
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,028 |
تعداد مشاهده مقاله | 67,082,862 |
تعداد دریافت فایل اصل مقاله | 7,656,347 |
Structural, electrical and optical properties of SnO2: B transparent semiconducting thin films | ||
Progress in Physics of Applied Materials | ||
دوره 2، شماره 1 - شماره پیاپی 2، بهمن 2022، صفحه 1-10 اصل مقاله (2.32 M) | ||
نوع مقاله: Original Article | ||
شناسه دیجیتال (DOI): 10.22075/ppam.2022.26130.1023 | ||
نویسندگان | ||
A. S. Shamsipoor؛ Mohammad Mehdi Bagheri-Mohagheghi* ؛ Elham Mokaripoor | ||
School of Physics, Damghan University, Damghan, Iran | ||
تاریخ دریافت: 28 بهمن 1400، تاریخ بازنگری: 19 فروردین 1401، تاریخ پذیرش: 06 اردیبهشت 1401 | ||
چکیده | ||
Boron (B) is considered as an important impurity in semiconductor physics and optoelectronic devices, especially to produce p-type silicon (p-Si). In this paper, we investigate the effect of Boron doping on the structural, electrical, optical, and photo-sensitivity properties of tin oxide (SnO2) semiconductor thin films. Boron doped tin oxide (SnO2: B) thin films were deposited on glass substrates at Ts=500 ͦ C for different atomic concentration of x=[B/Sn] = 0, 0.02, 0.04, 0.08, 0.10, 0.20, 0.30, and 0.50 by spray pyrolysis technique.The results of X-ray diffraction (XRD) analysis show the tetragonal rutile SnO2 structure with orientation along the (211) plane. The films have polycrystalline structure with granular and island-like grains morphology by Field-Emission Electron Microscope (FE-SEM). The SnO2:B films have shown n-type conductivity and decreasing - increasing behavior of electrical resistivity with B-doping for x ≤ 0.04 and x> 0.04, respectively. Also, carrier concentrations were obtained in the order of 1018-1020 cm-3. Average optical transmittance of SnO2:B thin films changed in the range of 65% to 87% in the visible region and SnO2:B (x=0.08) sample has highest transmittance. The optical gap of films was obtained in the range of 3.47-3.87 eV. From the photoconductive results, the x=0.50 film has exhibited the most optical sensitivity under light radiation. | ||
کلیدواژهها | ||
Semiconductor thin films؛ SnO2, Boron, Spray pyrolysis | ||
مراجع | ||
[1] Afre, Rakesh A., Nallin Sharma, Maheshwar Sharon, and Madhuri Sharon. "Transparent conducting oxide films for various applications: A review." Reviews on advanced materials science 53(1) (2018) 79-89. [2] Exarhos, G.J. and Zhou, X.D., 2007. Discovery-based design of transparent conducting oxide films. Thin solid films, 515(18) 7025-7052. [3] Ginley, David S., and John D. Perkins. "Transparent conductors." In Handbook of transparent conductors, pp. 1-25. Springer, Boston, MA, 2011. [4] Kim, Tae Youn, Jeong Woo Lee, Won Seo Park, Seong Kee Park, Ki Yong Kim, In Byeong Kang, and Jae Min Myoung. "Development of transparent conductive oxide for thinfilm silicon solar cells." Journal of the Korean Physical Society 56,(2) (2010) 571-575. [5] Atay FE, DEMIR M, Kose S, Bilgin Vİ, Akyuz I. Some physical properties of ultrasonically sprayed tin oxide films: the effect of the substrate temperature. Journal of optoelectronics and advanced materials.9(7) (2007). [6] El Akkad, Fikry, and Tressia AP Paulose. "Optical transitions and point defects in F: SnO2 films: Effect of annealing." Applied surface science 295 (2014) 8-17. [7] Sancakoglu, Orkut. "Technological Background and Properties of Thin Film Semiconductors." In 21st Century Surface Science-a Handbook. IntechOpen, 2020. [8] Sathishkumar, M., and S. Geethalakshmi. Enhanced photocatalytic and antibacterial activity of Cu: SnO2 nanoparticles synthesized by microwave assisted method. Materials Today: Proceedings 20 (2020) 