمونیوم برومید؛ متانول؛ اتانول؛ پروپانول؛ پانسوآ رد و سان ست یلو | ||
عنوان مقاله [English] | ||
Thermodynamic study on micellization of tetradecyltrimethylammonium bromide surfactant in mixes methanol/ethanol/propanol +water and Ponceau 4R and Sunset yellow FCF dyes using of conductometric measurement | ||
نویسندگان [English] | ||
Fatemeh Davoudi؛ Hamid Dezhampanah؛ Bahram Ghalami-Choobar | ||
Department of Chemistry, Faculty of Basic Sciences, Gilan University, Rasht, Iran | ||
چکیده [English] | ||
In this work, the micellization behavior of tetradecyltrimethylammonium bromide (TTAB) surfactant was investigated in aqueous solvent mixtures of methanol, ethanol and propanol on different mass fractions (10-30%) and aqueous solution of Ponceau 4R and Sunset yellow FCF dyes at concentrations (0.001-0.007mM) based on conductometric technique at T=(298-313)K. The critical micelle concentration (CMC) values and dissociation degrees of TTAB surfactant were determined. The obtained results showed that the CMC value increases with rising of methanol and ethanol mas fractions but the CMC value decreases with rising of propanol mas fractions. Also, the obtained results indicated that the CMC value decreases with concentration increasing of Ponceau 4R and Sunset yellow FCF dyes. In addition, thermodynamic properties such as the Gibbs energy, enthalpy and entropy of micellization were calculated as a function of temperature, dye concentration and alcohol mass fractions. | ||
کلیدواژهها [English] | ||
Conductometric, Micellisation, propanol, Ponceau 4R and Sunset yellow FCF, Tetradecyltrimethylammonium bromide. | ||
مراجع | ||
[1] Kumar, G., & Chauhan, M. S. (2018). Conductometric investigations of surfactant behavior in aqueous polar aprotic organic additives. Journal of Molecular Liquids, 249, 710-715.
[2] Li-Sheng Hao, Ni Yang, Guang-Yu Xu, Yun-Feng Jia, Qian Liu, Yan-Qing. (2016) Nan Specific ion effects on the micellization of aqueous mixedcationic/anionic surfactant systems with various counterions. Colloids and Surfaces A: Physicochem. Eng. Aspects, 504, 161–173
[3] Akram, M., Yousuf, S., & Sarwar, T. (2014). Micellization and interfacial behavior of 16-E2-16 in presence of inorganic and organic salt counterions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 441, 281-290.
[4] Ramadan, M. S., El-Mallah, N. M., Nabil, G. M., & Abd-Elmenem, S. M. (2019). Hydrophobic effect for anionic dye-cationic surfactant interaction in aqueous and mixed solvent. Journal of Dispersion Science and Technology, 40(8), 1110-1120.
[5] Abezgauz, L., Kuperkar, K., Hassan, P. A., Ramon, O., Bahadur, P., & Danino, D. (2010). Effect of Hofmeister anions on micellization and micellar growth of the surfactant cetylpyridinium chloride. Journal of colloid and interface science, 342(1), 83-92.
[6] Pal, A., & Chaudhary, S. (2014). Ionic liquids effect on critical micelle concentration of SDS: Conductivity, fluorescence and NMR studies. Fluid Phase Equilibria, 372, 100-104.
[7] Rub, M. A., Azum, N., Khan, S. B., Marwani, H. M., & Asiri, A. M. (2015). Micellization behavior of amphiphilic drug promazine hydrochloride and sodium dodecyl sulfate mixtures at various temperatures: effect of electrolyte and urea. Journal of Molecular Liquids, 212, 532-543.
[8] Huang, J., & Ren, Z. H. (2020). Mechanism on micellization of amino sulfonate amphoteric surfactant in aqueous solutions containing different alcohols and its interfacial adsorption. Journal of Molecular Liquids, 316, 113793.
[9] Sheng, R., Ding, Q. Y., Ren, Z. H., Li, D. N., Fan, S. C., Quan, X. F., ... & Qian, Z. B. (2021). Interfacial and micellization behavior of binary mixture of amino sulfonate amphoteric surfactant and octadecyltrimethyl ammonium bromide: Effect of short chain alcohol and its chain length. Journal of Molecular Liquids, 334, 116064.
[10] MacDonald, S., MacLennan, S., & Marangoni, D. G. (2020). Calorimetric determination of the thermodynamics of alcohol-surfactant mixed micelle formation: Temperature and concentration effects. Journal of Molecular Liquids, 302, 112531.
