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Abstract

In this paper, first, we introduce (α,ψ, φ)-Geraghty and generalized (α,ψ, φ)-Geraghty contraction mappings in b-
metric spaces and then we prove the existence and uniqueness of fixed point after exploring all the conditions which
guarantee the existence of fixed point. Our results extend and generalize related fixed point results in the existing
literature. We also provide examples in support of our main findings.
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1 Introduction

The family of contractive mappings in different spaces is a great interest and has already been studied in the
literature since long time. Their application is also studied by many authors, see [3, 16]. In [12] Geraghty introduced
the concept of Geraghty contraction mapping in metric spaces and proved fixed point theorem for that mapping.
Afterwards, a number of authors generalized his work, see [1, 2, 4, 5, 6, 8, 10, 11, 13, 14, 15]. We focus on the work
of Karapinar et al. [15]. He introduced the notion of φ-Geraghty and Ciric type φ-Geraghty contractive mappings in
complete metric spaces and proved the existence and uniqueness of fixed points. Inspired and motivated by the work
of Karapinar et al. [15] the main purpose of this paper is to establish fixed point results for (α,ψ, φ)-Geraghty and
generalized (α,ψ, φ)-Geraghty contraction mappings in the setting of b-metric spaces.

2 Preliminaries

We need the following symbols and class of functions to prove certain results of this section:

1. R+ = [0,∞);

2. R is the set of all real numbers;

3. N is the set of all natural numbers;

4. Ψ = {ψ : R+ → R+, such that, ψ is continuous, strictly increasing,
ψ(x+ y) = ψ(x) + ψ(y) and ψ(0) = 0 };
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5. Θ = {θ : R+ → [0, 1), such that, θ(tn) → 1 ⇒ tn → 0, as n→ ∞};

6. Θ′ = {θ : R+ → [0, 1), such that lim supn→∞ θ(tn) = 1 ⇒ limn→∞ tn = 0};
7. Θs ={θ : R+ → [0, 1s ), such that,θ(tn) → 1

s ⇒ tn → 0 as n→ ∞ for s ≥ 1};
8. Θ′

s={θ : R+ → [0, 1s ), such that, lim supn→∞ θ(tn) =
1
s ⇒ limn→∞ tn = 0}.

Definition 2.1. (See [9] ) Let X be a nonempty set and s ≥ 1 be a given real number. A function d : X ×X → R+

is said to be a b-metric if and only if for all x, y, z ∈ X, the following conditions are satisfied

1. d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x);

3. d(x, z) ≤ s[d(x, y) + d(y, z)].

The pair (X, d) is called a b-metric space.

Definition 2.2. (See [12]) Let (X, d) be a metric space. An operator T : X → X is called a Geraghty contraction if
there exists a function θ ∈ Θ which satisfies for all x, y ∈ X the condition

d(Tx, Ty) ≤ θ(d(x, y))d(x, y).

Theorem 2.3. (See [12]) Let (X, d) be a complete metric space. If T : X → X is a Geraghty contraction mapping,
then T has a unique fixed point.

Theorem 2.4. (See [18]) Let (X, d) be a complete metric space and T : X → X. Assume that there exists a
φ : R+ → R+ satisfying:

1. φ(t) < t for any t ∈ R+;

2. for any ε > 0, there exists δ > 0 such that ε < t < ε+ δ ⇒ φ(t) ≤ ε;

3. d(Tx, Ty) ≤ φ(L(x, y)), for all x, y ∈ X; where

L(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

[d(x, Ty) + d(y, Tx)]

2

}
.

Then T has a unique fixed point.

Definition 2.5. (See [17]) Let α : X ×X → R+ be a function. A mapping T : X → X is said to be α-admissible, if
for all x, y ∈ X, α(x, y) ≥ 1 implies α(Tx, Ty)) ≥ 1.

Recently, Karapinar et al. [15] introduced the notion of φ-Geraghty and Ćirić type φ-Geraghty contractive mappings
in complete metric spaces and proved the existence and uniqueness of fixed points.

Definition 2.6. Let X be a nonempty set. A function f : X → R+ is called upper semicontinuous at a point x̄ ∈ X
if for every ϵ > 0, there exists a δ > 0 such that f(x)− f(x̄) < ϵ for all x ∈ X with |x− x̄| < δ.

Definition 2.7. (See [7]) Let X be a b-metric space and {xn} be a sequence in X, we say that

1. {xn} is b-converges to x ∈ X if d(xn, x) → 0 as n→ ∞.