54-63. [9] Miranda, Héctor, and Eleicer Ching-Prado. "Physical Properties of Semiconductor TCO-SnO2: F Thin Film." In 2019 7th International Engineering, Sciences and Technology Conference (IESTEC).IEEE. (2019)103-108. [10] Ching-Prado, E., A. Watson, and H. Miranda. "Optical and electrical properties of fluorine doped tin oxide thin film." Journal of Materials Science: Materials in Electronics 29(18) (2018) 15299-15306. [11] Amiri, Iraj Sadegh, and Mahdi Ariannejad. Solar EnergyBased Semiconductors: Working Functions and Mechanisms. In Introducing CTS (Copper-Tin-Sulphide) as a Solar Cell by Using Solar Cell Capacitance Simulator (SCAPS), Springer, Cham, (2019)15-35. [12] Wali, Qamar, Azhar Fakharuddin, and Rajan Jose. Tin oxide as a photoanode for dye-sensitised solar cells: current progress and future challenges. Journal of Power Sources 293 (2015)1039-1052. [13] Rajput, Rekha B., and Rohidas B. Kale.Hydro/solvothermally synthesized visible light driven modified SnO2 heterostructure as a photocatalyst for water remediation: A review. Environmental Advances 5 (2021)100081. [14] Chen, Yichuan, Qi Meng, Linrui Zhang, Changbao Han,Hongli Gao, Yongzhe Zhang, and Hui Yan. SnO2-based electron transporting layer materials for perovskite solar cells: A review of recent progress. Journal of energy chemistry 35 (2019)144-167. [15] Maleki, M., and S. M. Rozati. An economic CVD technique for pure SnO2 thin films deposition: Temperature effects. Bulletin of Materials Science 36(2),(2013) 217-221. [16] Oktasendra, Fandi, Rahmat Hidayat, and Rizky Indra Utama. Effects of interface state density on the carrier transport and performance of metal-insulatorsemiconductor (MIS) type thin film solar cells. In Journal of Physics: Conference Series,1481(1), IOP Publishing (2020) 012005. [17] Arularasu, M. V., M. Anbarasu, S. Poovaragan, R. Sundaram, K. Kanimozhi, C. Maria Magdalane, K. Kaviyarasu et al. Structural, optical, morphological and microbial studies on SnO2 nanoparticles prepared by co-precipitation method. Journal of nanoscience and nanotechnology 18(5),(2018) 3511-3517. [18] Murakami, K., Nakajima, K. and Kaneko, S., Initial growth of SnO2 thin film on the glass substrate deposited by the spray pyrolysis technique. Thin Solid Films, 515(24),(2007) 8632-8636 [19] Elangovan, E., and K. Ramamurthi. Studies on microstructural and electrical properties of spray-deposited fluorine-doped tin oxide thin films from low-cost precursor. Thin solid films 476 (2)(2005) 231-236. [20] Taniguchi, I., D. Song, and M. Wakihara. Electrochemical properties of LiM1/6Mn11/6O4 (M= Mn, Co, Al and Ni) as cathode materials for Li-ion batteries prepared by ultrasonic spray pyrolysis method. Journal of power Sources 109(2) (2002) 333-339. [21] Kaviyarasu, K., Prem Anand Devarajan, S. Stanly John Xavier, S. Augustine Thomas, and S. Selvakumar. One pot synthesis and characterization of cesium doped SnO2 nanocrystals via a hydrothermal process. Journal of Materials Science & Technology 28 (1), (2012)15-20. [22] Sánchez-García, M. Alberto, Arturo Maldonado, Luis Castañeda, Rutilo Silva-González, and María de la Luz Olvera. Characteristics of SnO2: F thin films deposited by ultrasonic spray pyrolysis: effect of water content in solution and substrate temperature. Materials Sciences and Applications, 3(10) (2012) 690-696. [23] Geraldo, Viviany, Luis Vicente de Andrade Scalvi, Evandro Augusto de Morais, Celso Valentim Santilli, and Sandra Helena Pulcinelli. "Sb doping effects and oxygen adsorption in SnO2 thin films deposited via sol-gel." Materials Research, 6 (2003) 451-456. [24] Zhang, B., Tian, Y., Zhang, J.X. and Cai, W., The studies on the role of fluorine in SnO2: