
Int. J. Nonlinear Anal. Appl. 14 (2023) 1, 2881–2900
ISSN: 2008-6822 (electronic)
http://dx.doi.org/10.22075/ijnaa.2022.26081.3222

Approximating the matrix exponential, sine and cosine via the
spectral method

Arezo Shakeria, Mahmoud Behroozifarb,∗

aDepartment of Mathematics and Physics, Faculty of Science and Technology, University of Stavanger, Stavanger, Rogaland, Norway

bDepartment of Mathematics, Faculty of Science, Babol Noshirvani University of Technology, Babol, Mazandaran, Iran

(Communicated by Saman Babaie-Kafaki)

Abstract

This article is arranged to introduce three different algorithms for computing the matrix exponential, cosine and sine
functions At for 0 ≤ t ≤ b, for all b ∈ R+. To achieve this purpose, we deal with the spectral method based on
Bernstein polynomials. Bernstein polynomials are briefly introduced and utilized to approximate the functions. The
operational matrix of integration of Bernstein polynomials is stated and employed to reduce the dynamic systems to
the linear algebraic systems. It is required to solve n linear algebraic systems for evaluating the matrix functions.
By presenting the CPU time, it is displayed that the methods require a low amount of running time. Also, error
analysis is discussed in detail. The outstanding point of this method is that the approximate exponential, cosine and
sine matrix At0, for all t0 ∈ [0, L] can be obtained with only one execution of the algorithm. These three different
algorithms have common parts that can be used to practically reduce the computational volume. Some examples are
provided to show the high performance of the methods.

Keywords: Matrix exponential function, Matrix cosine function, Matrix sine function, Spectral method, Operational
matrix of integration, Bernstein polynomial
2020 MSC: Primary 65F60; Secondary 15A16, 65M70

1 Introduction

There are many methods for calculating the matrix exponential, cosine and sine functions. Matrix functions play
effective roles in many fields of sciences and technologies, for example, engineering, physics and other sciences. As
well, mathematical models of many physical, biological, and economic processes involve systems of linear ordinary
differential equations (ODEs) with constant coefficients

x′(t) = Ax(t) (1.1)

where A is a known, scalar, real or complex square matrix [22]. Solution of ODE (1.1) is

x(t) = etAx0 (1.2)

∗Corresponding author
Email addresses: arezoshakeri93@gmail.com (Arezo Shakeri), m_behroozifar@nit.ac.ir, behroozifar2@gmail.com (Mahmoud

Behroozifar)

Received: January 2022 Accepted: July 2022

http://dx.doi.org/10.22075/ijnaa.2022.26081.3222

2882 Shakeri, Behroozifar

such that x(0) = x0 is an initial vector. In [15], a method to calculate the exponential matrix is presented with the goal
of minimizing the mathematical prerequisites. In [14], the method of [15] is improved in view of computational aspects
to calculate the exponential matrix. Reference [22] is a nice reference for the interested readers to see other methods for
computing or approximating the matrix exponential function. In [22], several methods are elaborated and error bound
of approximation of some methods is stated. Some proposed methods in [22] are listed as the series methods, ordinary
differential equation methods, polynomial methods, matrix decomposition methods, splitting methods, Krylov space
methods. In practice, consideration of computational stability and efficiency indicates that some of the methods are
preferable to others, but none of them are completely satisfactory. In fact, these methods are applicable to the wide
classes of matrices, but a method that works only on matrices with distinct eigenvalues will not be highly regarded
[22]. Interested readers can also refer to [2, 3, 10, 17, 18, 20] and the references therein for more new information
about matrix functions and the content about them.
In [24], the action of the large sparse matrix exponential is computed by combining incomplete orthogonalization
and adaptive strategies for changing the step size and the dimension of the Krylov subspace. In [21], a software
package (Expokit) is provided to compute the exponential matrix. In [1], an important method to compute the matrix
exponential function is mentioned which is a reliable method. In [1], the scaling and squaring method for the matrix
exponential is based on the approximation eA ≈ (rm(2−sA))2

s

, where rm(x) is the [m/m] Padé approximate to ex

and the integers m and s are to be chosen.

In [19], a recursive algorithm is analyzed for computing the matrix cosine using the double-angle formula

cos(2A) = 2cos2(A)− I.

Method of [19] must be implemented much times to calculate the cosine of a matrix which this is one of the defects
of this method. In [6], an efficient algorithm to compute the matrix cosine based on Hermite matrix polynomial
expansions has been proposed, improving the algorithms proposed by the authors in [5, 7]. Matrix exponential, cosine
and sine functions can be expressed as the power series, respectively :

eAt = I +At+
1

2!
A2t2 +

1

3!
A3t3 +

1

4!
A4t4 + . . .

cos (At) = I − 1

2!
A2t2 +

1

4!
A4t4 − 1

6!
A6t6 + . . .

sin (At) = At− 1

3!
A3t3 +

1

5!
A5t5 − 1

7!
A7t7 + . . . ,

where A is a constant n× n matrix. It is clear that the mentioned series are infinite and, in practice, they cannot be
used.