2. {xn} is a b-Cauchy sequence if d(xn, xm) → 0 as n,m→ ∞.

3. (X, d) is b-complete if every b-Cauchy sequence in X converges to a point in X.

Definition 2.8. (See [15]) Suppose that φ : R+ → R+ is a function and θ ∈ Θ. A self-mapping T on a metric space
(X, d) is called φ-Geraghty contraction if it satisfies the following conditions:

1. φ(t) < t for any t ∈ (0,∞);

2. For any ε > 0, there is a δ > 0 such that ε < t < ε+ δ ⇒ φ(t) ≤ ε;

3. d(Tx, Ty) ≤ θ(d(x, y))φ(d(x, y)).
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Theorem 2.9. (See [15]) Let (X, d) be a complete metric space. If a self-mapping T : X → X forms a φ-Geraghty
contraction, then T has a unique fixed point.

Definition 2.10. (See [15]) Suppose that φ : R+ → R+ is a function and θ ∈ Θ′. A self-mapping T on a metric
space (X, d) is called Ćirić type φ-Geraghty contraction if it satisfies the following conditions:
(φ0) φ is upper semicontinuous;
(φ1) φ(t) < t for any t ∈ R+;
(φ2) For any ε > 0, there exists a δ > 0 such that ε < t < ε+ δ implies φ(t) ≤ ε;
(φ′

3) d(Tx, Ty) ≤ θ(L(x, y))φ(L(x, y)); for all x, y in X, where

L(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty),

[d(x, Ty) + d(y, Tx)]

2

}
.

Theorem 2.11. (See [15]) Let (X, d) be a complete metric space. If a self- mapping T : X → X forms a Ćirić type
φ-Geraghty contraction, then T has a fixed point.

Remark 2.12. By (φ1), It is easy to see that (φ2) is equivalent to the following:

(φ′
2) For any ε > 0, there exists a δ > 0 such that t < ε+ δ ⇒ φ(t) ≤ ε.

Indeed, if 0 < t ≤ ε from (φ1), we have φ(t) < t ≤ ε.

3 Main Results

In this section, we introduce (α,ψ, φ)-Geraghty and generalized (α,ψ, φ)-Geraghty contraction mappings in the
setting of b-metric spaces and prove fixed point results for the mappings introduced.

Definition 3.1. Let (X, d) be a b-metric space, T : X → X and α : X × X → R+. A mapping T is said to be
(α,ψ, φ)-Geraghty contraction mapping if there exists φ : R+ → R+, ψ ∈ Ψ and θ ∈ Θs satisfies for all x, y ∈ X the
following conditions:

1. φ(t) < t for any t ∈ R+;

2. For any ε > 0, there exists a δ > 0 such that

ε < t < ε+ δ ⇒ φ(t) ≤ ε;

3. α(x, y)ψ(sd(Tx, Ty)) ≤ θ(ψ(d(x, y)))φ(ψ(d(x, y))).

Theorem 3.2. Let (X, d) be a complete b-metric space and T : X → X. Suppose the following conditions hold:

1. T is an α-admissible mapping;

2. T is an (α,ψ, φ)-Geraghty contraction mapping;

3. There exists x0 ∈ X such that α(x0, Tx0) ≥ 1.

Then T has a unique fixed point.

Proof . By (3) above, there exists x0 ∈ X such that α(x0, Tx0) ≥ 1. Define a sequence {xn} in X by

xn = Txn−1,

for n ∈ N. Suppose that xn0
= xn0+1 for some n0 ∈ N. Since Txn0

= xn0+1 = xn0
, the point xn0

forms a fixed point
of T . From now on we suppose that xn ̸= xn+1 for all n ∈ N ∪ {0}. Since T is α-admissible, we have

α(x0, Tx0) = α(x0, x1) ≥ 1 ⇒ α(Tx0, Tx1) = α(x1, x2) ≥ 1.
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Continuing in this manner, we get α(xn, xn+1) ≥ 1 for all n ≥ 0. By the properties of ψ, φ1, θ and φ3, we have the
following.

ψ(d(xn+1, xn+2)) = ψ(d(Txn, Txn+1))

≤ ψ(sd(Txn, Txn+1))

≤ α(xn, xn+1)ψ(sd(Txn, Txn+1))

≤ θ(ψ(d(xn, xn+1)))φ(ψ(d(xn, xn+1)))

<
1

s
φ(ψ(d(xn, xn+1))))

≤ φ(ψ(d(xn, xn+1)))

< ψ(d(xn, xn+1)).

