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 

Abstract-- Personal identification based on vein pattern is one 

of the latest biometric approaches that have attracted lots of 

attention. Besides, Convolutional Sparse Coding (CSC) is a 

popular model in the signal and image processing communities, 

resolving some limitations of the traditional patch-based sparse 

representations. As most existing CSC algorithms are suited for 

image restoration, we present a novel discriminative model based 

on CSC for dorsal hand vein recognition in this paper. The 

proposed method, discriminative local block coordinate descent 

(D-LoBCoD), is based on extending the LoBCoD algorithm by 

incorporating the classification error into the objective function 

that considers the performance of a linear classifier and the 

representational power of the filters simultaneously. Thus, for 

training, in each iteration, after updating the sparse coefficients 

and convolutional filters, we minimize the classification error by 

updating the classifier’s parameters according to the label 

information. Finally, after training, the label of the query image 

will be determined by the trained classifier. One thousand two 

hundred dorsal hand vein images taken from 100 individuals are 

used to verify the validity of the proposed methods. The 

experimental results show that our method outperforms other 

competing methods. Further, we demonstrate that our proposed 

method is less dependent on the number of training samples 

because of capturing more representative information from the 

corresponding images. 

 

 
Index Terms-- Convolutional Sparse Coding, Dorsal hand vein 

pattern, Image classification, Region of interest, Sparse 

representation. 

 

I.  INTRODUCTION 

ersonal identification based on subcutaneous vein patterns 

is in the spotlight since the respective devices can take 

contactless images of the body and also for the veins are 

localized inside the body, this method is highly safe and 

resistant to fraud [1, 2]. One of the most important concerns for 

an identification system is selecting a similar and uniform area 

in all images called the Region Of Interest (ROI), which greatly 

impacts the final result [3]. In this work, to eliminate 

restrictions on hand position while taking the image, a robust 

method against hand spin named floating ROI (FROI) is used, 

which is proposed in our previous work [4]. Another problem 

with the identification systems is the type of used algorithm for 

comparing and image classification. Recently, sparse 
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representation algorithms have grown and have succeeded in 

some applications such as image classification [2, 5-10], image 

compression and restoration [11, 12], compressed sensing [13], 

denoising [14], and deep learning [15]. An overview of 

dictionary learning can be found in [16]. 

Since in sparse representation, each data sample is 

represented as a linear combination of a few atoms (dictionary 

columns), it cannot capture shifted local patterns common in 

image samples. Furthermore, learning the dictionary in high-

dimensional signals is not easy [17]. Many algorithms suggest 

training a local model on fully overlapping patches taken from 

a sample to cope with these problems. This patch-based 

technique is similar to manually convolving the dictionary with 

the sample [18]. But, patch-based approaches are known to be 

sub-optimal because they ignore the relations between 

neighboring patches [19]. In addition, as each sample element 

(e.g., an image pixel) is in several overlapping patches, the 

separately learned representations may not be consistent. 

Moreover, the resultant representation is highly redundant [20]. 

The Convolutional sparse coding (CSC) model poses an 

alternative approach to meet these challenges. This model 

assumes that the signal can be represented by the sum of a few 

filters convolved with the corresponding sparse feature maps. 

In this model, by learning a shift-invariant dictionary composed 

of many filters, local patterns are extracted at translated 

positions of the samples by convolution. So, we no longer need 

to use overlapping patches [18]. The CSC model has been the 

subject of extensive research in the past several years. It has 

performed better than sparse coding in many images processing 

applications such as image separation [21], super-resolution 

[22], inpainting [23], biomedical applications [24], image 

fusion [25], audio processing [26], and source separation [27]. 

Several approaches have been proposed to solve the CSC 

problem in spatial and frequency domains [23, 28-30]. But all 

these methods operate in batch mode, so they are high-cost in 

terms of space and time on large data sets. Recently, some CSC 

methods have used the online learning approach. Thus, the data 

samples need not be stored after being processed, significantly 

reducing the algorithms’ time and space complexities [18, 31, 

32]. On the other hand, most of the existing CSC methods are 

unsupervised, and in some works of image classification like 

[33, 34], the CSC model is only used as a feature extractor; 

therefore, other classifiers are needed for classification. Also, in 
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[35, 36], the authors combined the CSC framework with the 

traditional Sparse Representation-based Classification (SRC) 

method. They proposed a convolutional sparse coding 

classification (CSCC) model for image classification, which 

introduces the label during the training step.  

However, as far as we know, most current CSC-based 

algorithms often rely on the Alternating Direction Method of 

Multipliers (ADMM) solvers that operate in the Fourier domain 

for extracting the signal representation of the model and 

training its corresponding filters. Thus, they lose the connection 

to the patch-based processing paradigm, as widely practiced in 

many signals and image processing applications.  

To tackle this, Papyan et al. [21] have proposed Slice Based 

Dictionary Learning (SBDL), which adopts a local point of 

view and trains the filters in terms of only local computations 

in the signal domain. But their method still relies on the ADMM 

and requires N auxiliary variables that cause increasing the 

memory requirements. Recently, Zisselman et al. [17] proposed 

a novel CSC model called Local Block Coordinate Descent 

(LoBCoD) for image inpainting and image fusion. In this 

method, the CSC filter learning and the global pursuit solving 

are done with local computations in the original domain. Unlike 

other CSC methods, the LoBCoD algorithm operates without 

auxiliary variables and extra parameters for tuning in the pursuit 

stage. 

