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Abstract

In the present research, we state and prove a common fixed point theorem for fuzzy mappings that satisfy the
contractive condition in F-metric spaces. This theorem generalizes the corresponding results in [5].
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1 Introduction

Fixed point theory plays an important role in various fields of mathematics. It provides very important tools
for finding the existence and uniqueness of solution to various mathematical models (integral partial equations and
variational inequalities [9, 10, 11]). In 1965, Zadeh [7] initiated the concept of fuzzy set generalizing the concept of crisp
set. After that in 1981, Heilpern [2] introduced the concept of fuzzy mapping and proved a fixed point theorem for
fuzzy contraction mappings in metric linear space. His theorem is a fuzzy extension of Banach Contraction Principle
(BCP). Afterward many authors explored and studied the fixed point for generalized fuzzy contractive mappings
in different settings ([12]-[20]). Not long ago, Jleli and Samet [1] introduced the concepts of F-metric spaces, they
generalized the Banach fixed point theorem. Many researchers have improved various outcomes in F-metric spaces.
In 2020, Alansari, et al [5] introduced some fuzzy fixed point theorems in these spaces. Our aim, in this paper, is to
establish common fixed point theorem for fuzzy mappings that satisfy the contractive condition in F-metric spaces.
These theorems generalize some results in [5].

2 Preliminaries

In this section, we list the following definitions and lemmae that we will refer to them in our main results.

Definition 2.1. [1] Suppose that F is the set of function f : (0,+∞) −→ R satisfying the conditions as below:

(F1) f is nondecreasing, i.e., 0 < t < s =⇒ f(t) ≤ f(s).
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(F2) for every sequence {sn} ⊂ (0,+∞), we get

lim
n→+∞

sn = 0 =⇒ lim
n→+∞

f(sn) = −∞.

Definition 2.2. [1] Suppose that X is a non-empty set and dF : X ×X −→ (0,+∞) is a given mapping. Assume
that there is (f, ρ) ∈ F× [0,∞) so it is

(d1) (η, ξ) ∈ X ×X, dF(η, ξ) = 0 ⇐⇒ η = ξ.

(d2) dF(η, ξ) = dF(ξ, η), ∀(η, ξ) ∈ X ×X.

(d3) for each (η, ξ) ∈ X ×X, for each k ≥ 2 and for each sequence {ζi} ⊂ X with (ζ1, ζk) = (η, ξ), there is

dF(η, ξ) > 0 =⇒ f(dF(η, ξ)) ≤ f(

k−1∑
i=1

dF(ζi, ζi−1)) + ρ.

Thus, dF is called an F-metric and the pair (X, dF) is known as an F-metric space.

Definition 2.3. [1] Suppose (X, dF) as an F-metric space and {ηn}n∈N as a sequence in X.

(i) The sequence {ηn} is F-convergent to η∗ if and only if lim
n→∞

dF(ηn, η
∗) = 0.

(ii) The sequence {ηn} is F-Cauchy, if and only if

lim
m,n→∞

dF(ηm, ηn) = 0.

(iii) (X, dF) is F-complete, if every F-Cauchy sequence in X is F-convergent to an element in X.

Definition 2.4. [6] The function ϕ : [0,∞) −→ [0,∞) is nondecreasing. It is considered as a comparison function, if
ϕm(r) → 0 as m→ ∞ for each r ∈ [0,∞).

In [2, 7], an element in any fuzzy set has a degree of belonging, a membership function may be used in order to
introduce the value of degree of belonging for any element to a set, the value of degree of belonging takes real values
on the whole closed interval [0, 1]. The membership function

µA : X −→ [0, 1].

Suppose that (X, d) is a metric linear space. In X a fuzzy set is a function A : X −→ [0, 1]. Thus, it is an element
of IX where I = [0, 1]. If A is a fuzzy set and η ∈ X, then the function value A(η) is considered as the grade of
membership of η in A. IX is denoted to The collection of all fuzzy sets in X. The α-level set of A, defined by

Aα = {η : A(η) ≥ α} with α ∈ (0, 1] and A0 = {η : A(η) > 0},

whenever { } is the closure of set (non fuzzy) { }.

Definition 2.5. [3] Suppose that X is an arbitrary set and Y is a metric space. A mapping F is considered as a
fuzzy mapping if F is a mapping from the set X into IX , i.e., F (η) ∈ IX for each η ∈ X. F is fuzzy mapping which
is a subset of X × Y with membership value F (η)(ξ).