Therefore, d(xn+1, xn+2) < d(xn, xn+1) for all n ≥ 0. Hence, the non-negative sequence {d(xn, xn+1)} is non-
increasing in R+. Accordingly, it is convergent to some real number l ≥ 0. We claim l = 0. We suppose on the
contrary that l > 0. Hence, we have 0 < l < d(xn, xn+1) for all n ≥ 0. Set ε = l. From (φ′

2), there exists
δ > 0 such that t < ε + δ ⇒ φ(t) ≤ ε. On the other hand from definition of ε, we can choose n0 ∈ N such that
ε < d(xn0 , xn0+1) < ε+ δ and by the properties of ψ, φ2, φ3, and θ, we have

ψ(ε) < ψ(d(xn0 , xn0+1)) < ψ(ε) + ψ(δ) ⇒ φ(ψ(d(xn0 , xn0+1))) ≤ ψ(ε).

We have also
ε < d(xn0+2, xn0+3) < d(xn0+1, xn0+2) = d(Txn0 , Txn0+1),

which implies

ψ(ε) < ψ(d(xn0+2, xn0+3))

< ψ(sd(xn0+1, xn0+2))

= ψ(sd(Txn0
, Txn0+1))

≤ α(xn0
, xn0+1)ψ(sd(Txn0

, Txn0+1))

≤ θ(ψ(d(xn0
, xn0+1)))φ(ψ(d(xn0

, xn0+1)))

<
1

s
φ(ψ(d(xn0 , xn0+1)))

≤ 1

s
ψ(ε) ≤ ψ(ε),

which is a contradiction. Hence

l = lim
n→∞

d(xn, xn+1) = 0. (3.1)

Now, we prove the sequence {xn} is Cauchy. We fix ε1 > 0. Then by (φ′
2), there exists a δ1 > 0 such that

t < ε1 + δ1 ⇒ φ(t) ≤ ε1. Without loss of generality, we assume δ1 < ε1. Due to (3.1) there exists n0 ∈ N such that

d(xn, xn+1) <
δ1
s
, for all n ≥ n0, (3.2)

which implies ψ(d(xn, xn+1) < ψ( δ1s ) or ψ(sd(xn, xn+1)) < ψ(δ1). By induction, we show that for any fixed k ≥ n0

d(xk, xk+l) < ε1 + δ1, for all l ∈ N. (3.3)

The inequality trivially holds for l = 1 by (3.2). Now, we assume that (3.3) is satisfied for some j ∈ N and now,
we show that it holds for l = j + 1.
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From the triangle inequality and properties of ψ, φ2, φ3, and θ, we get

ψ(d(xk, xk+j+1)) ≤ ψ(s[d(xk, xk+1) + d(xk+1, xk+j+1)])

= ψ(sd(xk, xk+1)) + ψ(sd(xk+1, xk+j+1))

= ψ(sd(xk, xk+1)) + ψ(sd(Txk, Txk+j))

≤ ψ(sd(xk, xk+1)) + α(xk, xk+j)ψ(sd(Txk, Txk+j))

≤ ψ(sd(xk, xk+1)) + θ(ψ(d(xk, xk+j)))φ(ψ(d(xk, xk+j)))

< ψ(sd(xk, xk+1)) +
1

s
φ(ψ(d(xk, xk+j)))

< ψ(δ1) +
1

s
φ(ψ(d(xk, xk+j)))

≤ ψ(δ1) +
1

s
ψ(ε1)

≤ ψ(δ1) + ψ(ε1)

= ψ(ε1 + δ1).

Thus, we have
d(xk, xk+j+1) < ε1 + δ1.

Consequently (3.3) holds for l = j + 1. Hence, we drive that d(xk, xk+l) < ε1 + δ1 for all k ≥ n0 and l ≥ 1. Since ε1
is arbitrary, we conclude that

lim
m,n→∞

d(xn, xm) = 0.