This paper proposes a new approach to extend the LoBCoD 

algorithm for discriminative dictionary learning on vein 

patterns. To do this, we formulate an optimization problem that 

involves the classification’s objective function and the 

representation error. In our proposed method, we add an extra 

term to the LoBCoD algorithm for considering the classifier 

performance. In each iteration, after updating the sparse 

coefficients and convolutional filters, we minimize the 

classification error by updating the classifier’s parameters 

according to the training samples’ label information. Thus, by 

considering the reconstruction error and the classifier 

performance simultaneously, we can define a problem for 

dictionary learning with both discriminative and representative 

power. We call this algorithm Discriminative Local Block 

Coordinate Descent (D-LoBCoD). To demonstrate the 

performance of the proposed D-LoBCoD method, we conduct 

experiments on the hand vein image data set in comparison with 

the state-of-the-art classification methods. The experimental 

results show that our method performs better than the other 

classification methods. 

The remaining part of this paper is organized as follows. 

Section 2 provides an overview of the CSC model and discusses 

the LoBCoD method as a base of our proposed method. In 

section 3, we introduce the proposed D-LoBCoD method. 

Experimental results are reported in section 4, and the 

conclusions are given in the last section. 

Ⅱ.  CONVOLUTIONAL SPARSE CODING 

A.  Overview 

The CSC model assumes that a signal 𝑌 ∈ ℝ𝑀 is 

approximated by the sum of a set of filters convolved with the 

corresponding sparse codes. In other words, the signal 𝑌 ∈ ℝ𝑀 

can be decomposed as 𝑌 = ∑ 𝑑𝑖
𝑛
𝑖=1 ∗ 𝑍𝑖 , where 𝑑𝑖 ∈ ℝ𝑚 are 

filters that are convolved with their corresponding feature maps 

(as an alternative sparse representation) 𝑍𝑖 ∈ ℝ𝑀 , which in 

general 𝑚 ≪ 𝑀. So, in the CSC model, the following 

minimization is performed over both the filters and the feature 

maps: 

  min
𝑑𝑖,𝑍𝑖

1

2
‖𝑌 − ∑ 𝑑𝑖

𝑛
𝑖=1 ∗ 𝑍𝑖‖2

2 + 𝜆 ∑ ‖𝑍𝑖‖1
𝑛
𝑖=1 .                           (1) 

Given the filters, this problem becomes the CSC pursuit task for 

finding {𝑍𝑖}𝑖=1
𝑛 . As shown in Fig. 1, we can write Y = DZ as a 

matrix form, where 𝐃 ∈ ℝ𝑀×𝑀𝑛 is a banded convolutional 

dictionary made from shifted versions of a local dictionary 

𝐃𝑳 ∈ ℝ𝑚×𝑛. The local dictionary 𝐃𝑳 includes the filters 

{𝑑𝑖}𝑖=1
𝑛  as its atoms, and the global sparse vector Z is obtained 

by interlacing the {𝑍𝑖}𝑖=1
𝑛 . 

Therefore, the convolutional dictionary learning problem 1 

can be rewritten as 

  min
𝐃,𝑍

1

2
‖𝑌 − 𝐃𝑍‖2

2 + 𝜆‖𝑍‖1.                                                 (2) 

According to Fig. 1, the global sparse vector Z can be broken 

into M non-overlapping n-dimensional local vectors 𝑧𝑖, which 

are called needles. So, one can express the global signal Y 

as𝑌 = ∑ 𝐏𝑖
𝑇𝑀

𝑖=1 𝐃𝐿𝑧𝑖, where 𝐏𝑖 ∈ ℝ𝑚×𝑀 is the operator that 

extracts the ith n-dimensional patch from Y. In other words, 

𝐏𝑖
𝑇 ∈ ℝ𝑀×𝑚 is the operator that puts 𝐃𝐿𝑧𝑖 in the ith location and 

fills the rest of the entries with zeros. On the other hand, a patch 

𝐏𝑖𝑌 = 𝐏𝑖𝐃𝑍 taken from the signal Y equals 𝛀γ𝑖, where 𝛀 ∈

ℝ𝑚×(2𝑚−1)𝑛 is a stripe dictionary containing 𝐃𝐿 in its center 

and 𝛾𝑖 ∈ ℝ(2𝑚−1)𝑛  is the stripe vector containing the local 

vector 𝑧𝑖  in its center [17]. In other words, a stripe vector 𝛾𝑖 is 

the sparse vector that codes all the content in 𝐏𝑖𝑌, whiles a 

needle 𝑧𝑖 only codes part of the information within it. Papyan et 

al. [21] showed that if all the stripes 𝛾𝑖 are sparse, the solution 

of the convolutional sparse pursuit problem is unique and can 

be recovered by the Orthogonal Matching Pursuit (OMP) [37] 

or Basis Pursuit (BP) [38]. 