Definition 2.6. [5] Suppose that (X, dF) is an F-metric space. A subset B of X is said to be proximal, if for each
η ∈ X, there exists b ∈ B such that

dF(η, b) = dF(η,B).

Pr(X) is the set of all non-empty bounded proximal sets in X and any proximal set is closed.
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Lemma 2.7. [6] Assume that ϕ ∈ Ω. Then there are following properties discussed:

(i) Every iterate ϕi of ϕ, for i ≥ 1 is a comparison,

(ii) ϕ is continuous at 0,

(iii) ϕ(r) < r ∀r > 0. Where Ω is all comparison function’s set.

3 Main Results

First, we rewrite the following lemma without proof.

Lemma 3.1. Suppose (X, dF) is an F-metric space. Then any subsequence of F-convergent sequence in X is F-
convergent.

Following Popa [4], let G be the member of all continuous mappings g : [0,∞)5 −→ [0,∞) satisfying the properties as
below:

(g1) g is non-decreasing in the 2nd, 3rd, 4th and 5th coordinate variables,

(g2) there is k ∈ (0, 1) so for each υ, ν ∈ [0,∞) and υ ≤ g(ν, ν, υ, υ + ν, 0) implies υ ≤ kν.

(g3) if υ ∈ [0,∞) such that υ ≤ g(υ, 0, 0, υ, υ) or υ ≤ g(0, υ, 0, 0, υ), then υ = 0. Thus, our main theorem can be stated
and proved in the following way.

Theorem 3.2. Let (X, dF) be an F-complete F-metric space and T1, T2 : X −→ IX be fuzzy mappings. Suppose that
for each η, ξ ∈ X, there is αT1(η), βT2(ξ) ∈ (0, 1] such that {T1η}αT1

(η), {T2ξ}βT2
(ξ) ∈ Pr(X) and if there is a g ∈ G

satisfies

HF(T1η, T2ξ) ≤ g(dF(η, ξ), dF(η, T1η), dF(ξ, T2ξ), dF(η, T2ξ), dF(ξ, T1η)), (3.1)

then there is η∗ ∈ X such that η∗ ∈ {T1η∗}αT1
(η∗) ∩ {T2η∗}βT2

(η∗), where HF is the hausdorff F-metric between two
sets on Pr(X).

Proof .Suppose η0 is an arbitrary point in X. Then there is αT1(η0) ∈ (0, 1] such that {T1η0}αT1
(η0) ∈ Pr(X). So,

there exists η1 ∈ {T1η0}αT1
(η0) such that

dF(η0, η1) = dF(η0, {T1η0}αT1
(η0)).

For η1 ∈ X, then there is βT2
(η1) ∈ (0, 1] such that {T2η1}βT2

(η1) ∈ Pr(X). So, there is η2 ∈ {T2η1}βT2
(η1) such that

dF(η1, η2) = dF(η1, {T2η1}βT2
(η1)).

In a similar way, one can obtain a sequence {ηn} ⊆ X so that

η2n+1 ∈ {T1η2n}αT1
(η2n) and η2n+2 ∈ {T2η2n+1}βT2

(η2n+1).

We find that

dF(η1, η2) = dF(η1, {T2η1}βT2
(η1))

≤ HF({T1η0}αT1
(η0)), {T2η1}βT2

(η1))

≤ g(dF(η0, η1), dF(η0, {T1η0)}αT1
(η0), dF(η1, {T2η1}βT2

(η1)),

dF(η0, {T2η1}βT2
(η1)), dF(η1, {T1η0}αT1

(η0)))

= g(dF(η0, η1), dF(η0, η1), dF(η1, η2), dF(η0, η2), dF(η1, η1))

= g(dF(η0, η1), dF(η0, η1), dF(η1, η2), dF(η0, η2), 0)
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From (F1), we have that dF(η0, η2) > 0 and (d3), then

f(dF(η0, η2)) ≤ f(dF(η0, η1) + dF(η1, η2)) + ρ.

For ρ = 0 and from (F1), we get dF(η0, η2) < dF(η0, η1) + dF(η1, η2)

dF(η1, η2) ≤ g(dF(η0, η1), dF(η0, η1), dF(η1, η2), dF(η0, η2), 0)

≤ g(dF(η0, η1), dF(η0, η1), dF(η1, η2), dF(η0, η1) + dF(η1, η2), 0).