Thus, the sequence {xn} is Cauchy. Since (X, d) is complete, there exists u ∈ X such that xn → u as n→ ∞.
Claim Tu = u. Arguing by contradiction, we assume that Tu ̸= u. So there exists r > 0 such that d(u, Tu) = r > 0.
Since xn → u, we can choose n0 ∈ N such that d(xn, u) <

r
2s for all n ≥ n0. Then, by the properties of ψ, φ1, φ3, and

θ, we get the following

ψ(r) = ψ(d(u, Tu))

≤ ψ(sd(u, xn+1) + sd(xn+1, Tu))

= ψ(sd(u, xn+1)) + ψ(sd(Txn, Tu))

≤ ψ(sd(u, xn+1)) + α(xn, u)ψ(sd(Txn, Tu))

≤ ψ(sd(u, xn+1)) + θ(ψ(d(xn, u)))φ(ψ(d(xn, u)))

< ψ(sd(u, xn+1)) +
1

s
φ(ψ(d(xn, u)))

< ψ(
r

2
) +

1

s
ψ(d(xn, u))

< ψ(
r

2
) + ψ(

r

2s
)

≤ ψ(
r

2
) + ψ(

r

2
)

= ψ(
r

2
+
r

2
) = ψ(r),

which is a contradiction. Thus Tu = u, that is, u is a fixed point of T . Next, we show uniqueness. Suppose that v ̸= u
is another fixed point of T . Then, by the properties of ψ, φ2, φ3 and θ, we have

ψ(d(u, v)) = ψ(d(Tu, Tv))

≤ ψ(sd(Tu, Tv))

≤ α(u, v)ψ(sd(Tu, Tv))

≤ θ(ψ(d(u, v)))φ(ψ(d(u, v)))

<
1

s
φ(ψ(d(u, v)))

≤ φ(ψ(d(u, v))) < ψ(d(u, v)).

That implies d(u, v) < d(u, v), which is a contradiction. Hence u = v. □
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Remark 3.3. By taking s = 1, α(x, y) = 1 and ψ(t) = t in Theorem 3.2, we get Theorem 2.9 in [15].

Thus Theorem 3.2 generalizes Theorem 2.9 in [15]. Now, we give an example in support of Theorem 3.2.

Example 3.4. X = [0, 34 ] ∪ {1} be endowed with the b-metric d : X ×X → R+

defined by
d(x, y) = (x− y)2,

for all x, y ∈ X. Then (X, d) is a complete b-metric space with s = 2. Let T : X → X be defined by

T (x) =

{
x
4 if x ∈ [0, 34 ],
1
8 if x = 1.

Define α : X ×X → R+, θ : R+ → [0, 12 ), ψ : R+ → R+ and φ : R+ → R+ as

α(x, y) =

{
3
2 if (x, y) ∈ [0, 34 ],

0 otherwise.
,

θ(t) = 3
8 ; ψ(t) =

t
4 , and φ(t) =

t
2 .

1. Now, we show that T is an α-admissible mapping. If x, y ∈ [0, 34 ], then α(x, y) > 1, Tx ≤ 3
4 and Ty ≤ 3

4 . By
the definition of α, it follows that α(Tx, Ty) > 1. Therefore, T is an α-admissible mapping.

2. We show that T is an (α,ψ, φ)-Geraghty contraction mapping.

Case I: For x, y ∈ [0, 34 ], we have

α(x, y)ψ(sd(Tx, Ty)) =
3

4
(Tx− Ty)2

=
3

64
(x− y)2

≤ 3

64
(x− y)2

= θ(ψ(d(x, y)))φ(ψ(d(x, y))).

Case II: If x ∈ [0, 34 ] and y = 1, we have

α(x, y)ψ(sd(Tx, Ty)) = 0 ≤ θ(ψ(d(x, y)))φ(ψ(d(x, y))).

Case III: If x = y = 1, we have

α(x, y)ψ(sd(Tx, Ty)) = 0 ≤ θ(ψ(d(x, y)))φ(ψ(d(x, y))).

3. Further for x ∈ [0, 34 ], we have α(x, Tx) ≥ 1.
Therefore, from 1, 2 and 3 all the conditions of Theorem 3.2 are satisfied and T has a unique fixed point u = 0.

Definition 3.5. Let (X, d) be a b-metric space, T : X → X and α : X × X → R+. A mapping T is said to be a
generalized (α,ψ, φ)-Geraghty contraction mapping, if there exists φ : R+ → R+, ψ ∈ Ψ and θ ∈ Θ′

s satisfies for all
x, y ∈ X the following conditions:
(φ0) φ is upper semicontinuous;
(φ1) φ(t) < t for any t ∈ R+;
(φ2) For any ε > 0, there exists a δ > 0 such that ε < t < ε+ δ ⇒ φ(t) ≤ ε;
(φ′

3) α(x, y)ψ(sd(Tx, Ty)) ≤ θ(ψ(L(x, y)))φ(ψ(L(x, y))), where

L(x, y) = max{d(x, y), d(x, Tx), d(y, Ty), (d(x, Ty) + d(y, Tx))

2s
}.