 
Fig. 1. The CSC model and its components [17] 

B.  Local Block Coordinate Descent [17] 

Using the previous definitions and the separability of the 𝑙1-

norm, Zisselman et al. [17] expressed the global CSC problem 

(2) in terms of the local sparse vectors 𝑧𝑖 and the local 

dictionary 𝐃𝐿 by 

  min
𝐃𝐿,{𝑧𝑖}

1

2
‖𝑌 − ∑ 𝐏𝑖

𝑇𝑀
𝑖=1 𝐃𝐿𝑧𝑖‖2

2 + 𝜆 ∑ ‖𝑧𝑖‖1
𝑛
𝑖=1 .                     (3) 



Journal of Modeling & Simulation in Electrical & Electronics Engineering (MSEEE)                             29 
 

To solve the above problem, rather than optimizing all the 

needles together, they consider each needle 𝑧𝑖 as a block of 

coordinates, taken from the global vector Z and optimize 

concerning each such block singly and sequentially. So, when 

𝐃𝐿 is known, the update rule of each needle can be written as 

  min
𝑧𝑖

1

2
‖𝑌 − ∑ 𝐏𝑗

𝑇𝑀
𝑖=1
𝑖≠𝑗

𝐃𝐿𝑧𝑗 − 𝐏𝑖
𝑇𝐃𝐿𝑧𝑖‖

2

2

+ 𝜆‖𝑧𝑖‖1.               (4) 

By defining 𝑅𝑖 = 𝑌 − ∑ 𝐏𝑗
𝑇𝑀

𝑖=1
𝑖≠𝑗

𝐃𝐿𝑧𝑗 as the residual without the 

contribution of the needle 𝑧𝑖, and since the minimization 

involves global variables such as 𝑅𝑖, as it has shown in [17], 

one can decompose into the following local problem:  the above 

equation can be rewritten as 

  min
𝑧𝑖

1

2
‖𝐏𝑖𝑅𝑖 − 𝐃𝐿𝑧𝑖‖2

2 + 𝜆‖𝑧𝑖‖1.                                         (5) 

The reason for that is, based on the observation, the update rule 

of the needle 𝑧𝑖 is effected only by pixels belonging to the 

corresponding patch 𝐏𝑖𝑅𝑖. The block coordinate descent 

algorithm’s main idea is that every step minimizes the entire 

penalty w.r.t. a given block of coordinates, while the others are 

in their most updated values. So, every local pursuit stage (5) 

proceeds by updating 𝑌̂ and 𝑅 = 𝑌 − 𝑌̂, as the reconstructed 

signal and the global residual, respectively. It is a preprocessing 

stage for the subsequent stage that updates the next needle based 

on the most updated values of the prior needles. Moreover, in 

this method, the needles that have no overlap in the image can 

be updated in parallel. So, one can use the efficient batch 

implementations of the LARS algorithm. To formalize these, 

the layer 𝐿𝑖 is defined as the set of needles that have no induced 

overlap in the image. The algorithm sweeps through these 

layers and updates their respective needles in parallel, followed 

by updating the 𝑌̂ and R. Note that in this way, the number of 

the inner iterations only depends on the patch size instead of the 

number of needles (M). So, for √𝑚 × √𝑚 patches, the number 

of layers is m. 

For the CSC dictionary learning or learning the CSC filters, 

the usual strategy is to alternate between sparse-coding and 

dictionary update steps for a predetermined number of 

iterations. The purpose of the dictionary update step is to find 

the minimum of the quadratic term of (3) subject to 

normalization of the dictionary columns: 

  min
𝐃𝐿

1

2
‖𝑌 − ∑ 𝐏𝑖

𝑇𝑀
𝑖=1 𝐃𝐿𝑧𝑖‖2

2

𝑠. 𝑡.  {‖𝑑𝑖‖2 = 1}𝑖=1
𝑛 .

                                                 (6) 

The authors in [17] proposed an online dictionary updating 

method in a stochastic manner. In this approach, rather than 

concluding the entire pursuit stage and then advancing in the 

direction of the global gradient, they take a small step size 𝜂 and 

update the dictionary after finding the sparse representation of 

only a small group of needles. Note that after every dictionary 

update, the filters should be normalized. More details can be 

found in [17]. 

Ш.  PROPOSED METHOD 

This section will give our proposed Discriminative-LoBCoD 

(D-LoBCoD) method. As we said, (3) has been found to work 

well in applications such as image inpainting and image fusion. 

However, since the objective function in (3) considers only the 

reconstruction error and the sparsity of the feature maps, the 

learned dictionary is not optimized for a classification task. In 

other words, the learned dictionary may not have the best 

discriminative power despite its representational power. 

Since the dictionary D has no correspondence with the 

training image labels, we used a classifier to make the 

dictionary optimal for classification. The classifier 𝐻 = 𝐖𝑍 +
𝛼 can be replaced by the following problem: 

  min
𝐰,𝛼

 ‖𝐻 − 𝐖𝑍 − 𝛼‖2
2 + 𝛽‖𝐖‖2

2,                                      (7) 

where 𝐻 = [ℎ1, ℎ1, … , ℎ𝐶] are the labels of the training samples, 

W is the parameter of the classifier, Z is the global sparse 

vector, 𝛼 is the coefficient, and 𝐶 is the number of all dataset 

classes. When the samples are symmetric, and the input is 

centralized, α can be considered zero [39]. We have a 

discriminative problem by adding the above problem into (2) as 

the following problem: 

 min
𝐃,𝑍,𝐖

1

2
‖𝑌 − 𝐃𝑍‖2

2 + 𝜆‖𝐻 − 𝐖𝑍‖2
2 + 𝛾‖𝑍‖1 + 𝛽‖𝐖‖2

2, (8) 

Where 𝜆, 𝛾, and 𝛽 are scalers controlling the relative 

contribution of the corresponding terms. As the matrix 𝐖 is 

always normalized column-wise in our method, we can further 

drop the regularization penalty term ‖𝐖‖2
2, and so the final 

formulation of the problem can be written as: 

min
  𝐃,𝑍,𝐖

1

2
‖𝑌 − 𝐃𝑍‖2

2 + 𝜆‖𝐻 − 𝐖𝑍‖2
2 + 𝛾‖𝑍‖1.                   (9) 

When 𝐃, 𝐖, and Z are fixed alternatively, optimization of 𝐃, 

𝐖, and Z can be conducted. In the next subsection, we explain 

the optimization procedure for our proposed method. 