From (g2), there exists k ∈ (0, 1] such that dF(η1, η2) ≤ kdF(η0, η1). One can deduce that

dF(η2, η3) ≤ kdF(η1, η2)

≤ k2dF(η0, η1).

By induction, we obtain dF(ηn, ηn+1) ≤ kndF(η0, η1). Now, we show that {ηn} is F-Cauchy sequence,

dF(ηn, ηn+1) + dF(ηn+1, ηn+2) + ...+ dF(ηm−1, ηm) ≤ kndF(η0, η1) + kn+1dF(η0, η1) + ...+

km−1dF(η0, η1)

= kn[1 + k + ...]dF(η0, η1)

=
kn

1− k
dF(η0, η1).

for all m,n ∈ N, m > n so that

m−1∑
i=n

dF(ηi, ηi+1) ≤
kn

1− k
dF(η0, η1). (3.2)

Let (f, ρ) ∈ F× [0,+∞), (d3) is satisfied, assume that δ > 0 is fixed and from (F2) there is ϵ > 0 such that

0 < t < ϵ =⇒ f(t) < f(δ)− ρ. (3.3)

From (3.2) as n→ ∞, then lim
n→∞

kn

1−kdF(η0, η1) = 0, i.e.,

∀ϵ > 0 ∃N ∈ N : 0 <
kn

1− k
dF(η0, η1) < ϵ ∀n ≥ N,

from (F1), (3.2) and (3.3), we have that f(
m−1∑
i=n

dF(ηi, ηi+1)) ≤ f( kn

1−kdF(η0, η1)),

f(

m−1∑
i=n

dF(ηi, ηi+1)) ≤ f(
kn

1− k
dF(η0, η1)) ≤ f(δ)− ρ. (3.4)

Using (d3) and (3.4), we get

f(dF(ηn, ηm)) ≤ f(

m−1∑
i=n

dF(ηi, ηi+1)) + ρ

≤ f(δ).

This means that dF(ηn, ηm) < δ, i.e., {ηn} is F-Cauchy sequence. Because X is F-complete, then we have {ηn} is
F-convergent to η∗ ∈ X such that lim

n→∞
ηn = η∗. Now, we prove that η∗ ∈ {T1η∗}αT1

(η∗) where

f(dF({T1η∗}αT1
(η∗), η

∗)) ≤ f(dF{(T1η∗}αT1
(η∗), η2n+2) + dF(η2n+2, η

∗)) + ρ

= f(dF{(T1η∗}αT1
(η∗), η2n+2) + dF({T2η2n+1}βT2

(η2n+1), η
∗)) + ρ,
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for ρ = 0,

dF({T1η∗}αT1
(η∗), η

∗) ≤ dF({T1η∗}αT1
(η∗), {T2η2n+1}αT2

(η2n+1)) + dF(η2n+2, η
∗)

≤ HF({T1η∗}αT1
(η∗), {T2η2n+1}βT2

(η2n+1)) + dF(η2n+2, η
∗)

≤ g(dF(η
∗, η2n+1), dF(η

∗, {T1η∗}αT1
(η∗)), dF(η2n+1, {T2η2n+1}βT2

(η2n+1)),

dF(η
∗, {T2η2n+1}βT2

(η2n+1)), dF(η2n+1, {T1η∗}αT1
(η∗))) + dF(η2n+2, η

∗)

= g(dF(η
∗, η2n+1), dF(η

∗, {T1η∗}αT1
(η∗)), dF(η2n+1, η2n+2),

dF(η
∗, η2n+2), dF(η

∗, {T1η∗}αT1
(η∗))) + dF(η2n+2, η

∗).

From Lemma 3.1 as n→ ∞, then

dF(η
∗, {T1η∗}αT1

(η∗)) ≤ g(0, dF(η
∗, {T1η∗}αT1

(η∗)), 0, 0, dF(η
∗, {T1η∗}αT1

(η∗))).

By (g3), we have dF(η
∗, {T1η∗}αT1

(η∗)) = 0. Thus η∗ ∈ {T1η∗}αT1
(η∗). Similarly η∗ ∈ {T2η∗}βT2

(η∗). Hence T1 and
T2 have a common fixed point.

Now, to support the generality of the Theorem 3.2 over Theorem 12 [5], we can give an example here.