Theorem 3.6. Let (X, d) be a complete b-metric space and T : X → X.
Suppose the following conditions hold

1. T is an α-admissible mapping;
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2. T is a generalized, (α,ψ, φ)-Geraghty contraction mapping;

3. There exists x0 ∈ X such that α(x0, Tx0) ≥ 1.

Then T has a unique fixed point.

Proof . Define a sequence {xn} in X by
xn = Txn−1

for n ∈ N. Suppose that xn0
= xn0+1 for some n0 ∈ N. Since Txn0

= xn0+1 = xn0
the point xn0

forms a fixed point
of T and the proof is complete.

From now on we suppose that xn ̸= xn−1 for all n ∈ N. Since T is an α-admissible, by (3) we have α(xn, xn+1) ≥ 1
for all n ≥ 0. Thus, we have d(xn, xn+1) > 0 and consequently L(xn, xn+1) > 0. By (φ′

3) together with the properties
of ψ, φ1, and θ, we have

ψ(d(xn+1, xn+2)) = ψ(d(Txn, Txn+1))

≤ ψ(sd(Txn, Txn+1))

≤ α(xn, xn+1)ψ(sd(Txn, Txn+1))

≤ θ(ψ(L(xn, xn+1)))φ(ψ(L(xn, xn+1)))

<
1

s
φ(ψ(L(xn, xn+1)))

≤ φ(ψ(L(xn, xn+1))) < ψ(L(xn, xn+1)).

So, we obtain

ψ(d(xn+1, xn+2)) < ψ(L(xn, xn+1)), (3.4)

where

L(xn, xn+1) = max

{
d(xn, xn+1), d(xn, Txn), d(xn+1, Txn+1),

(d(xn, Txn+1) + d(xn+1, Txn))

2s

}
= max

{
d(xn, xn+1), d(xn, xn+1), d(xn+1, xn+2),

(d(xn, xn+2) + d(xn+1, xn+1))

2s

}
= max

{
d(xn, xn+1), d(xn+1, xn+2),

d(xn, xn+2)

2s

}
.

Using the triangle inequality, we have

d(xn, xn+2)

2s
≤ s[d(xn, xn+1) + d(xn+1, xn+2)]

2s

=
d(xn, xn+1) + d(xn+1, xn+2)

2

≤ max
{
d(xn, xn+1), d(xn+1, xn+2)

}
.

Consequently, we drive that

L(xn, xn+1) = max{d(xn, xn+1), d(xn+1, xn+2)},

and (3.4) becomes

ψ(d(xn+1, xn+2)) < ψ
(
max{d(xn, xn+1), d(xn+1, xn+2)}

)
. (3.5)

The case where
max {d(xn, xn+1), d(xn+1, xn+2)} = d(xn+1, xn+2),
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is impossible due to (3.5). Accordingly, we have

max{d(xn, xn+1), d(xn+1, xn+2)} = d(xn, xn+1),

and by (3.5), we get
ψ(d(xn+1, xn+2)) < ψ(L(xn, xn+1)) = ψ(d(xn, xn+1)),

for all n ∈ N ∪ {0}. That implies

d(xn+1, xn+2) < d(xn, xn+1), for all n ∈ N ∪ {0}. (3.6)

Hence, the non-negative sequence {d(xn, xn+1)} is non-increasing in R+. Accordingly, it is convergent to some real
number µ ≥ 0. We claim that µ = 0. Assume to the contrary that µ > 0. We note that µ < d(xn, xn+1) for all
n ∈ N ∪ {0}. Set µ = ε > 0. Then by (φ′

2), there exist δ > 0 such that t < ε+ δ ⇒ φ(t) ≤ ε. On the other hand, for
sufficiently large n ∈ N, we have

0 < ε < L(xn, xn+1) = d(xn, xn+1) < ε+ δ.

