
تعداد نشریات | 21 |
تعداد شمارهها | 610 |
تعداد مقالات | 9,029 |
تعداد مشاهده مقاله | 67,082,939 |
تعداد دریافت فایل اصل مقاله | 7,656,398 |
On the common zero of a finite family of monotone operators in Hadamard spaces and its applications | ||
International Journal of Nonlinear Analysis and Applications | ||
مقاله 28، دوره 14، شماره 2، اردیبهشت 2023، صفحه 359-367 اصل مقاله (381.39 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22075/ijnaa.2022.22570.2385 | ||
نویسنده | ||
Sajad Ranjbar* | ||
Department of Mathematics, Higher Education Center of Eghlid, Eghlid, Iran | ||
تاریخ دریافت: 16 بهمن 1399، تاریخ بازنگری: 14 تیر 1401، تاریخ پذیرش: 05 مرداد 1401 | ||
چکیده | ||
In this paper, a common zero of a finite family of monotone operators on Hadamard spaces is approximated via Mann-type proximal point algorithm. Some applications in convex minimization and fixed point theory are also presented. | ||
کلیدواژهها | ||
Monotone operator؛ Mann-type proximal point algorithm؛ $\Delta$-convergence؛ Convex minimization؛ Fixed point theory؛ Hadamard spaces | ||
مراجع | ||
[1] B. Ahmadi Kakavandi, Weak topologies in complete CAT(0) metric spaces, Proc. Amer. Math. Soc. 141 (2013), 1029–1039. [2] B. Ahmadi Kakavandi and M. Amini, Duality and subdifferential for convex functions on complete CAT(0) metric spaces, Nonlinear Anal. 73 (2010), 3450–3455. [3] QH. Ansari and F. Babu, Existence and boundedness of solutions to inclusion problems for maximal monotone vector fields in Hadamard manifolds, Optim. Lett. 14 (2020), 711–727. [4] M. Baˇc´ak, The proximal point algorithm in metric spaces, Israel J. Math. 194 (2013), 689–701. [5] M. Baˇc´ak, Convex Analysis and Optimization in Hadamard Spaces, Walter de Gruyter GmbH, Berlin, 2014. [6] I.D. Berg and IG. Nikolaev, Quasilinearization and curvature of Alexandrov spaces, Geom. Dedicata 133 (2008),195–218. [7] B.A. Bin Dehaish and M.A. Khamsi, Mann iteration process for monotone nonexpansive mappings, Fixed Point Theory Appl. 177 (2015). [8] M. Bridson and A. Haefliger, Metric Spaces of Non-Positive Curvature, Fundamental Principles of Mathematical Sciences. Springer, Berlin, 1999. [9] K.S. Brown, Buildings, Springer, New York, 1989. [10] H. Br´ezis and P.L. Lions, Produits infinis der´esolvantes, Israel J. Math. 29 (1978), 329–345. [11] D. Burago, Y. Burago and S. Ivanov, A Course in Metric Geometry, Graduate Studies in Math., 33, Amer. Math. Soc., Providence, RI, 2001. [12] S. Dhompongsa and B. Panyanak, On ∆-convergence theorems in CAT(0) spaces, Comput. Math. Appl. 56 (2008), 2572–2579. [13] B. Djafari Rouhani and H. Khatibzadeh, On the proximal point algorithm, J. Optim. Theory Appl. 137 (2008), 411–417. [14] R. Esp´inola, A. Ferna´ndez-Leo´n, CAT(κ)-spaces, weak convergence and fixed points, J. Math. Anal. Appl. 353 (2009), 410–427. [15] K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc, New York, 1984. [16] M. Gromov and SM. Bates, Metric Structures for Riemannian and Non-Riemannian Spaces, with appendices by M. Katz, P. Pansu and S. Semmes, ed. by J. Lafontaine and P. Pansu, Progr. Math. 152, BirkhNauser, Boston, 1999. [17] O. G¨uler, On the convergence of the proximal point algorithm for convex minimization, SIAM J. Control Optim. 29 (1991), 403–419. [18] M.T. Heydari, A. Khadem and S. Ranjbar, Approximating a common zero of finite family of monotone operators in Hadamard spaces, Optim. 66 (2017), 2233–2244. [19] M.T. Heydari and S. Ranjbar, Halpern-type proximal point algorithm in complete CAT(0) metric spaces, An. tiint. Univ. Ovidius Constanta Ser. Mat. 24 (2016), 141–159. [20] J. J¨ost, Nonpositive Curvature: Geometric and Analytic Aspects, Lectures Math. ETH ZNurich, BirkhNauser, Basel, 1997. [21] S. Kamimura and W. Takahashi, Approximating Solutions of Maximal Monotone Operators in Hilbert Spaces, J. Approx. Theory 106 (2000), 226–240. [22] H. Khatibzadeh, Some remarks on the proximal point algorithm, J. Optim. Theory Appl. 153 (2012), 769–778. [23] H. Khatibzadeh and S. Ranjbar, A variational inequality in complete CAT(0) spaces, J. Fixed Point Theory Appl. 17 (2015), 557–574. [24] H. Khatibzadeh and S. Ranjbar, Monotone operators and the proximal point algorithm in complete CAT(0) metric spaces, J. Aus. Math. Soc. 103 (2017), 70–90. [25] W.A. Kirk, Fixed point theorems in CAT(0) spaces and R-trees, Fixed Point Theory Appl. 4 (2004), 309–316. [26] W.A. Kirk and B. Panyanak, A concept of convergence in geodesic spaces, Nonlinear Anal. 68 (2008), 3689–3696. [27] T.C. Lim, Remarks on some fixed point theorems, Proc. Amer. Math. Soc. 60 (1976), 179–182. [28] B. Martinet, R´egularisation d’In´equations Variationnelles par Approximations Successives, Revue Fran. Inf. Rech. Op´er. 3 (1970), 154–158. [29] G. Morosanu, Nonlinear Evolution Equations and Applications, Editura Academiei Romane (and D. Reidel publishing Company), Bucharest, 1988. [30] S. Ranjbar, W-convergence of the proximal point algorithm in complete CAT(0) metric spaces, Bull. Iranian Math. Soc. 43 (2017), 817–834. [31] S. Ranjbar and H. Khatibzadeh, ∆-convergence and w-convergence of the modified Mann iteration for a family of asymptotically nonexpansive type mappings in complete CAT(0) spaces, Fixed Point Theory 17 (2016), 151–158. [32] S. Ranjbar and H. Khatibzadeh, Strong and ∆-convergence to a zero of a monotone operator in CAT(0) spaces, Mediterr. J. Math. 14 (2017), 56. [33] R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976), 877–898. | ||
آمار تعداد مشاهده مقاله: 16,432 تعداد دریافت فایل اصل مقاله: 255 |