Example 3.3. Suppose that X = [0,∞), (X, dF) is an F-complete F-metric space defined by

dF(η, ξ) =

{
(η − ξ)2 if (η, ξ) ∈ [0, 5]× [0, 5]
|η − ξ| if (η, ξ) ̸∈ [0, 5]× [0, 5]

Define two fuzzy mappings T1, T2 as follows:

{T1η}α(t) =



1
6 if 0 ≤ t ≤ η2

100

1
8 if η2

10 < t ≤ η2

50

1
10 if η2

50 < t ≤ 1

and

{T2ξ}β(t) =



2
3 if 0 ≤ t ≤ ξ2

100

1
2 if ξ2

100 < t ≤ ξ2

2
5 if ξ2 < t ≤ 1

Now, for α = 1
6 , {T1(η)} 1

6
= [0, η2

100 ] and for β = 2
3 , {T2(ξ)} 2

3
= [0, ξ2

100 ],

g(γ1, γ2, γ3, γ4, γ5) =
1

100
γ1 ∀γ1, γ2, γ3, γ4, γ5 ∈ [0,∞).

Thus, for η, ξ ∈ X and from definition of dF, we have

HF(T1η, T2ξ) = (
η2

100
− ξ2

100
)2

= |(η + ξ

100
(η − ξ))|2

≤ 1

100
|η − ξ|2

=
1

100
dF(η, ξ)

= g(dF(η, ξ), dF(η, T1η), dF(ξ, T2ξ), dF(η, T2ξ), dF(ξ, T1η)).
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It is clear that all the conditions of Theorem (3.2) hold to find η∗ = 0 ∈ {T10} 1
6
∩ {T20} 2

3
. In Theorem 12 [5]

satisfies conditions of Lemma 2.7 and

HF(T1η, T2ξ) ≤ ϕ(max{dF(η, ξ), dF(η, T1η), dF(ξ, T2ξ),
dF(η, T2ξ) + dF(ξ, T1η)

2
}).

But, when we put

ϕ(r) = rmax{α+ (1− α), α(1− α), α(1− α)(2β), α+ (1− α)(2α)},

for η = 41
100 , ξ =

1
4 and α = 1

6 , β = 2
3 , then

r = max{dF(η, ξ), dF(η, T1η), dF(ξ, T2ξ),
dF(η, T2ξ) + dF(ξ, T1η)

2
} = 0.1667, ϕ(r) =

23

18
r > r,

this does not imply ϕ(r) < r ∀r > 0. The previous example does not generally satisfy ϕ(r) < r of theorem 12 [5].

Remark 3.4.

(I) The Theorem 3.2 is the generalization of Theorem 12 [5] such that the results of Theorem 12 [5] is a specific case
of the Theorem 3.2 and we used the contractive condition (3.1) instead of (9) in Theorem 12 [5].

(II) If there is a g ∈ G such that ∀ η, ξ ∈ X,

δF(T1η, T2ξ) ≤ g(dF(η, ξ), dF(η, T1η), dF(ξ, T2ξ), dF(η, T2ξ), dF(ξ, T1η)),

where δF(T1η, T2ξ) = sup{dF(a, b) : a ∈ T1η, b ∈ T2ξ}, so we can say that the conclusion of Theorem 3.2 is still valid.
This result is considered as special case of Theorem 3.1. Since HF(T1η, T2ξ) ≤ δF(T1η, T2ξ) ( [8], page 414).

Corollary 3.5. Let (X, dF) be an F-complete F-metric space and T1, T2 : X −→ IX be fuzzy mappings. Suppose
that η, ξ ∈ X, there is αT1

(η), αT2
(ξ) ∈ (0, 1] so [T1η]αT1

(η), [T2η]βT2
(η) ∈ C(2X). Also the following condition satisfies:

HF(T1η, T2ξ) ≤ ϕ(max{dF(η, ξ), dF(η, T1η), dF(ξ, T2ξ),
dF(η, T2ξ) + dF(ξ, T1η)

2
}),

where ϕ ∈ Ω and C(2X) is the set of all nonempty compact subsets of X. Then there exists η∗ ∈ X such that
η∗ ∈ {T1η∗}αT1

(η∗) ∩ {T2η∗}βT2
(η∗).

Remark 3.6.

(I) We instead the compact subset of X by the proximal subset of X.

(II) In theorem 3.2, if we put

g(γ1, γ2, γ3, γ4, γ5) = ϕ(γ1, γ2, γ3,
γ4 + γ5

2
),

we obtain the conclusion of corollary 3.5.