Using the properties of ψ, θ, φ′
2, φ

′
3, and (3.6), we get

0 < ψ(ε) < ψ(d(xn+1, xn+2))

= ψ(d(Txn, Txn+1))

≤ ψ(sd(Txn, Txn+1))

≤ α(xn, xn+1)ψ(sd(Txn, Txn+1))

≤ θ(ψ(L(xn, xn+1)))φ(ψ(L(xn, xn+1)))

<
1

s
φ(ψ(L(xn, xn+1)))

≤ 1

s
ψ(ε) ≤ ψ(ε),

which is a contradiction. Thus, we have

µ = lim sup
n→∞

d(xn, xn+1) = 0. (3.7)

Now, we show that {xn} is a Cauchy sequence. Let ε1 > 0 be fixed, then there exist δ1 > 0 which satisfies the
following.

t < ε1 + 2δ1 ⇒ φ(t) ≤ ε1. (3.8)

From (3.7), we can choose k ∈ N large enough to satisfy d(xk, xk+1) <
δ1
s . We want to show inductively that

d(xk, xk+l) < ε1 + δ1, (3.9)

for all k ∈ N. We assume that δ1 < ε1. We have already proved for k = 1. So, we suppose that (3.9) is satisfied for
some j ≥ 1 ∈ N. For l = j + 1, we get

L(xk, xk+j) = max

{
d(xk, xk+j), d(xk, Txk), d(xk+j , Txk+j),

d(xk, Txk+j) + d(xk+j , Txk)

2s

}
= max

{
d(xk, xk+j), d(xk, xk+1), d(xk+j , xk+j+1),

d(xk, xk+j+1) + d(xk+j , xk+1)

2s

}
≤ max

{
d(xk, xk+j), d(xk, xk+1), d(xk+j , xk+j+1),

s[d(xk, xk+j) + d(xk+j , xk+j+1)] + s[d(xk, xk+1) + d(xk, xk+j)]

2s

}
= max

{
d(xk, xk+j), d(xk, xk+1), d(xk+j , xk+j+1),

2d(xk, xk+j) + d(xk+j , xk+j+1) + d(xk, xk+1)

2

}
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< max

{
ε1 + δ1,

δ1
s
,
δ1
s
, ε1 + δ1 +

δ1
2s

+
δ1
2s

}
< max {ε1 + δ1, δ1, ε1 + 2δ1} = ε1 + 2δ1.

So, we have

L(xk, xk+j) < ε1 + 2δ1. (3.10)

Then, by (3.8), (3.10), and the properties of ψ, θ, and φ′
3, we obtain

ψ(d(xk, xk+j+1)) ≤ ψ(s[d(xk, xk+1) + d(xk+1, xk+j+1)])

= ψ(sd(xk, xk+1)) + ψ(sd(xk+1, xk+j+1))

= ψ(sd(xk, xk+1)) + ψ(sd(Txk, Txk+j))

≤ ψ(sd(xk, xk+1)) + α(xk, xk+j)ψ(sd(Txk, Txk+j))

≤ ψ(sd(xk, xk+1)) + θ(ψ(L(xk, xk+j)))φ(ψ(L(xk, xk+j)))

< ψ(sd(xk, xk+1)) +
1

s
φ(ψ(L(xk, xk+j)))

≤ ψ(sd(xk, xk+1)) +
1

s
ψ(ε1)

< ψ(δ1) + ψ(ε1) = ψ(δ1 + ε1).

That implies d(xk, xk+j+1) < δ1 + ε1. Consequently (3.9) holds for l = j + 1. Hence, d(xk, xk+l) < δ1 + ε1 < 2ε1
for all k ∈ N and l ≥ 1, which means

lim sup
n,m→∞

d(xn, xm) = 0.

Hence, the sequence {xn} is Cauchy. Since (X, d) is complete, there exist u ∈ X such that xn → u as n → ∞.
As a next step, we shall show that Tu = u. Suppose on the contrary, that Tu ̸= u, there exists r > 0 such that
r = d(u, Tu) > 0. Note that, due to the fact that the sequence {xn} is convergent to u, we can choose n0 ∈ N such
that d(u, xn) <

r
2s for all n ≥ n0. So, we have the following estimation for n ≥ n0.

L(xn, u) = max

{
d(xn, u), d(xn, Txn), d(u, Tu),

d(xn, Tu) + d(u, Txn)

2s

}
= max

{
d(xn, u), d(xn, xn+1), d(u, Tu),

d(xn, Tu) + d(u, xn+1)

2s

}
≤ max

{
d(xn, u), s[d(xn, u) + d(u, xn+1)], d(u, Tu),

s[d(xn, u) + d(u, Tu)] + d(u, xn+1)

2s

}
< max

{
r

2s
, r, r,

r
s + sr + r

2s

2s

}
= r.

It yields that
lim sup

n,m→∞
L(xn, u) = r.