Matrix functions arise most repeatedly in connection with the solution of differential systems and control theory
[6]. For example, it is well known that the wave equation

ν2
∂2ψ

∂χ2
=
∂2ψ

∂t2
(1.3)

plays an important role in many areas of engineering and applied sciences. When the wave equation (1.3) is solved by
the spatially semi-discretization, the following system of second order differential equation is achieved{

y′′(t) +A2y(t) = 0
y(0) = y0, y′(0) = y1

(1.4)

where A is a known square matrix and y0 and y1 are vectors. Problem (1.4) has the exact solution as

y(t) = cos (At)y0 + sin (At)A−1y1 (1.5)

where A denotes any non-singular matrix; see [19] for details. As result, matrix trigonometric functions play important
roles in the solution of the second order differential systems, similarly, the matrix exponential eAt in first order
differential systems [22].

Spectral method is applied in different topics of science to approximate the solution of differential equations, e.g.
nonlinear Schrödinger equation [8], hyperbolic telegraph equation [16], time fractional diffusion equation [13], parabolic
equation subject to specification of the mass [26].

Approximating the matrix exponential, sine and cosine via the spectral method 2883

Spectral method has not been utilized to approximate the matrix functions, yet. This motivates us to present the new
methods to approximately compute the values of matrix exponential, cosine and sine functions. Our aim is to propose

a method which that matrices eAt, cos(At), and sin(At) can be obtained for different values of t e.g. t = 1
2 ,

√
2
2 ,

π
5 · · · , 1

by one algorithm execution. Also, we plan to design methods based on the spectral method, that the singularity and
eigenvalues of the matrix do not make any restrictions for them.

This paper is arranged in four sections: section 2 is assigned to the needed definitions and theorems. In section
3, we present the methods to approximate matrix functions. Illustrative examples are exhibited in section 4. Finally,
section 5 summarizes the results.

2 Preliminaries

Objective of this section is to exhibit some definitions and concepts which are employed in this paper.

2.1 Bernstein polynomials

Bernstein polynomials of mth degree are introduced on the interval [a, b] as [25, 26]

Bi,m(x) =

(
m

i

)
(x− a)i(b− x)m−i

(b− a)m
, 0 ≤ i ≤ m

where
(
m
i

)
= m!

i!(m−i)! . These Bernstein polynomials form a basis on [a, b]. Bernstein polynomial of mth degree includes

m+1 polynomials of degree m. The ith Bernstein polynomials of degree m can be derived using the following recursive
relation

Bi,m(x) =
(b− x)

b− a
Bi,m−1(x) +

x− a

b− a
Bi−1,m−1(x), i = 0, 1, . . . ,m

where Bi,m(x) = 0, if i < 0 or i > m. It can easily be shown that the Bernstein polynomials are positive, linear
independent. It is important to notice that the Bernstein-Vandermonde matrix A is a strictly totally positive matrix
[4, 9] which the points satisfy 0 < t0 < t1 < · · · < tm < 1 which A = [ai+1,j+1] and ai+1,j+1 = Bj,m(ti) for
i, j = 0, · · · ,m.

2.2 Function approximation

Suppose that H = L2[a, b] where a, b ∈ R and let {B0,m, B1,m, · · · , Bm,m} ⊂ H is the set of Bernstein polynomials
of degree m and

Y = Span{B0,m, B1,m, · · · , Bm,m}

and function f is an arbitrary element in H. Since Y is a finite dimensional vector space, function f has a unique
best approximation out of Y [12], say y0 ∈ Y , that is

∃y0 ∈ Y ; ∀y ∈ Y ||f − y0||2 ≤ ||f − y||2,

where ||f ||2 =
√
⟨f, f⟩ and ⟨f, g⟩ =

∫ b

a
f(t)g(t)dt .

In [25], it is proved that a unique coefficient vector cT = [c0, c1, · · · , cm] exists such as

f ≈ y0 =

m∑
i=0

ciBi,m = cTϕ, (2.1)

where ϕT = [B0,m, B1,m, · · · , Bm,m] and cT can be obtained

cT =

(∫ b

a

f(x)ϕ(x)T dx

)
Q−1,

which Q = ⟨ϕ , ϕ⟩ =
∫ b

a
ϕ(x)ϕ(x)T dx is said dual matrix of ϕ. Since the Bernstein polynomials are independent thus

matrix Q is invertible [12].

2884 Shakeri, Behroozifar

Theorem 2.1. [12] Suppose that H be a Hilbert space on [a, b] and Y be a closed subspace of H such that dimY <∞
and {y1, y2, · · · , yn} is any basis for Y . Let x be an arbitrary element in H and y0 be the unique best approximation
to x out of Y . Then

||x− y0||22 =
G(x, y1, y2, · · · , yn)
G(y1, y2, · · · , yn)

,

where

G(x, y1, y2, · · · , yn) =

∣∣∣∣∣∣∣∣∣
⟨x, x⟩ ⟨x, y1⟩ · · · ⟨x, yn⟩
⟨y1, x⟩ ⟨y1, y1⟩ · · · ⟨y1, yn⟩

...
...

...
⟨yn, x⟩ ⟨yn, y1⟩ · · · ⟨yn, yn⟩

∣∣∣∣∣∣∣∣∣
where ⟨f, g⟩ =

∫ b

a
f(t)g(t)dt and is called inner product of f and g.