4 Applications

Let Ĝ be the member of all continuous mappings ĝ : [0,∞)5 −→ [0,∞) satisfying the properties as below:

(ĝ1) ĝ is non-decreasing in the 2nd, 3rd, 4th and 5th coordinate variables,
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(ĝ2) there is k ∈ (0, 1) so for each υ, ν ∈ [0,∞) and

∫ υ

0

ψ(s)ds ≤
∫ ĝ

(
ν, ν, υ, υ + ν, 0

)
0

ψ(s)ds implies υ ≤ kν.

(ĝ3) if υ ∈ [0,∞) such that

∫ υ

0

ψ(s)ds ≤
∫ ĝ

(
υ, 0, 0, υ, υ

)
0

ψ(s)ds,

or

∫ υ

0

ψ(s)ds ≤
∫ ĝ

(
0, υ, 0, 0, υ

)
0

ψ(s)ds,

then υ = 0.

Theorem 4.1. Let (X, dF) be an F-complete F-metric space and T1, T2 : X −→ IX be fuzzy mappings. Suppose that
for each η, ξ ∈ X, there is αT1

(η), βT2
(ξ) ∈ (0, 1] such that {T1η}αT1

(η), {T2ξ}βT2
(ξ) ∈ Pr(X) and if there is a g ∈ G

satisfies∫ HF(T1η,T2ξ)

0

ψ(s)ds ≤
∫ ĝ(dF(η,ξ),dF(η,T1η),dF(ξ,T2ξ),dF(η,T2ξ),dF(ξ,T1η))

0

ψ(s)ds, (4.1)

then there is η∗ ∈ X such that η∗ ∈ {T1η∗}αT1
(η∗) ∩ {T2η∗}βT2

(η∗).
Where HF is the hausdorff F-metric between two sets on Pr(X).

Proof .Suppose that η0 is an arbitrary point in X. Then there is αT1(η0) ∈ (0, 1] such that {T1η0}αT1
(η0) ∈ Pr(X).

So, there exists η1 ∈ {T1η0}αT1
(η0) such that∫ dF(η0,η1)

0

ψ(s)ds =

∫ dF(η0,{T1η0}αT1
(η0))

0

ψ(s)ds.

For η1 ∈ X, then there is βT2
(η1) ∈ (0, 1] such that {T2η1}βT2

(η1) ∈ Pr(X). So, there is η2 ∈ {T2η1}βT2
(η1) such

that ∫ dF(η1,η2)

0

ψ(s)ds =

∫ dF(η1,{T2η1}βT2
(η1))

0

ψ(s)ds.

In a similar way, one can obtain a sequence {ηn} ⊆ X so that

η2n+1 ∈ {T1η2n}αT1
(η2n) and η2n+2 ∈ {T2η2n+1}βT2

(η2n+1).

We find that∫ dF(η1,η2)

0

ψ(s)ds =

∫ dF(η1,{T2η1}βT2
(η1))

0

ψ(s)ds

≤
∫ HF({T1η0}αT1

(η0)),{T2η1}βT2
(η1))

0

ψ(s)ds

≤
∫ ĝ

 dF(η0, η1), dF(η0, {T1η0)}αT1
(η0), dF(η1, {T2η1}βT2

(η1)),

dF(η0, {T2η1}βT2
(η1)), dF(η1, {T1η0}αT1

(η0))


0

ψ(s)ds

=

∫ ĝ(dF(η0,η1),dF(η0,η1),dF(η1,η2),dF(η0,η2),dF(η1,η1))

0

ψ(s)ds

=

∫ ĝ(dF(η0,η1),dF(η0,η1),dF(η1,η2),dF(η0,η2),0)

0

ψ(s)ds.
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From (F1), we have that dF(η0, η2) > 0 and (d3), then

f(dF(η0, η2)) ≤ f(dF(η0, η1) + dF(η1, η2)) + ρ.

For ρ = 0 and from (F1), we get dF(η0, η2) < dF(η0, η1) + dF(η1, η2)∫ dF(η1,η2)

0

ψ(s)ds ≤
∫ ĝ(dF(η0,η1),dF(η0,η1),dF(η1,η2),dF(η0,η2),0)

0

ψ(s)ds

≤
∫ ĝ(dF(η0,η1),dF(η0,η1),dF(η1,η2),dF(η0,η1)+dF(η1,η2),0)

0

ψ(s)ds.

From (ĝ2), there exists k ∈ (0, 1] such that dF(η1, η2) ≤ kdF(η0, η1). One can deduce that

dF(η2, η3) ≤ kdF(η1, η2)

≤ k2dF(η0, η1).