[11] Ren, Z. H., Huang, J., Luo, Y., Zheng, Y. C., Mei, P., Yu, W. C., ... & Li, F. X. (2016). Effect of isopropanol on the micellization of binary mixture containing amino sulfonate amphoteric surfactant in aqueous solution: mixing with sodium dodecylbenzene sulfonate. Journal of the Taiwan Institute of Chemical Engineers, 65, 482-487.
[12] Dezhampanah, H., Ghalami Choobar, B., Ansari, R., & Firouzi, R. (2013). Coductometric studies of the interaction of acid green 25 with cationic alkyltrimethylammonium bromid surfactants. Progress in Color, Colorants and Coatings, 7(1), 39-48.
[13] Alam, M. M., Molla, M. R., Rana, S., Rub, M. A., Azum, N., Hoque, M. A., & Kabir, S. E. (2019). Aggregation behavior of cetyltrimethylammonium bromide and tetradecyltrimethylammonium bromide in aqueous/urea solution at different temperatures: Experimental and theoretical investigation. Journal of Molecular Liquids, 285, 766-777.
[14] Kabir-ud-Din, N., Rub, M. A., & Naqvi, A. Z. (2011). Self-association behavior of amitriptyline hydrochloride as a function of temperature and additive (inorganic salts and urea) concentration. Colloid Surf B, 82, 87-94.
[15] Roik, N. V., Belyakova, L. A., & Dziazko, M. O. (2021). Solubilization of azo dyes by cetyltrimethylammonium bromide micelles as structure control factor at synthesis of ordered mesoporous silicas. Journal of Molecular Liquids, 328, 115451.
[16] Akhlaghi, N., & Riahi, S. (2019). Salinity effect on the surfactant critical micelle concentration through surface tension measurement. Iranian Journal of Oil and Gas Science and Technology, 8(4), 50-63.
[17] Hosseinzade Khanamiri, H., Baltzersen Enge, I., Nourani, M., Stensen, J. Å., Torsæter, O., & Hadia, N. (2016). EOR by low salinity water and surfactant at low concentration: impact of injection and in situ brine composition. Energy & Fuels, 30(4), 2705-2713.
[18] Nadeem, S. M. S., & Ullah, S. M. R. (2020). The study of ionic interactions of monovalent electrolytes in aqueous polyvinyl alcohol and polyacrylamide by conductance method. Ionics, 26, 2927-2940.
[19] Shekaari, H., Zafarani-Moattar, M. T., Faraji, S., & Mokhtarpour, M. (2018). Thermophysical properties of ionic liquid, 1‑ethyl-3-methylimidazolium ethyl sulfate in organic solvents at dilute region. Journal of Molecular Liquids, 269, 547-555.
[20] Abbasi Awal, H., Ghasemzadeh, B., & Naseri, A. (2017). Thermodynamic study of the ion-pair complexation equilibria of dye and surfactant by spectral titration and chemometric analysis. Analytical and Bioanalytical Chemistry Research, 4(2), 307-317.
[21] Hosseinzadeh, R., Maleki, R., Matin, A. A., & Nikkhahi, Y. (2008). Spectrophotometric study of anionic azo-dye light yellow (X6G) interaction with surfactants and its micellar solubilization in cationic surfactant micelles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69(4), 1183-1187.
[22] Kumar, G., & Chauhan, M. S. (2018). Conductometric investigations of surfactant behavior in aqueous polar aprotic organic additives. Journal of Molecular Liquids, 249, 710-715.
[23] El-Hammamy, N. H., & El-Araby, H. A. (2016). Electrical conductivity and thermodynamic studies on sodium diethyldithiocarbamate in methanol at different temperatures. Int. J. Electrochem. Sci, 11, 8709-8721.
[24] Moradian, S., Ghasemi, J. B., & Dezhampanah, H. (2020). Chemometrics-spectroscopic study of the effect of temperature and pre-micellar to post-micellar forms of various surfactants on the dimerization of nickel and copper phthalocyanines. Journal of Molecular Liquids, 300, 112350.
[25] Dezhampanah, H., & Majidi Naeemi, M. (2019). Investigation of efficiency of iron nanoparticles on the orange peel in removal of sunset yellow dye from aqueous environment. Applied Chemistry, 14(50), 9-24. (in persion)
[26] Maleki, S., Mennati, A., & Salehi Sadaghiani, A. R. (2011). Determine and compare the cmc point of SDS, Triton x-100 and CTAB surfactants using conductometery method. Applied Chemistry, 6(20), 47-52. (in persion) | ||
آمار تعداد مشاهده مقاله: 221 تعداد دریافت فایل اصل مقاله: 349 |