Consequently, if we assume Y = Span{B0,m, B1,m, · · · , Bm,m} on [a, b], the absolute error can be written in a simple
form via Theorem 2.1

||f − y0||2 =
det[

∫ b

a
ψ(t)ψ

T
(t)dt]

det[
∫ b

a
ϕ(t)ϕ

T
(t)dt]

which ϕT = [B0,m, B1,m, · · · , Bm,m] and ψT = [f,B0,m, B1,m, · · · , Bm,m].

Exact value of approximation error is presented by the Theorem 2.1 and in the following lemma we present an
upper bound of approximation error.

Lemma 2.2. [26] Suppose that the function g : [a, b] → R is m+ 1 times continuously differentiable, g ∈ Cm+1[a, b],
and Y = Span{B0,m, B1,m, · · · , Bm,m}. If cTϕ be the best approximation g out of Y then the mean error bound is
presented as follows:

∥g − cTϕ∥2 ≤ M(b− a)
2m+3

2

(m+ 1)!
√
2m+ 3

,

where M = max
x∈[a,b]

|g(m+1)(x)|.

Lemma 2.2 shows that the method of approximation converges to f when m→ ∞.

Similarly to Eq. (2.1), a vector of function can also be approximated in terms of Bernstein polynomials. Consider
X∗(t) ∈ Rn is an arbitrary vector of function, then

X∗(t) ≈ Cϕ(t) (2.2)

which C =
(∫ b

a
X∗(t)ϕ(t)T dt

)
Q−1. Note that C is an unknown n× (m+ 1) matrix and c is an unknown (m+ 1)× 1

vector.

Definition 2.3. VectorX(t)T = [X1(t), X2(t), · · · , Xn(t)] is called the best approximationX∗(t)T = [X∗
1 (t), X

∗
2 (t), · · · , X∗

n(t)]
out of Y whenever Xi(t) is the best approximation of vector X∗

i (t) toward Y for i = 1, 2, . . . , n.

Lemma 2.4. Let vector X∗(t)T = [X∗
1 (t), X

∗
2 (t), · · · , X∗

n(t)] in which X∗
i (t) : [a, b] → R is m+ 1 times continuously

differentiable, that is, X∗
i (t) ∈ Cm+1[a, b] for i = 1, 2, . . . , n. If X(t)T = [X1(t), X2(t), · · · , Xn(t)] is the best approxi-

mation X∗(t) out of
Y = Span{B0,m, B1,m, · · · , Bm,m} then the mean error bound is

∥X∗(t)−X(t)∥2 ≤ M
√
n (b− a)

2m+3
2

(m+ 1)!
√
2m+ 3

,

where M = max{M1,M2, · · · ,Mn} and Mi = max
t∈[a,b]

| d
m+1

dtm+1
X∗

i (t)| for i = 1, 2, . . . , n.

Proof . Assume that X̃∗
i (t) is the Taylor polynomial of m-degree for X∗

i (t) about point a

X̃∗
i (t) = X∗

i (a) + (X∗
i)

′(a)(t− a) +
(X∗

i)
′′(a)

2!
(t− a)2 + · · ·+ 1

m!

dm

dtm
X∗

i (a)(t− a)m

Approximating the matrix exponential, sine and cosine via the spectral method 2885

which

|X∗
i (t)− X̃∗

i (t)| ≤Mi
(t− a)m+1

(m+ 1)!
. (2.3)

Since X̃∗
i (t) ∈ Y , Xi(t) is the best approximation of X∗

i (t) out of Y and from Eq. (2.3), we have

∥X∗ −X∥22 =

∫ b

a

n∑
i=1

|X∗
i (t)−Xi(t)|2 dt ≤

∫ b

a

n∑
i=1

∣∣∣X∗
i (t)− X̃∗

i (t)
∣∣∣2 dt ≤

∫ b

a

n∑
i=1

(
Mi

(t− a)m+1

(m+ 1)!

)2

dt ≤ M2

(m+ 1)!2

n∑
i=1

∫ b

a

(t− a)2m+2dt =
M2 n (b− a)2m+3

(m+ 1)!2 (2m+ 3)
,

taking square root gives the desired result. □ Lemma 2.4 demonstrates that lim
m→∞

∥X∗ −X∥2 = 0. Also, Lemma 2.4

shows that the upper bound of approximate error is a multiple of
√
n. That is why these methods offer high-precision

approximate solutions even in large scale.

2.3 Operational matrices

Operational matrices of integration P ofmth degree Berstein polynomials are defined as follows which are explained
in details in [25]∫ t

a

ϕ(r)dr ≈ Pϕ(t), a < t ≤ b. (2.4)

In the following, a new simple technique is explained to determine the integration operational matrix P . At first,
we introduce

h1(t) =

∫ t

a

ϕ(r)dr

and then multiply the both sides of equality (2.4) from right hand in ϕT (t), so

h1(t)ϕ
T (t) ≈ Pϕ(t)ϕT (t). (2.5)

Taking integral from both sides of Eq. (2.5) with respect to t, it is yielded∫ b

a

h1(t)ϕ
T (t)dt ≈ P

∫ b

a

ϕ(t)ϕT (t)dt = PQ,

where Q as previously introduced, is dual operational matrix of ϕ(t). Therefore, it is derived

P =

(∫ b

a

h1(t)ϕ
T (t)dt

)
Q−1. (2.6)

3 Methodology

In this section, we introduce different techniques to approximately compute the matrix exponential, cosine and
sine functions. These methods have high efficiency and can be considered a good substitution for traditional methods.
These methods based on solving linear algebraic equations set. Let A is a constant n×n matrix, the vector ei and Ai

are the ith column of the identify matrix and the ith column of matrix A, respectively.