By using the triangle inequality together with the properties of φ′
3, ψ , and θ, we drive that

0 <
ψ(r)

s
≤ ψ(r) = ψ(d(u, Tu))

≤ ψ(s[d(u, xn+1) + d(xn+1, Tu)])

= ψ(sd(u, xn+1)) + ψ(sd(Txn, Tu))

≤ ψ(sd(u, xn+1)) + α(xn, u)ψ(sd(Txn, Tu))

≤ ψ(sd(u, xn+1)) + θ(ψ(L(xn, u)))φ(ψ(L(xn, u)))

< ψ(sd(u, xn+1)) +
1

s
φ(ψ(L(xn, u))).
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Letting n→ ∞ in the above inequality, together with the properties of θ, φ0, and φ1, we get

0 <
ψ(r)

s
≤ ψ(r) = ψ(d(u, Tu))

≤ lim sup
n→∞

[ψ(sd(u, xn+1)) + θ(ψ(L(xn, u)))φ(ψ(L(xn, u)))]

= lim sup
n→∞

ψ(sd(u, xn+1)) + lim sup
n→∞

θ(ψ(L(xn, u))). lim sup
n→∞

φ(ψ(L(xn, u)))

≤ lim sup
n→∞

θ(ψ(L(xn, u))).φ(ψ(r))

<
1

s
φ(ψ(r))

<
1

s
ψ(r).

Thus, lim sup
n→∞

θ(ψ(L(xn, u))) =
1
s . Since θ ∈ Θ′

s, we have lim sup
n→∞

ψ(L(xn, u)) = ψ(r) = 0 ⇔ r = 0. Accordingly, we

have d(u, Tu) = r = 0, that is, u is a fixed point of T .

Now, we show uniqueness. Suppose v ̸= u is another fixed point of T . We get L(u, v) = d(u, v) and by using the
properties of φ′

3, ψ, ψ1 , and θ, we have

0 < ψ(d(u, v)) = ψ(d(Tu, Tv))

≤ ψ(sd(Tu, Tv))

≤ α(u, v)ψ(sd(Tu, Tv))

≤ θ(ψ(L(u, v)))φ(ψ(L(u, v)))

<
1

s
φ(ψ(d(u, v)))

≤ φ(ψ(d(u, v))) < ψ(d(u, v)).

So d(u, v) < d(u, v) which is a contradiction. Hence, u = v. Therefore, T has a unique fixed point. □

Remark 3.7. By taking s = 1, α(x, y) = 1 and ψ(t) = t in Theorem 3.6, we get Theorem 2.11 in [15].

Thus Theorem 3.6 generalizes Theorem 2.11 in [15]. Now, we give two examples in support of Theorem 3.6.

Example 3.8. Let X = R+ be endowed with the b-metric d : X ×X → R+ defined by

d(x, y) = (x− y)2

for all x, y ∈ X. Then (X, d) is a complete b-metric space with s = 2. Let T : X → X be defined by

T (x) =

{
1−x2

16 if x ∈ [0, 1]

4x otherwise.

Define α : X ×X → R+, θ : R+ → [0, 12 ),ψ : R+ → R+ and φ : R+ → R+ by

α(x, y) =

{
5
4 if (x, y) ∈ [0, 1],

0 otherwise.
;

θ(t) = 15
64 ; ψ(t) = t

2 and φ(t) = t
4 .

1. We show that T is an α-admissible mapping. If x, y ∈ [0, 1], then α(x, y) > 1, Tx ≤ 1 and Ty ≤ 1. By definition
of α, it follows that α(Tx, Ty) > 1. If x, y ∈ (1,∞), we have α(x, y) = 0 < 1. Again, for x ∈ [0, 1] and y ∈ (1,∞), we
have α(x, y) = 0 < 1. Therefore T is an α-admissible mapping.

2. Now, we show that T is a generalized (α,ψ, φ)-Geraghty contraction mapping.
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Case I: If x, y ∈ [0, 1], we have

α(x, y)ψ(sd(Tx, Ty)) =
5

4
(Tx− Ty)2

=
5

1024
(x2 − y2)2

=
5

1024
(x− y)2(x+ y)2

≤ 5

256
(x− y)2

=
5

32

(x− y)2

4
= θ(ψ(d(x, y)))φ(ψ(d(x, y)))

≤ θ(ψ(L(x, y)))φ(ψ(L(x, y))).

Case II: If x, y ∈ (1,∞), we have

α(x, y)ψ(sd(Tx, Ty)) = 0 ≤ θ(ψ(L(x, y)))φ(ψ(L(x, y))).