C.  Optimization 

The previous global CSC problem (9) can be expressed in 

terms of the local sparse vectors 𝑧𝑘 and the local dictionary 𝐃𝐿 

and the local matrix 𝐖𝐿 by 

min
𝐃𝐿,𝐖𝐿,{𝑧𝑘}

1

2
‖𝑌 − ∑ 𝐏𝑘

𝑇𝑀
𝑘=1 𝐃𝐿𝑧𝑘‖

2

2
+  𝜆‖𝐻 − ∑ 𝐏𝑘

𝑇𝑀
𝑘=1 𝐃𝐿𝑧𝑘‖

2

2
+

                      𝛾‖𝑧𝑘‖1.                                                                        (10) 

We can optimize 𝐃𝐿, 𝐖𝐿, and 𝑧𝑘 alternatively via updating 𝐃𝐿 

and 𝐖𝐿 by fixing 𝑧𝑘, and updating 𝑧𝑘 by fixing 𝐃𝐿 and 𝐖𝐿. First, 

suppose that 𝐃𝐿 and 𝐖𝐿 are fixed. Like the LoBCoD method, 

rather than optimizing all the needles together, we can treat each 

needle 𝑧𝑘 as a block of coordinates, taken from the global vector 

Z, and optimize each such block separately and sequentially. 

Thus, the update rule of each needle for the jth sample of the ith 

class can be written as 

  min
𝑧𝑖,𝑗

𝑘

1

2
‖(𝑦𝑖,𝑗 − ∑ 𝐏𝑠

𝑇𝑀
𝑠=1
𝑠≠𝑘

𝐃𝐿𝑧𝑖,𝑗
𝑠 ) − 𝐏𝑘

𝑇𝐃𝐿𝑧𝑖,𝑗
𝑘 ‖

2

2

+  𝜆 ‖(ℎ𝑖,𝑗 −

                ∑ 𝐏𝑠
𝑇𝑀

𝑠=1
𝑠≠𝑘

𝐖𝐿𝑧𝑖,𝑗
𝑠 ) − 𝐏𝑘

𝑇𝐖𝐿𝑧𝑖,𝑗
𝑘 ‖

2

2

+ 𝛾‖𝑧𝑖,𝑗
𝑘 ‖

1
.                 (11) 

where 𝑦𝑖,𝑗 is the jth sample of class i, and also ℎ𝑖,𝑗 is a label 



30                                                                                                              Volume 2, Number 1, May 2022 
 

matrix with the same size of 𝑦𝑖,𝑗 which all entries are zero 

except ith column. In other words, the class number of the 

training sample indicates the position of the non-zero column 

in ℎ𝑖,𝑗. For example, if the training sample is the fourth sample 

from the second class (i.e., 𝑦2,4), just the second column entries 

in ℎ2,4 are non-zero, and all other entries in ℎ2,4 will be zero. 

Like before, By defining 𝑅𝑘 = (𝑦𝑖,𝑗 − ∑ 𝐏𝑠
𝑇𝑀

𝑠=1
𝑠≠𝑘

𝐃𝐿𝑧𝑖,𝑗
𝑠 ) and 

𝐹𝑘 = (ℎ𝑖,𝑗 − ∑ 𝐏𝑠
𝑇𝑀

𝑠=1
𝑠≠𝑘

𝐃𝐿𝑧𝑖,𝑗
𝑠 ) as the residuals without the 

contribution of the needle 𝑧𝑖,𝑗
𝑘 , we can write (11) as 

 

 min
𝑧𝑖,𝑗

𝑘

1

2
‖𝐏𝑘𝑅𝑘 − 𝐃𝐿𝑧𝑖,𝑗

𝑘 ‖
2

2
+  𝜆‖𝐏𝑘𝐹𝑘 − 𝐖𝐿𝑧𝑖,𝑗

𝑘 ‖
2

2
+ 𝛾‖𝑧𝑖,𝑗

𝑘 ‖
1

.    (12) 

Thus, we can update every needle 𝑧𝑖,𝑗
𝑘  belongs to the jth 

sample of the ith class by the LoBCoD method. Now, we 

discuss updating 𝐃𝐿 and 𝐖𝐿 when 𝑧𝑖,𝑗
𝑘  is fixed. The goal of the 

dictionary update step is to find the minimum of the term of 

(10) subject to the constraint of normalized dictionary columns: 
 

  min
𝐃𝐿

1

2
‖𝑦𝑖,𝑗 − ∑ 𝐏𝑘

𝑇𝑀
𝑘=1 𝐃𝐿𝑧𝑖,𝑗

𝑘 ‖
2

2

𝑠. 𝑡.  {‖𝑑𝑖‖2 = 1}𝑖=1
𝑛 .