3.1 Matrix exponential function

In the following, it is planned to approximate the vector eAtei for i = 1, 2, . . . , n. Eqs. (1.1) and (1.2) result that
the following equation has the exact solution eAtei{

X ′(t) = AX(t)
X(0) = ei

(3.1)

2886 Shakeri, Behroozifar

for i = 1, 2, . . . , n. Suppose that the approximate solution of Eq. (3.1) is denoted by Xi(t), i.e. X(t) = eAtei ≈ Xi(t)
for i = 1, 2, . . . , n.
To achieve this goal, let X ′

i(t) is approximated by Bernstein polynomilal using Eq. (2.2), that is, X ′
i(t) ≈ Cϕ(t), which

C is an unknown matrix, therefore

Xi(t) = Xi(0) +

∫ t

0

X ′
i(s)ds ≈ ei + CPϕ(t) (3.2)

where P is the integration operational matrix determined by 2.4. Substituting X ′
i(t) ≈ Cϕ(t) and Eq. (3.2) in Eq.

(3.1) concludes

X ′
i(t) = AXi(t) =⇒ Cϕ(t) = A(ei + CPϕ(t)) = Ai +ACPϕ(t) = Eiϕ(t) +ACPϕ(t) (3.3)

which the matrix Ei is derived from Ai = Eiϕ(t) using Eq. (2.2).
Eq. 3.3 gives the system

C −ACP = Ei,

this system is solved using Mathematica software to acquire the matrix C. After characterizing the matrix C, we have

X(t) = eAtei ≈ Xi(t) = Ai +ACPϕ(t)

for i = 1, 2, . . . , n.

Algorithm: To approximate the ith column of eAt, fulfill the following procedure for i = 1, 2, . . . , n:

1. Approximate Ai as Ai = Eiϕ(t),

2. To determine C, solve the set of algebraic equation C −ACP = Ei,

3. Calculate Xi(t) = Ai +ACPϕ(t).

3.2 Matrix cosine function

Eqs. (1.4) and (1.5) guide us to achieve a technique to approximate the matrix cosine function detailed as follows:
From, Eqs. (1.4) and (1.5) we can realize that the exact solution of the dynamic system (3.4) is X(t) = cos(At)ei{

X ′′(t) +A2X(t) = 0 i=1, 2, . . . , n
X(0) = ei, X ′(0) = 0.

(3.4)

In the following, we aim to bring forward the vector Xi(t) as an approximate of the exact solution of the dynamic
system 3.4, i.e. X(t) = cos(At)ei ≈ Xi(t). For this purpose, it is considered X

′′
i (t) ≈ Cϕ(t) via Eq. (2.2), which C is

an unknown matrix, so

Xi(t) = Xi(0) + tX ′
i(0) +

∫ t

0

∫ r

0

X ′′
i (s)dsdr ≈ ei + C

∫ t

0

∫ r

0

ϕ(s)dsdr = ei + CP 2ϕ(t) (3.5)

where P is the integration operational matrix determined by 2.4. Replacing X ′′
i (t) ≈ Cϕ(t) and Eq. (3.5) in Eq. (3.4)

acquires

0 = Cϕ(t) +A2(ei + CP 2ϕ(t)) = Cϕ(t) +A2ei +A2CP 2ϕ(t) = Cϕ(t) +Kiϕ(t) +A2CP 2ϕ(t) (3.6)

where Ki is achieved from A2ei = Kiϕ(t). Matrix C is detected from the below system of algebraic equations and
using Mathematica software

C +Ki +A2CP 2 = 0

and then the approximate solution is obtained as Xi(t) ≈ ei + CP 2ϕ(t).

Algorithm: To approximate the ith column of cos(At), accomplish the following process for i = 1, 2, . . . , n:

1. Estimate A2ei as A
2ei = Kiϕ(t),

2. To specify C, solve the set of algebraic equation C +Ki +A2CP 2 = 0,

3. Compute Xi(t) = ei + CP 2ϕ(t).

Approximating the matrix exponential, sine and cosine via the spectral method 2887

3.3 Matrix sine function

This part proceeds analogously to the subsection 3.2. Vector X(t) = sin(At)ei for i = 1, 2, . . . , n is the exact
solution of the dynamic system (3.7) {

X ′′(t) +A2X(t) = 0
X(0) = 0, X ′(0) = Ai.

(3.7)

We aim to X(t) = sin(At)ei ≈ Xi(t), therefore consider that X ′′
i (t) ≈ Cϕ(t). We have

Xi(t) = Xi(0) + tX ′
i(0) +

∫ t

0

∫ r

0

X ′′
i (s)dsdr ≈ tAi + C

∫ t

0

∫ r

0

ϕ(s)dsdr = tAi + CP 2ϕ(t). (3.8)

By estimating t = lTϕ(t) and substituting it in Eq. (3.8), we lead to

Xi(t) ≈ (Ai ⊗ lT)ϕ(t) + CP 2ϕ(t). (3.9)

where ⊗ is tensor product. To distinguish matrix C, the following equations set is derive by putting X ′′
i (t) ≈ Cϕ(t)

and Eq. (3.9) in the dynamic system (3.7)

C +A2(Ai ⊗ lT + CP 2) = 0,

then Eq. (3.9) discloses an approximate of sin(At)ei.