Case III: If x ∈ [0, 1] and y ∈ (1,∞), we have,

α(x, y)ψ(sd(Tx, Ty)) = 0 ≤ θ(ψ(L(x, y)))φ(ψ(L(x, y))).

3. Further for x ∈ [0, 1], we have α(x, Tx) ≥ 1.

Therefore, from 1, 2 and 3 all the conditions of Theorem 3.6 are satisfied and T has a unique fixed point u =
√
65−8.

Example 3.9. Let X = {a1, a2, a3, a4} and d : X ×X → R+ defined by:
d(a1, a2) = d(a2, a1) = 1, d(a3, a4) = d(a4, a3) = 10, d(a1, a4) = d(a4, a1) = d(a2, a4) = d(a4, a2) = 6, d(a1, a3) =
d(a3, a1) = d(a2, a3) = d(a3, a2) = 8, d(ai, ai) = 0, for any i = 1, 2, 3, 4. It is easy to see that the pair (X, d) forms a
b-metric space with s = 6

5 . Assume T : X → X, α : X ×X → R+, θ : R+ → [0, 56 ), ψ : R+ → R+ and
φ : R+ → R+ be defined by

Ta1 = Ta2 = a1, Ta3 = Ta4 = a2;

for any i, j = 1, 2, 3, 4

α(ai, aj) =

{
3
2 if i ̸= j,

1 if i = j.
;

φ(t) =

{
t
2 if t ∈ [0, 2)
3
2 if t ∈ [2,∞).

;

θ(t) = 1
2 and ψ(t) = t

3 .
1. We show that T is an α-admissible mapping.
For i ̸= j we have α(ai, aj) =

3
2 ≥ 1, which implies α(Tai, Taj) ≥ 1. If i = j = 1 we have α(ai, aj) = 1 ≥ 1, which

implies α(Tai, Taj) = 1 ≥ 1.
Also, again if i = j = 2, 3, 4 we have α(ai, aj) = 1 ≥ 1 implies α(Tai, Taj) ≥ 1. Therefore T is an α-admissible
mapping.

2. Now we show that T is a generalized, (α,ψ, φ)-Geraghty contraction mapping. On the other hand, because
d(Ta1, Ta2) = d(Ta3, Ta4) = 0 and (φ′

3) is obviously satisfied, relevant for our study is only the set {(a1, a3), (a1, a4), (a2, a3), (a2, a4)}.
For this reason, we consider the following cases:

Case I: If x = a1, y = a3, then

α(a1, a3)ψ(sd(Ta1, Ta3)) = α(a1, a1)β(a3, a2)ψ(sd(a1, a2)) =
3

5

≤ θ(ψ(L(a1, a3))).φ(ψ(L(a1, a3))) =
3

4
.
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Case II: If x = a1, y = a4, then

α(a1, a4)ψ(sd(Ta1, Ta4)) = α(a1, a1)β(a4, a2)ψ(sd(a1, a2)) =
3

5

≤ θ(ψ(L(a1, a4))) · φ(ψ(L(a1, a4))) =
3

4
.

Case III: If x = a2, y = a3, then

α(a2, Ta2)β(a3, Ta3)ψ(sd(Ta2, Ta3)) = α(a2, a1)β(a3, a2)ψ(sd(a1, a2)) =
3

5

≤ θ(ψ(L(a2, a3)))φ(ψ(L(a2, a3))) =
3

4
.

Case IV: If x = a2, y = a4, then

α(a2, Ta2)β(a4, Ta4)ψ(sd(Ta2, Ta4)) = α(a2, a1)β(a4, a2)ψ(sd(a1, a2)) =
3

5

≤ θ(ψ(L(a2, a4))).φ(ψ(L(a2, a4))) =
3

4
.

3. Further for x = a2, we have α(a2, Ta2) = α(a2, a1) =
3
2 ≥ 1.

Thus, from 1, 2 and 3 all the conditions of Theorem 3.6 are satisfied. Moreover, u = a1 is a unique fixed point of
T .

4 Conclusion

Karapinar et al. [15] established fixed point theorems for φ-Geraghty and Ćirić type φ-Geraghty contractive
mappings in complete metric spaces and proved the existence and uniqueness of fixed points. In this paper, we
introduce (α,ψ, φ)-Geraghty and generalized (α,ψ, φ)-Geraghty contraction mappings in b-metric spaces and prove
the existence and uniqueness of fixed point for the mappings introduced. Our results extend and generalize related
fixed point results in the literature, in particular that of Karapinar et al. [15]. We have also provide examples to
support our main results.
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