                                         (13) 

One can do so in a batch manner that requires access to the 

entire data set at every iteration. We can use the projected 

steepest descent to solve (13) with this method. To do this, we 

perform the steepest descent with a small step size and project 

the solution to the constraint set after each iteration until 

convergence. To that end, the gradient of the quadratic term in 

(13) w.r.t. 𝐃𝐿 is: 

  ∇𝐃𝐿
= − ∑ 𝐏𝑘

𝑀
𝑘=1 (𝑦𝑖,𝑗 − 𝑦̂𝑖,𝑗)𝑧𝑖,𝑗

𝑘 .                                          (14) 

Thus, we can update the local dictionary 𝐃𝐿 by advancing in the 

direction of the above gradient while normalizing the columns 

of the resulting 𝐃𝐿 in each iteration until convergence. But that 

is very slow because each dictionary update can be performed 

only after finishing the entire sparse coding stage. Therefore, 

we have used the Stochastic-LoBCoD approach [17] to update 

the local dictionary 𝐃𝐿 matrix. 

In this approach, we can update the local dictionary in a 

stochastic manner. To explain that, instead of concluding the 

whole pursuit stage and then advancing in the direction of the 

global gradient, we can take a small step size $\eta$ and update 

the dictionary after finding the sparse representation of only a 

small group of needles [17].  

According to this, in every iteration, a group of needles is 

updated, which is referred to as a layer 𝐿𝑖. Therefore, the 

algorithm is converged faster than the batch method. Note that 

the filters (atoms) should be normalized after every dictionary 

update. Thus, we can write the following formulation for 

updating the local dictionary: 

𝐃𝐿 = ℙ[𝐃𝐿 − 𝜂∇𝐃𝐿
],                                                                     (15) 

where ℙ[. ] is the operator that normalizes the dictionary atoms.  

As we said, like local dictionary updates, we have used the 

Stochastic-LoBCoD method for updating the 𝐖𝐿 matrix. Thus, 

we have the following formulation to find the minimum of the 

term of (10) subject to the constraint normalized matrix 

columns: 

  min
𝐖𝐿

1

2
‖ℎ𝑖,𝑗 − ∑ 𝐏𝑘

𝑇𝑀
𝑘=1 𝐖𝐿𝑧𝑖,𝑗

𝑘 ‖
2

2

𝑠. 𝑡.  {‖𝑤𝑖‖2 = 1}𝑖=1
𝑛 .

                                        (16) 

As we said before, in the above equation, ℎ𝑖,𝑗 is a label matrix 

with the same size as the training sample matrix 𝑦𝑖,𝑗 all of the 

entries are zero except the ith column, where the position of the 

non-zero column indicates the training sample class. For 

example, if the training sample belongs to class 1, all entries of 

ℎ𝑖,𝑗 (in fact ℎ1,𝑗) are zero except column 1. Thus, 𝐖𝐿 will be 

updated in the direction of classification error minimization and 

‖ℎ𝑖,𝑗 − ∑ 𝐏𝑘
𝑇𝑀

𝑘=1 𝐖𝐿𝑧𝑖,𝑗
𝑘 ‖

2

2
 is the classification error. Please note 

that since the update process of 𝐃𝐿 and 𝐖𝐿 are independent, we 

can perform that simultaneously in our algorithm. The final 

algorithm that incorporates needles, 𝐃𝐿, and 𝐖𝐿 update is 

summarized in Algorithm 1. 

D.  Classification 

After obtaining the local learned dictionary 𝐃𝐿 and the 

corresponding classifier 𝐖𝐿, we want to specify the query 

sample class. To do this, first, we find the sparse coefficients 

for a query sample y𝑞 by (12). We name it 𝑍𝑞. After that, we 

obtain the class number of the query sample y𝑞 by 

  𝐶𝑛 = ∑ 𝐏𝑘
𝑇𝑀

𝑘=1 𝐖𝐿𝑧𝑞
𝑘,                                                                (17) 

where 𝑧𝑞
𝑘 are needles of 𝑍𝑞. In other words, 𝑍𝑞 = [𝑧𝑞

1, 𝑧𝑞
2, … , 𝑧𝑞

𝑀] 

consists of M needles for reconstructing query sample y𝑞. The 

class number of the query sample y𝑞 is the index corresponding 

to the largest column of 𝐶𝑛. The related algorithm is 

summarized in Algorithm 3. 

IV.   EXPERIMENTS 

In this section, we compare our D-LoBCoD method with 

state-of-the-art methods such as conventional SRC [5], Mutual 

SRC (MSRC) [2], weighted discriminative collaborative 

competitive representation (WDCCR) [8], label consistent 

KSVD (LC-KSVD) [6], Fisher Discrimination Dictionary 

Learning (FDDL) [7], Discriminative fisher embedding 

dictionary learning (DFEDL) [9], Low-rank Shared Dictionary 

Learning (LRSDL) [10]; and convolutional sparse coding 

classification (CSCC) [35]. We conducted our evaluations on a 

dorsal hand vein database [40], provided by Prof. Sankur from 

the Bogazici University, Nozaripour/Sankur, personal 

communication. The database includes 1200 left-hand infrared 

images of 100 subjects. These images were captured in four 

situations, 1) normal, 2) after squeezing an elastic ball 

repetitively, 3) after carrying a 3kg bag, and 4) after holding an 

ice pack on the back of the hand for one minute. Fig. 2 shows 

some sample images of this database. 
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Algorithm 1: The discriminative-LoBCoD algorithm (learning) 