Algorithm: To approximate the ith column of sin(At), employ the following process for i = 1, 2, . . . , n:

1. Approximate t as t = lTϕ(t),

2. To distinguish C, solve the set of algebraic equation C +A2(Ai ⊗ lT + CP 2) = 0,

3. Calculate Xi(t) = (Ai ⊗ lT)ϕ(t) + CP 2ϕ(t).

4 Numerical findings

In examples 4.1-4.4, the presented methods are examined on three different types of the matrices to trust the
performance of the method. In these examples, plots of error vector in L2-norm of matrix functions are used to
investigate the approximate solution with the exact solution. Afterward, the residual vector is implemented to check
the validity of approximate solution for example 4.4 because the scale of example is large and the exact solution is
not available. The presented method has the ability to define on interval [0, b],∀b ∈ R+, therefore different matrix
functions can be achieved. The outstanding point of this method is that the approximate matrix functions of matrix
At,∀t ∈ [0, b] can be obtained with only one execution of the method, so various matrix functions can be achieved
by setting t. In the following, we concentrate on interval [0, 1](i.e. a = 0, b = 1), so the Bernestein polynomial and
operational matrices of integration on interval [0, 1] are considered and approximation of the matrix functions are
exhibited on [0, 1].
The main difference between this method and the other existing method is that the proposed method determines the
matrix function At for 0 ≤ t ≤ 1, but other existing methods are implemented only on matrix A. Consequently,
authors cannot make fair comparisons. As mentioned in [20], the methods presented in [2] are based on the identities

cos(A) = eiA+e−iA

2 , sin(A) = eiA−e−iA

2i and the use of a diagonal Padé approximations of the exponential eiA. Method
of [20] is a similar with method of [2] for approaching matrices cos(A) and sin(A) with fewer product number, while
our method estimates the matrix functions eAt, cos(At) and sin(At) for ∀t ∈ [0, 1].
The simplicity of our method and the small number of processes are important advantages of the proposed method
than method [2]. In algorithm of method [2], more than 45 steps are required to compute the matrix functions, but 3
steps are required for our method.

Example 4.1. Let the following matrix A11×11

2888 Shakeri, Behroozifar

A=



− 47
40

679
160

35
32

13
160

47
40 − 47

20 − 81
160

19
160

163
160 − 163

160 − 47
80

− 3
10

71
40

3
8 − 3

40
3
10 − 3

5 − 9
40 − 9

40
27
40 − 27

40 − 3
20

− 13
8

761
160

289
160 − 13

160
61
40 − 61

20 − 27
32 − 19

160
277
160 − 277

160 − 61
80

− 219
280

687
224

1123
1120 − 27

224
191
280 − 191

140 − 677
1120

27
224

27
224 − 27

224 − 191
560

69
140 − 189

80 − 17
16

79
560 − 9

140
167
210

337
560

97
560 − 19

240
19
240

129
280

0 0 0 0 0 1
3 0 0 − 1

12
1
12 0

− 43
56

559
224

215
224 − 43

224
43
56 − 43

28 − 97
224

43
224

43
224 − 43

224 − 43
112

9
8 − 117

32 − 45
32

9
32 − 9

8
9
4

27
32

7
32 − 25

32
25
32

9
16

7
20 − 77

80 − 21
80 − 7

80 − 7
20

7
10

7
80

7
80 − 29

80 − 19
80

7
40

7
20 − 77

80 − 21
80 − 7

80 − 7
20

7
10

7
80

7
80 − 49

80
1
80

7
40

− 51
28

4017
560

873
560 − 221

560
347
140 − 347

70 − 103
112 − 883

560
3669
560 − 3669

560 − 107
280


Matrix A is singular, diagonalizable and ∥ A ∥2= 17.17277 and all eigenvalues are less than 1. For verifying the

reliability of method, the plots of error vector in L2-norm of matrix exponential function are exhibited in Figure 1,
i.e. plots of ||Xi −X∗

i ||2 for i = 1, 4, 8, 11 where Xi, X
∗
i , X and X∗ are the ith column of matrix X, the ith column

of matrix X∗, the approximate matrix exponential function of A and the exact matrix exponential function of A,
respectively. Figure 2 propose the plots of error vector in L2-norm of the matrix cosine function of A and analogously
Figure 3 for matrix sine function.

Since various matrix functions are obtained by specifying arbitrarily the value t ∈ [0, 1], so Figures 1, 2, and 3
exhibit 2-norm error vector ith column of all these matrix functions. This means that this method needs to run once
individually and then select the desired amount t.

High precise of the method can be seen in Figures 1, 2, and 3 for a small value m = 6. It is clear that the error
vanishes by increasing m by more computation time. We have tried to use a small amount for m to get an appropriate
precision, otherwise, high accuracy can be reached by increasing m. This same result goes for other examples.