F films prepared by spray pyrolysis with SnCl4. Journal of Optoelectronics and Advanced Materials, 13(1),(2011) 89-93. [25] M. M. Bagheri-Mohagheghi, N. Shahtahmasebi, M. R. Alinejad, A. Youssefi, and M. Shokooh-Saremi. Fe-doped SnO2 transparent semi-conducting thin films deposited by spray pyrolysis technique: Thermoelectric and p-type conductivity properties. Solid State Sciences 11(1),(2009) 233-239. [26] Turgut, G., Sonmez, E., Aydın, S., Dilber, R., & Turgut, U. The effect of Mo and F double doping on structural, morphological, electrical and optical properties of spray deposited SnO2 thin films. Ceramics International, 40(8), (2014)12891-12898. [27] Doyan, Aris, Susilawati, and Yanika Diah Imawanti. Synthesis and Characterization of SnO2 thin layer with a doping Aluminum is deposited on Quartz Substrates. In AIP Conference Proceedings, 1801(1)(2017) 020005. [28] Patil, G. E., D. D. Kajale, S. D. Shinde, V. G. Wagh, V. B. Gaikwad, and G. H. Jain. Synthesis of Cu-doped SnO 2 thin films by spray pyrolysis for gas sensor application. In Advancement in Sensing Technology,(2013) 299-311. Springer, Berlin, Heidelberg. [29] Dive, A., Varley, J. and Banerjee, S., In2O3-Ga2O3 Alloys as Potential Buffer Layers in CdTe Thin-Film Solar Cells. Physical Review Applied, 15(3),(2021) 034028. [30] Braunschweig, Holger, Rian D. Dewhurst, Kai Hammond, Jan Mies, Krzysztof Radacki, and Alfredo Vargas. Ambienttemperature isolation of a compound with a boron-boron triple bond. Science 336 (6087), (2012) 1420-1422. [31] Thomas, Boben, Skariah Benoy, and K. K. Radha. Influence of Cs doping in spray deposited SnO2 thin films for LPG sensors. Sensors and Actuators B: Chemical 133 (2),(2008) 404-413. [32] Lee, W.Y., Lee, H., Ha, S., Lee, C., Bae, J.H., Kang, I.M. and Jang, J., 2020. Improved negative bias stability of sol–gel processed Ti-doped SnO2 thin-film transistors. Semiconductor Science and Technology, 35(11), (2020)115023. [33] Girtan, M., Rusu, G.I., Rusu, G.G. and Gurlui, S., Influence of oxidation conditions on the properties of indium oxide thin films. Applied surface science, 162 (2000) 492-498. [34] Burstein, E., Anomalous optical absorption limit in InSb. Physical review, 93(3),(1954) 632. [35] Zinchenko, T., Pecherskaya, E., & Artamonov, D. The properties study of transparent conductive oxides (TCO) of tin dioxide (ATO) doped by antimony obtained by spray pyrolysis. AIMS Materials Science, 6(2), (2019) 276-287. [36] Khan, A. and Rahman, F., Study of microstructural and optical properties of nanocrystalline indium oxide: A transparent conducting oxide (TCO). In AIP Conference Proceedings, 2115(1),(2019) 030091. AIP Publishing LLC. [37] Kumar, S., Sharma, R., Gupta, A., Tyagi, A., Singh, P., Kumar, A. and Kumar, V., Recent insights into SnO 2-based engineered nanoparticles for sustainable H2 generation and remediation of pesticides. New Journal of Chemistry, 46(9),(2022) 4014-4048. [38] Türkyılmaz, Şenay Şen, Nuray Güy, and Mahmut Özacar. Photocatalytic efficiencies of Ni, Mn, Fe and Ag doped ZnO nanostructures synthesized by hydrothermal method: The synergistic/antagonistic effect between ZnO and metals. Journal of Photochemistry and Photobiology A: Chemistry 341 (2017) 39-50. [39] Mishra, Umesh K., and Jasprit Singh. Semiconductor device physics and design.83. Dordrecht: Springer, 2008. [40] Zhu, Xinxu, Yijie Li, Hongchao Zhang, Longfei Song, Hongliang Zu, Yuanbin Qin, Lei Liu, Ying Li, and Fengyun Wang. High-performance field effect transistors based on large ratio metal (Al, Ga, Cr) doped In2O3 nanofibers. Journal of Alloys and Compounds. 830 (2020)154578. | ||
آمار تعداد مشاهده مقاله: 297 تعداد دریافت فایل اصل مقاله: 513 |