Input: training samples Y, label matrices H, initial dictionary DL, 

initial matrix WL, initial needles {𝑧𝑖,𝑗
𝑘,0}

𝑘=1

𝑀
, parameters 𝜆, 𝛾, and 𝜂 

Output: needles {𝑧𝑖,𝑗
𝑘 }

𝑘=1

𝑀
 for all training samples, the dictionary 

DL, classifier matrix WL  

Initialization: 𝑅𝑖,𝑗 = 𝑦𝑖,𝑗 , 𝐹𝑖,𝑗 = ℎ𝑖,𝑗 , 𝑦̂𝑖,𝑗 = ℎ̂𝑖,𝑗 = 0, 𝑠 = 0 

for iteration=1 to T do 

     s=s+1 

     for i=1 to C do 

          for j=1 to 𝑛𝑖 do 

               for t=1 to m, do 

                    Computation of the residual: 

                    𝑅𝑖,𝑗
𝑡 = 𝑅𝑖,𝑗 + ∑ 𝐏𝑘

𝑇𝐃𝐿𝑘∈𝐿𝑡
𝑧𝑖,𝑗

𝑠−1 

                    𝐹𝑖,𝑗
𝑡 = 𝐹𝑖,𝑗 + ∑ 𝐏𝑘

𝑇𝐖𝐿𝑘∈𝐿𝑡
𝑧𝑖,𝑗

𝑠−1 

 

                    Sparse pursuit: ∀𝑘 ∈ 𝐿𝑡(in parallel): 

                    𝑧𝑖,𝑗
𝑘,𝑠 = argmin

𝑧𝑖,𝑗
𝑘

1

2
‖𝐏𝑘𝑅𝑖,𝑗

𝑡 − 𝐃𝐿𝑧𝑖,𝑗
𝑘 ‖

2

2
+

                                                   𝜆‖𝐏𝑘𝐹𝑖,𝑗
𝑡 − 𝐖𝐿𝑧𝑖,𝑗

𝑘 ‖
2

2
+ 𝛾‖𝑧𝑖,𝑗

𝑘 ‖
1
 

 

                    Computation of the reconstructed signal and 

                    reconstructed label matrix: 

                    𝑦̂𝑖,𝑗 = 𝑦̂𝑖,𝑗 + ∑ 𝐏𝑘
𝑇𝐃𝐿𝑘∈𝐿𝑡

(𝑧𝑖,𝑗
𝑘,𝑠 − 𝑧𝑖,𝑗

𝑘,𝑠−1) 

                    ℎ̂𝑖,𝑗 = ℎ̂𝑖,𝑗 + ∑ 𝐏𝑘
𝑇𝐖𝐿𝑘∈𝐿𝑡

(𝑧𝑖,𝑗
𝑘,𝑠 − 𝑧𝑖,𝑗

𝑘,𝑠−1) 

                     

                    Computation of the residual signal and residual label  

                    matrix: 

                    𝑅𝑖,𝑗 = 𝑦𝑖,𝑗 − 𝑦̂𝑖,𝑗 

                    𝐹𝑖,𝑗 = ℎ𝑖,𝑗 − ℎ̂𝑖,𝑗  

 

                    Computation of the gradient w.r.t 𝐃𝐿 and 𝐖𝐿: 

                    ∇𝐃𝐿
= ∑ 𝐏𝑘𝑅𝑖,𝑗𝑘∈𝐿𝑡

(𝑧𝑖,𝑗
𝑘,𝑠

)
𝑇
 

                    ∇𝐖𝐿
= ∑ 𝐏𝑘𝐹𝑖,𝑗𝑘∈𝐿𝑡

(𝑧𝑖,𝑗
𝑘,𝑠

)
𝑇
 

 

                    Dictionary and classifier matrix update and 

                    normalization: 

                    𝐃𝐿 = ℙ[𝐃𝐿 −  𝜂∇𝐃𝐿
] 

                    𝐖𝐿 = ℙ[𝐖𝐿 −  𝜂∇𝐖𝐿
] 

               end for 

          end for 

     end for      

end for 

Algorithm 2: The D-LoBCoD algorithm (classification) 

Input: the trained dictionary DL, the trained classifier matrix WL, 

initial needles {𝑧𝑞
𝑘,0}

𝑘=1

𝑀
, query sample 𝑦𝑝, and the parameter 𝛾  

Output: the class of the query sample 𝑦𝑝  

Initialization: 𝑅𝑞 = 𝑦𝑞 , 𝑦̂𝑞 = 0, 𝑠 = 0 

for iteration=1 to T do 

     s=s+1 

     for t=1 to m do 

          Computation of the residual: 

          𝑅𝑞
𝑡 = 𝑅𝑞 + ∑ 𝐏𝑘

𝑇𝐃𝐿𝑘∈𝐿𝑡
𝑧𝑞

𝑠−1 

 

          Sparse pursuit: ∀𝑘 ∈ 𝐿𝑡(in parallel): 

          𝑧𝑞
𝑘,𝑠 = argmin

𝑧𝑞
𝑘

1

2
‖𝐏𝑘𝑅𝑞

𝑡 − 𝐃𝐿𝑧𝑞
𝑘‖

2

2
+ 𝛾‖𝑧𝑞

𝑘‖
1
 

 