Also, CPU time of examples 4.1 is displayed in Table 1. Table 1 shows the low running time that it can be seen as
one of the advantages of the method. The presented times in Table 1 are the needed times to calculate the approximate
and exact solutions for all vectors and plot the error vectors. It may seem sounds that the CPU time of this method is
not very small in comparison with the other existing methods, but this comparison is not correct, because the proposed
method gives the matrix functions At for ∀t ∈ [0, 1] but the other methods present matrix functions A. Therefore,
this comparison is not suitable for this method. It is notable that the used PC is Intel(R) Core(TM) i7-7700K CPU
@4.20GHz 4.20GHz.

Table 1: CPU time of examples 4.1-4.3 for m = 6 in terms of seconds.

eAt cos(At) sin(At)

Example 4.1 5 7 7
Example 4.2 14 50 52
Example 4.2 9 25 26

Example 4.2. Assume the following non singular and diagonazable matrix

Approximating the matrix exponential, sine and cosine via the spectral method 2889

(a) Error vector of X1 (b) Error vector of X4

(c) Error vector of X8 (d) Error vector of X11

Figure 1: 2-norm error vector ith column of eAt on [0, 1] for example 4.1.

(a) Error vector of X1 (b) Error vector of X4

(c) Error vector of X8 (d) Error vector of X11

Figure 2: 2-norm error vector ith column of cos(At) on [0, 1] for example 4.1.

2890 Shakeri, Behroozifar

(a) Error vector of X1 (b) Error vector of X4

(c) Error vector of X8 (d) Error vector of X11

Figure 3: 2-norm error vector ith column of sin(At) on [0, 1] for example 4.1.

A=



227
40 − 2319

160 − 139
32 − 53

160 − 187
40

187
20

321
160

501
160 − 1803

160
1803
160

187
80

9
5 − 113

20 − 9
4

9
20 − 9

5
18
5

27
20

27
20 − 81

20
81
20

9
10

− 1
8

401
160

329
160 − 213

160
21
40 − 21

20 − 51
32 − 139

160
157
160 − 157

160 − 21
80

− 213
40

2817
160

1049
160 − 101

160
229
40 − 229

20
241
160

357
160

69
160 − 69

160 − 229
80

27
5 − 111

5 −4 8
5 − 37

5
44
5

14
5

29
5 − 82

5
82
5

6
5

0 0 0 0 0 −3 0 0 13
4 − 13

4 0

39
8 − 507

32 − 195
32

39
32 − 39

8
39
4 − 43

32 − 39
32 − 39

32
39
32

39
16

17
8 − 221

32 − 85
32

17
32 − 17

8
17
4

51
32

47
32 − 129

32
129
32

17
16

5 − 55
4 − 15

4 − 5
4 −5 10 5

4
5
4 − 17

2
11
2

5
2

5 − 55
4 − 15

4 − 5
4 −5 10 5

4
5
4 − 35

4
23
4

5
2

7 − 671
20 − 79

20
43
20 − 61

5
122
5

33
4

269
20 − 947

20
947
20

11
10


whose eigenvalues are

{
−5,−5,−3,−3, 2, 2, 1, 14 ,

1
5 ,

1
5 ,−

1
8

}
. Some eigenvalues of A are more than or equal to 1 and

∥ A ∥2= 99.10244. Findings of example 4.2 are disclosed in Figures 4, 5 and 6 with m = 12. From the results of
example 4.2, the accuracy of the method is good but in comparison with example 4.1, the accuracy of the method is
decreased owing to some eigenvalues of matrix A are more than or equal to 1. This example well shows the effect of
eigenvalues on method accuracy. Table 1 presents the calculation time of method for example 4.2 which displays that
the processing time is normal. It is noteworthy that matrices eAt, cos(At), and sin(At) can be obtained for different

values of t e.g. t = 1
2 ,

√
2
2 ,

π
5 · · · , 1 by one run of each algorithm.

Example 4.3. In this example, we aim to consider a singular and non-diagonalizable matrix to more survey the

Approximating the matrix exponential, sine and cosine via the spectral method 2891

(a) Error vector of X1 (b) Error vector of X4

(c) Error vector of X8 (d) Error vector of X11

Figure 4: 2-norm error vector ith column of eAt on [0, 1] for example 4.2.

(a) Error vector of X1 (b) Error vector of X4

(c) Error vector of X8 (d) Error vector of X11

Figure 5: 2-norm error vector ith column of matrix cosine function for example 4.2.

2892 Shakeri, Behroozifar

(a) Error vector of X1 (b) Error vector of X4

(c) Error vector of X8 (d) Error vector of X11

Figure 6: 2-norm error vector ith column of sin(At) on [0, 1] for example 4.2.

applicability of the method. Let matrix A11×11 be

A =



2 0 1 0 0 0 0 0 0 0 2
0 2 0 0 0 0 0 0 0 0 0
0 0 2 0 1 1 −2 0 0 0 0
0 0 0 3 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 3 0 1 0 −4 0
1 0 0 2 0 0 −3 0 0 3 0
0 0 0 0 0 0 0 −3 0 0 0
0 1 0 0 0 0 0 0 2 0 0
0 0 0 1 0 0 2 0 0 5 0
−1 0 0 0 0 0 0 0 0 0 5


which some eigenvalues are complex. In light of some eigenvalues of A are complex consequently matrix A is not
diagonalizable and also ∥ A ∥2= 7.53299. Figures 7, 8 and 9 disclose the numerical results of example 4.3 with m = 12
and the Table 1 indicates the calculation time. Survey of the validity of the approximate solution leads us to the
accuracy of the method is good even when the given matrix is non-diagonalizable.