By induction, we obtain dF(ηn, ηn+1) ≤ kndF(η0, η1). Now, we show that {ηn} is F-Cauchy sequence,

dF(ηn, ηn+1) + dF(ηn+1, ηn+2) + ...+ dF(ηm−1, ηm) ≤ kndF(η0, η1) + kn+1dF(η0, η1) + ...+

km−1dF(η0, η1)

= kn[1 + k + ...]dF(η0, η1)

=
kn

1− k
dF(η0, η1).

for all m,n ∈ N, m > n so that

m−1∑
i=n

dF(ηi, ηi+1) ≤
kn

1− k
dF(η0, η1). (4.2)

Let (f, ρ) ∈ F× [0,+∞), (d3) is satisfied, assume that δ > 0 is fixed and from (F2) there is ϵ > 0 such that

0 < t < ϵ =⇒ f(t) < f(δ)− ρ. (4.3)

From (4.2) as n→ ∞, then lim
n→∞

kn

1−kdF(η0, η1) = 0, i.e.,

∀ϵ > 0 ∃N ∈ N : 0 <
kn

1− k
dF(η0, η1) < ϵ ∀n ≥ N,

from (F1), (4.2) and (4.3), we have that f(
m−1∑
i=n

dF(ηi, ηi+1)) ≤ f( kn

1−kdF(η0, η1)),

f(

m−1∑
i=n

dF(ηi, ηi+1)) ≤ f(
kn

1− k
dF(η0, η1)) ≤ f(δ)− ρ. (4.4)

Using (d3) and (4.4), we get

f(dF(ηn, ηm)) ≤ f(

m−1∑
i=n

dF(ηi, ηi+1)) + ρ

≤ f(δ).
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This means that dF(ηn, ηm) < δ, i.e., {ηn} is F-Cauchy sequence. Because X is F-complete, then we have {ηn} is
F-convergent to η∗ ∈ X such that lim

n→∞
ηn = η∗. Now, we prove that η∗ ∈ {T1η∗}αT1

(η∗) where

f(dF({T1η∗}αT1
(η∗), η

∗)) ≤ f(dF{(T1η∗}αT1
(η∗), η2n+2) + dF(η2n+2, η

∗)) + ρ

= f(dF{(T1η∗}αT1
(η∗), η2n+2) + dF({T2η2n+1}βT2

(η2n+1), η
∗)) + ρ,

for ρ = 0,∫ dF({T1η
∗}αT1

(η∗),η
∗)

0

ψ(s)ds ≤
∫ dF({T1η

∗}αT1
(η∗),{T2η2n+1}αT2

(η2n+1))+dF(η2n+2,η
∗)

0

ψ(s)ds

≤
∫ HF({T1η

∗}αT1
(η∗),{T2η2n+1}βT2

(η2n+1))+dF(η2n+2,η
∗)

0

ψ(s)ds

≤
∫ ĝ


dF(η

∗, η2n+1), dF(η
∗, {T1η∗}αT1

(η∗)),

dF(η2n+1, {T2η2n+1}βT2
(η2n+1)),

dF(η
∗, {T2η2n+1}βT2

(η2n+1)),

dF(η2n+1, {T1η∗}αT1
(η∗))

+dF(η2n+2,η
∗)

0

ψ(s)ds

=

∫ ĝ


dF(η

∗, η2n+1),
dF(η

∗, {T1η∗}αT1
(η∗)), dF(η2n+1, η2n+2),

dF(η
∗, η2n+2), dF(η

∗, {T1η∗}αT1
(η∗))

+dF(η2n+2,η
∗)

0

ψ(s)ds

From Lemma 3.1 as n→ ∞, then∫ dF(η∗,{T1η
∗}αT1

(η∗))

0

ψ(s)ds ≤
∫ ĝ(0,dF(η∗,{T1η

∗}αT1
(η∗)),0,0,dF(η∗,{T1η

∗}αT1
(η∗)))

0

ψ(s)ds.

By (ĝ3), we have dF(η
∗, {T1η∗}αT1

(η∗)) = 0. Thus η∗ ∈ {T1η∗}αT1
(η∗). Similarly η∗ ∈ {T2η∗}βT2

(η∗). Hence T1 and
T2 have a common fixed point.

5 Conclusion

We have discussed the existence of common fixed point theorem for fuzzy mappings that satisfy the contractive
condition in F- metric spaces as a generalization for some fixed point theorems on metric space.
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