          Computation of the reconstructed signal and 

          reconstructed label matrix: 

          𝑦̂𝑞 = 𝑦̂𝑞 + ∑ 𝐏𝑘
𝑇𝐃𝐿𝑘∈𝐿𝑡

(𝑧𝑞
𝑘,𝑠 − 𝑧𝑞

𝑘,𝑠−1)         

                     

          Computation of the residual signal: 

          𝑅𝑞 = 𝑦𝑞 − 𝑦̂𝑞  

     end for      

end for 

𝐶𝑛 = ∑ 𝐏𝑘
𝑇𝑀

𝑘=1 𝐖𝐿𝑧𝑞
𝑘  

A.  ROI and Vein Extraction 

As mentioned before, selecting a similar ROI in all images 

is one of the most important concerns for an identification 

system. In this work, for limiting the effects of relocation and 

hand spin while imaging acquisition, a robust method against 

wrist spin named Floating ROI (FROI), is used, which is 

proposed in [4]. In this method, the lengths and angles of sides 

in the ROI quadrilateral will be changeable based on the amount 

of wrist spin. This is because when we have a wrist spin, one 

side of the hand will be compressed, and the other will be 

extended. Therefore, the ROI length on the compressed side 

should be less than on the extended side. Also, the angles of two 

sides, toward the upper side, should be changed relative to the 

amount of the hand spin. Thus, a similar area with the maximum 

vein pattern will be obtained by changing the two upper angles 

of FROI and the lateral side’s length [4, 41]. Fig. 3 shows the 

FROI extracted from a hand in three states of wrist spin. 

 
 

Fig. 2. Some image samples of the Bogazici hand vein database 
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Fig. 3. FROI was extracted for a hand in three states of wrist spin. (a) Wrist spin to the left. (b) Normal. (c) Wrist spin to the right 

 

 

As it can be seen, in this approach, unlike the conventional 

methods [42], in which the shape of ROI is a fixed quadrilateral 

for all wrist spins, the final form of ROI is not always square or 

rectangular. After selecting and extracting FROI, like [4], a 

mask designed in Fig. 4 with relation (18) is used for extracting 

the vein pattern.  

  {
𝑷 =

1

25
∑ 𝑃𝑖

25
𝑖=1

𝑸 =
1

56
∑ 𝑄𝑗

56
𝑗=1

.                                                                      (15) 

 
 

Fig. 4: The designed mask for extracting the vein pattern from the FROI 

The mask moves over each pixel of the extracted FROI. If 𝑃 > 

𝑄, the pixel of FROI located under the central cell of the mask 

(P13) is recognized as a vein; otherwise, it is considered the 

background pixel. Fig. 5 indicates the vein patterns extracted 

for this filter’s three images in Fig. 3. As it can be seen, the 

veins extracted by this method are much similar, despite a large 

wrist spin difference in the three images. 

 
 

Fig. 5: The designed mask extracted vein patterns for three images of Fig. 3 

B.  Comparison 

After extracting the vein pattern for all images and 

converting them to the same size images (in this work, 64*80 

pixels), as mentioned in the previous section, we used the D-

LoBCoD for vein pattern Classification. We randomly divided 

the samples into the training and testing sets five times to 

highlight the proposed method’s advantages. The number Ts 

indicates the training samples per class; the rest are the testing 

samples. The results of recognition accuracies for each method 

are achieved for ten runs, based on random splits of the training 

and testing group. Then the average experimental results of 

each method for every Ts are considered the average 

recognition rates. Moreover, in all experiments, we have used 

the parameter values that the authors suggested in the original 

papers for a fair comparison. For instance, we have chosen 𝛼 =

𝛽 = 10−5 and 𝛾 = 10−2 in the DFEDL method. Besides, for 

the compared FDDL, LRSDL, and DFEDL algorithms, the 

classification parameter 𝜇 is set to 0.5, and the classification 

parameter 𝜃 is selected from the set {10−3, 10−2, 10−1}. 

Therefore, the best results of all the methods are reported. It 

should be not that the toolbox provided in [10] is used to 

produce the results of SRC, FDDL, LC-KSVD, and LRSDL. 

Moreover, we reimplement the codes of MSRC, WDCCR, 

DFEDL, and CSCC provided by the corresponding authors, and 

the best parameters are searched such that the experimental 

results are valid. As suggested in the original papers, the atom 

number of each class for FDDL, LRSDL, and DFEDL 

algorithms are the same as the number of training samples per 

class. For SRC, CRC, MSRC, WDCCR, and LC-KSVD, the 

atom number of the dictionary are the same; the number of 

training samples per class is multiplied by the number of classes 

on the database. Also, for the CSCC algorithm and our 

proposed method, we used 81 filters with 64 (8 × 8) dimensions. 

A platform with an Intel Core i7-7500U CPU and 8.0 GB RAM 

was used to run the experimental analysis by Matlab 2020b 

software. 