Example 4.4. In this example, we aim to test the presented methods on a high scale matrix. Then, matrix A with
dimensions 128× 128 is supposed and built using the following two commands in MathematicaTM software:

A = SparseArray[i−, i−− > 2, i−, j−/;Abs[i− j] == 1− > −1, 128, 128];

A[[120, 111]] = 50000;

Complex eigenvalues confirm that A is non-diagonalizable. It should be noted that ∥ A ∥2= 50000.00024. Matrix
exponential, cosine and sine functions are determined by m = 12. Value m = 12 is selected to mark the method can
be implemented by more value of m even on the large scale. Considering the high number of columns, the ith column
of matrix functions are specified for i = 1, 5, 25, 125. Since exact solutions are not available then residual vectors for

Approximating the matrix exponential, sine and cosine via the spectral method 2893

(a) Error vector of X1 (b) Error vector of X4

(c) Error vector of X8 (d) Error vector of X11

Figure 7: 2-norm error vector ith column of eAt on [0, 1] for example 4.3.

(a) Error vector of X1 (b) Error vector of X4

(c) Error vector of X8 (d) Error vector of X11

Figure 8: 2-norm error vector ith column of cos(At) on [0, 1] for example 4.3.

2894 Shakeri, Behroozifar

(a) Error vector of X1 (b) Error vector of X4

(c) Error vector of X8 (d) Error vector of X11

Figure 9: 2-norm error vector ith column of sin(At) on [0, 1] for example 4.3.

matrix exponential, cosine and sine functions are defined in L2-norm respectively

Exp−Ri(x) = ||X ′
i −AXi||2,

Cos−Ri(x) = ||X ′′
i +A2Xi||2,

Sin−Ri(x) = ||X ′′
i +A2Xi||2

where Xi is the appropriate approximate solution. Residual vectors are applied to investigate whether the approximate
solutions satisfy in their related equations.
Figures 10, 11 and 12 illustrate that the efficiency of the method on a large scale with an acceptable precise.

Example 4.5. In the previous examples, we intend to show the performance of the proposed method in different
situations. In this example, our goal is to compare this method with some other methods. Therefore, the following
matrix given in [20, 3] is assumed. Consider 2 special matrices (green) of the form

A =

(
1 λ
0 −1

)
where λ = 10000, 108 and ∥ A ∥2= λ. Presented method with m = 12 is executed for approaching matrix functions
eAt, cos(At) and sin(At) and findings are displayed in Figures 13 and 14. According to the Figures 13 and 14, small
values of approximate errors indicate the high accuracy of the given method towards the presented methods in [20, 3].
CPU time is revealed in Table 2. As another outstanding point of this method is that matrices P,Q,Q−1 are joint in
the algorithm’s matrix functions eAt, cos(At) and sin(At), so this reduces computation volume.

Approximating the matrix exponential, sine and cosine via the spectral method 2895

(a) Error vector of X1 (b) Error vector of X5

(c) Error vector of X25 (d) Error vector of X125

Figure 10: Plots of residual vector in L2-norm of cos(At) on [0, 1] for example 4.4.

(a) Error vector of X1 (b) Error vector of X5

(c) Error vector of X25 (d) Error vector of X125

Figure 11: Plots of residual vector in L2-norm of sin(At) on [0, 1] for example 4.4.

2896 Shakeri, Behroozifar

(a) Error vector of X1 (b) Error vector of X5

(c) Error vector of X25 (d) Error vector of X125

Figure 12: Plots of residual vector in L2-norm of eAt on [0, 1] for example 4.4.

Table 2: CPU time of examples 4.5 for m = 12 in terms of seconds.

eAt cos(At) sin(At)

λ = 10000 4 6 4
λ = 108 4 6 4

Approximating the matrix exponential, sine and cosine via the spectral method 2897

(a) Error vector of 1st column of eAt (b) Error vector of 2nd column of eAt

(c) Error vector of 1st column of cos(At) (d) Error vector of 2nd column of cos(At)

(e) Error vector of 1st column of sin(At) (f) Error vector of 2nd column of sin(At)

Figure 13: 2-norm error vector ith column with λ = 10000 on [0, 1] for example 4.5.

2898 Shakeri, Behroozifar

(a) Error vector of 1st column of eAt (b) Error vector of 2nd column of eAt

(c) Error vector of 1st column of cos(At) (d) Error vector of 2nd column of cos(At)

(e) Error vector of 1st column of sin(At) (f) Error vector of 2nd column of sin(At)

Figure 14: 2-norm error vector ith column with λ = 108 on [0, 1] for example 4.5.

Approximating the matrix exponential, sine and cosine via the spectral method 2899

5 Conclusion

The objective of this article is to present the methods for estimating matrix exponential, cosine and sine functions.
The proposed method determines the matrix exponential, cosine and sine functions At for 0 ≤ t ≤ 1. Some properties
of our method are listed as follows:

1. Singularity and eigenvalues of matrix A do not make any restrictions on the implementation of the mentioned
method..

2. For the matrix exponential function, we require to solve n set of linear algebraic equations by constant coefficients.
3. For the matrix cosine and sine functions, n constant-coefficient linear algebraic equations systems are needed to

solve.
4. It is proved that the upper bound of approximate error is a multiple of

√
n.

5. The presented method can be applied on interval [0, b],∀b ∈ R.
6. Approximate matrix functions of matrix At ∀t ∈ [0, b] can be obtained with only one execution of the method.

References

[1] A.H. Al-Mohy and N.J. Higham, A new scaling and squaring algorithm for the matrix exponential, SIAM J.
Matrix Anal. Appl. 31 (2010), 970–989.

[2] A.H. Al-Mohy, N.J. Higham and S.D. Relton, New algorithms for computing the matrix sine and cosine separately
or simultaneously, SIAM J. Sci. Comput. 37 (2015), 56–87.

[3] P. Bader, S. Blanes and F. Casas, Computing the matrix exponential with an optimized Taylor polynomial approx-
imation, Math. 7 (2019), 1174.

[4] J.M. Carnicer and J.M. Peña, Shape preserving representations and optimality of the Bernstein basis, Adv. Com-
put. Math. 1 (1993), no. 2, 173–196.

[5] E. Defez and L. Jódar, Some applications of Hermite matrix polynomials series expansions, J. Comput. Appl.
Math. 99 (1998), 105–117.

[6] E. Defez, J. Sastre, J. IbIbáñez and P. Ruiz, Computing matrix functions arising in engineering models with
orthogonal matrix polynomials, Math. Comput. Modell. 57 (2013), 1738–1743.

[7] E. Defez, J. Sastre, J. IbIbáñez and P.A. Ruiz, Computing matrix functions solving coupled differential models,
Math. Comput. Modell. 50 (2009), 831–839.

[8] M. Dehghan and A. Taleei, Numerical solution of nonlinear Schrödinger equation by using time-space pseudo-
spectral method, Numer. Meth. Part. Differ. Equ. 26 (2010), no. 4, 979–992.

[9] R.T. Farouki, The Bernstein polynomial basis: A centennial retrospective, Comput. Aided Geom. Design 29
(2012), 379–419.

[10] N.J. Higham and A.H. Al-Mohy, Computing matrix functions, Acta Numer. 19 (2010), 159–208.

[11] J.H. Hubbard and B.H. West, Differential equations: A dynamical systems approach: Ordinary differential equa-
tions, Springer-Verlag, New York, 2013.

[12] E. Kreyszig, Introductory functional analysis with applications,Wiley, New York, 1978.

[13] X. Li and C. Xu, A space-time spectral method for the time fractional diffusion equation, SIAM J. Numer. Anal.
47 (2009), 2108–2131.

[14] E. Liz, Classroom note: A note on the matrix exponential, SIAM Rev. 40 (1998), 700–702.

[15] I.E. Leonard, The matrix exponential, SIAM Rev. 38 (1996), 507–512.

[16] A. Saadatmandi and M. Dehghan, Numerical solution of hyperbolic telegraph equation using the Chebyshev tau
method, Numer. Meth. Part. Differ. Equ. 26 (2010), 239–252.

[17] J. Sastre, J. IbIbáñez and E. Defez, Boosting the computation of the matrix exponential, Appl. Math. Comput.
340 (2019), 206–220.

[18] J. Sastre, J. Ibáñez, P. Alonso-Jordá, J. Peinado and E. Defez, Fast Taylor polynomial evaluation for the compu-
tation of the matrix cosine, J. Comput. Appl. Math. 354 (2019), 641–650.

2900 Shakeri, Behroozifar

[19] S.M. Serbin and S.A. Blalock, An algorithm for computing the matrix cosine, SIAM J. Sci. Statist. Comput. 1
(1980), no. 2, 198–204.

[20] M. Seydaoǧlu, P. Bader, S. Blanes and F. Casas, Computing the matrix sine and cosine simultaneously with a
reduced number of products, Appl. Numer. Math. 163 (2021), 96–107.

[21] R.B. Sidje, Expokit: A software package for computing matrix exponentials, ACM Trans Math Software 24 (1998),
130–156.

[22] C. Moler and C.V. Loan, Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later,
SIAM Rev. 45 (2003), 3–49.

[23] J.A. Wood, The chain rule for matrix exponential functions, College Math. J. 35 (2004), 220–222.

[24] H.D. Vo and R.B. Sidje, Approximating the large sparse matrix exponential using incomplete orthogonalization
and Krylov subspaces of variable dimension, Numer. Linear Algebra Appl. 24 (2017), 1–13.

[25] S.A. Yousefi and M. Behroozifar, Operational matrices of Bernstein polynomials and their applications, Int. J.
Syst. Sci. 41 (2010), 709–716.

[26] S.A. Yousefi, M. Behroozifar and M. Dehghan, The operational matrices of Bernstein polynomials for solving the
parabolic equation subject to specification of the mass, J. Comput. Appl. Math. 235 (2011), 5272–5283.

	Introduction
	Preliminaries
	Bernstein polynomials
	Function approximation
	Operational matrices

	Methodology
	Matrix exponential function
	Matrix cosine function
	Matrix sine function

	Numerical findings
	Conclusion