In our experiments on the Bogazici database, the values of Ts 

are 4 to 8 with step 1. The achieved average recognition rates 

from ten runs for all competitive methods are reported in Table 

1. Besides, as an example, the trained local dictionary (𝐃𝐿) and 

the classifier (𝐖𝐿) obtained from our proposed method on this 

database at Ts = 6 are shown in Fig. 6. 
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TABLE I 

 Each Method’s Recognition Rates (Mean ± Std %) In Different Ts On The Bogazici Hand Vein Database 

Method 
Number of Ts (training sample) 

4                                5                                6                                 7                                8 

SRC [5] 48.13 ± 1.13  55.62 ± 1.31 64.91 ± 1.62 73.05 ± 1.12 81.72 ± 1.47 

MSRC [2] 49.12 ± 1.47  57.14 ± 1.22 64.32 ± 1.61 73.81 ± 1.52 82.33 ± 1.24 

WDCCR [8] 50.01 ± 1.32  58.17 ± 1.42 64.69 ± 1.44 75.43 ± 1.39 83.61 ± 1.43 

LC-KSVD [6] 53.62 ± 1.43  60.15 ± 1.13 66.61 ± 1.48 72.01 ± 1.24 80.17 ± 1.22 

FDDL [7] 55.03 ± 1.37  61.26 ± 1.34 67.61 ± 1.27 74.65 ± 1.34 82.43 ± 1.44 

DFEDL [9] 63.14 ± 1.13  68.47 ± 1.22 73.78 ± 1.06 79.72 ± 1.39 86.85 ± 1.32 

LRSDL [10] 59.15 ± 1.52  65.31 ± 1.45 71.58 ± 1.28 79.08 ± 1.51 85.15 ± 1.07 

CSCC [35] 66.19 ± 1.09  72.61 ± 1.45 76.83 ± 1.24 83.14 ± 1.47 87.19 ± 1.24 

D-LoBCoD 71.34 ± 1.42  75.19 ± 1.22 81.34 ± 1.51 86.21 ± 1.08 89.43 ± 1.12 

 
Fig. 6: (a) The trained local dictionary 𝐃𝐿 and (b) the classifiers 𝐖𝐿  

which is obtained from our proposed method at the middle Ts (Ts=6) for 
the Bogazici database. 

C.  Analysis of the Experimental Results 

The experimental results on the Bogazici database were 

shown in the previous subsection. We further discuss them 

in this subsection. As can be seen from Table 1, the average 

recognition rates of each method increase with adding the 

number of training samples for each class on all the 

databases. We can observe that the proposed D-LoBCoD 

method nearly performs better than the other methods. This 

experimental fact implies that by learning a shift-invariant 

dictionary composed of many filters for better extracting the 

local patterns at translated positions of the samples by 

convolution, as well as the simultaneous use of the label 

information of the training samples, we can achieve better 

classification results. Although the LC-KSVD algorithm 

uses the label information of the atoms to constrain the 

coding coefficients, it usually cannot preserve specific 

characteristics of images for each class. The class-specific 

dictionary learning algorithms like FDDL are better than the 

LC-KSVD because it uses the representation residuals and 

the fisher criterion of the coding coefficients. The LRSDL 

algorithm exploits the shared dictionary to capture the 

similar characteristics of training samples and the specific 

class dictionary to preserve the intraclass information of 

each class. This algorithm works better than the FDDL on a 

database with fewer training samples (like the Bogazici 

database). 

On the other hand, the DFEDL algorithm exploits the 

interclass and intraclass information of the atoms, the 

interclass and intraclass characteristics of the profiles, and 

coding coefficients to construct the discriminative Fisher 

embedding terms. As can be seen, the results of this 

algorithm are higher than FDDL and LRSDL algorithms. By 

combining the convolutional sparse coding framework with 

the classification strategy, the CSCC algorithm has achieved 

better results. But as this algorithm trains the filter banks for 

each class separately and relies on the ADMM approach in 

the Fourier domain, it requires a lot of memory and 

computations. Also, it makes the local characterizations of 

the image ignored. This is while our method trains a shared 

dictionary and has better storage complexity than the CCSC. 

Furthermore, using a localized strategy, we were also able 

to use the advantages of the local characterizations of the 

image. For the SRC, CRC, MSRC, and WDCCR algorithms, 

increasing the average recognition rate is more tangible 

when the number of training samples increases. This 

demonstrates that in these algorithms, the number of training 

samples and how to choose them to play an important role in 

recognition. This is less Tangible in the LC-KSVD, FDDL, 

LRSDL, DFEDL, CSCC, and especially our proposed 

method. Because in all of them, a dictionary is trained based 

on the training samples. 

Moreover, in terms of time comparison, as the 

computational cost of the convolutional sparse coding 

method is more than the sparse coding method, the training 

phase time of our method is longer than other sparse-based 

methods (except the methods of [2,5, and 8] that do not have 

a training phase). But the time of the training phase in our 

method is shorter than [35] of a convolutional-based method. 

In fact, among all competing methods, the method [9] is the 

fastest in the training phase, but in the testing phase, the 

method [6] is faster than other methods. 

V.  CONCLUSION 

In this paper, we proposed a novel D-LoBCoD algorithm 

that combines a CSC framework with a classification 

strategy for vein recognition. Because in sparse coding, each 

data sample is represented as a linear combination of a few 

atoms, it cannot capture shifted local patterns common in 

image samples. Thus, by using a CSC model, local patterns 

at translated positions of the samples can be extracted. We 

have used the local block coordinate descent algorithm to 

pursue the global CSC model while operating locally on 

image patches. Moreover, we have improved memory 
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requirements and computational time by using additional 

parameters and parallel computations. Finally, by using this 

method and embedding a classifier in it and using an 

effective method in ROI extraction, we could show the 

superiorities of our proposed method compared with some 

state-of-the-art algorithms. 
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